
- 33 -

DESIGN AND ANALYSIS OF A PARALLEL RAY TRACING COMPUTER

John G. Cleary, Brian Wyvill, Reddy Vatti, Graham M. Birtwistle,

Department of Computer Science, The University of Calgary
2500 University Drive NW, Calgary, Canada T2N lN4

ABSTRACT

An MIMD parallel computing system is described. Each processor is connected to four or six
neighbouring processors to form a square or cubic array. There is no global bus of any kind connected
to all the processors, this has the advantage that the system can more easily be scaled up in size.
It is proposed that this system be used for doing parallel ray tracing of three dimensional scenes to
yield projected view. The software required to do this is described. The performance of the system
is analyzed. While the time taken will depend strongly on the scene and the presence of features such
as specular reflection it is possible to derive expresssions showing how this varies with the number
of processors and the number of rays to be generated. These analytic results are supported by
simulations of ray tracing on a number of scenes with polygonal surfaces . Some comments are made
on the problems involved in construction of such a system and a square array of processors is
constrasted with a cubic array.

KEYWORDS: graphics, ray tracing, parallel processing, multiple micro-processors, animation.

Summary

A well known technique for creating two
dimensional representations of three dimensional
scenes is ray tracing. This technique projects
one or more rays from the "eye" of the observer
outward through each pixel. Each ray is
followed until it intercepts a surface in
the three dimensional scene. The intensity
of the illumination at this surface is then
added to the pixel corresponding to the ray.
If the surface has specular reflection or is
transparent then further reflected or refracted
rays may be spawned.

Ray tracing has a number of advantages over
other hidden surface methods. If more than
one ray is used per pixel it automatically
anti-aliases the image. It provides very exact
shading for curved surfaces. Reflective and
transparent surfaces can be easily handled.
Thus this method is excellent for producing
high quality realistic images.

Its main disadvantage is the very large
amount of computing that is necessary. In
this paper we propose a two or three dimensional
array of micro-processors to do ray tracing
calculations. The array is characterized by
the following properties. It is a multiple
instruction multiple data (MIMD) system with
each processor running asynchronously . Each
processor is connected to at most six nearest
neighbours, that is there is no global bus for
communication. The only global signals are
a reset line and possible some diagnostic
probes. Communication between neighbours uses
shared memories and a simple queueing system
for message passing.

There are three main components to the
software for such a computer. The ray-tracing
algorithm itself, the set-up of a picture
description and operating overhead for
inter-process communication and other tasks
such as loading executable code and monitoring
and diagnosis. The first two of these are
briefly described below.

Graphics Interface '83

During the ray-tracing operation the
three dimensional scene is divided into
rectangular volumes, which are assigned to one
processor each. Each processor stores informa
tion on those parts of surfaces which pass
through its own volume. Each ray is
represented by one packet of about 25 bytes
specifying its direction and other information.
When a processor receives a ray packet it checks
to see if it will intercept any of the
surfaces within its own cube. In the simplest
(and fastest) case there will be no inter
section. Then the ray packet is handed to
the processor owning the next cube of space
which the ray will pass through. (This will
of course be one of the six neighbouring
processors). If the ray does intersect a
surface then a new ray is sent in the direction
of any specular reflection and of any
refraction (if the surface is transparent).
Finally the intensity of the diffuse
reflection back along the original ray is
computed. This information is encoded in a
"return" packet which is passed from processor
to processor back to where the ray started.
A ray which reaches the edges of the three
dimensional scene is checked to see if it is
directed toward a light source. If it is,
a return packet is sent, if it is not the
ray is forgotten.

It is of course necessary to initially
set-up the description of the picture in the
processors. This will be done by sending the
descriptions of the individual surfaces
serially from a host computer to one or more
of the individual processors (the 8 corner
processors might be good candidates) . The
descriptions of the surfaces will then be
passed from processor to processor. Those
processors which intersect (part of) the
surface will retain a description of that
(part of) the surface and hand the description
onto their neighbours. For animated pictures
it should be possible to set-up frames other
than the first one by performing local
increments to the positions of surfaces. A
similar techniques is envisaged for i nitially
loading code into the processors.

\-Then analyzing the performance of the
ray tracing it can be shown that the total
time to complete a ray trace will contain
three components: A constant overhead to
account f or creation and termination of
individual rays; a term which grows linearly
with t he length of the edges of t he array

- 34 -

that is with the square or cube root of the
number of processors); and finally a term
which is inversely proportional to the square
of the lengths of the edges and proportional
to the number of rays to be generated. As a
results of this there is a minimum possible
processing time for a particular scene. Any
increase in the number of processors beyond
this will cause the system to slow down.

While the systems performance will depend
strongly on the scene being processed it is
still possible to make order of magnitude
estimates of price and performance of a
processor array. If we assume that a processor
of about the power of an Intel 8086 could
be placed on a board with memory and interface
logic for say $200 then a 1000 processor
system would cost $20,000. Conservative
assumptions about execution speeds of the
algorithms show that it could construct a
1000 by 1000 pixel picture (one ray per
pixel) in 5 secs . and 4000 by 4000 in 80 secs.
A 125,000 processor system (50 by 50 by 50)
would cost $50,000,000. It could process a
1000 by 1000 pixels in 0.15 secs. and 4000
by 4000 in 2 secs. It is notable that 0.15
secs. is sufficiently small to make real
time production feasible. Certainly it would
be good enough to preview in degraded form
pictures to be produced later in greater detail.

Ray tracing is a perfect candidate for
the application of parallel micro-processor
systems: the calculations for the individual
rays are independent of one another; and the
actual physical space in which the calculations
take place can be mapped directly onto a
configuration of processors with only local
interconnections. We are currently proceeding
with the development of software to simulate
the system as part of the distributed software
prototyping project (JADE) at the University
of Calgary. Simultaneously we are designing
and building one or two prototype processors
to test ray-tracing code and inter-processor
communication. The next step will be to build
a system with about 40 processors which should
be sufficient to test almost all aspects
of the software.

Graphics Interface '83

