
- 47 -

ACTIVE MESSAGING IN THE OFFICE: A LAMP UNTO MY FEET

Paul S. Licker, Faculty of Management, University of Calgary

ABSTRACT

This paper concerns an important extension of the usual idea of electronic mail: that of "active
messaging." In this conception , messages are associated with preplanned, programmed activities that
become active before, during and after message receipt. Control over message disposition rests with
the sender at all times through a protocol acted out as soon as the message is released. This protocol
is created in a language called LAMP which provides a number of message disposition services. LAMP
can be used to create officeware in all its "traditional" forms as well as new kinds of interaction
that are currently impossible. LAMP fits well with the developmental and prototyping view of the
developm'ent of Decision.,.Support Systems and Management Information Systems. An implementation of LAMP
i s currently in progress at the University of Calgary.

KEYWORDS: Office automation , Electronic Mail, Networking, Telecommunications, Human Factors

The usual i dea of electronic mail is that
the sender creates a message which the system
stores and del ivers upon command of the receiver
when the rece i ver is ready to rece i ve. I n the
process , the message itself is passive. That is
it does nothing at all while it is stored. Any
act ivit y which takes place wi th regard to any
message is a system design parameter, determined
long before the message is created and "sent."
Typically, too, the message does 1 ittle upon
de l i very . It is merely displayed at the whim
of the rece i ver and then e i ther filed or dis
carded. Some systems allow for automatic notice
of rece ipt and may prompt easy repl ies. Where
an automated office has the facility to protect
message content from copying, messages, once
read, may not be stored or reread.

Some extensions to this idea have been
propJsed and others implemented. Two of these
important extensions i nclude timed messages
whi ch have to be delivered (i.e . , read) within
a certa in ti me period (specified at message
creation t ime) and mu l ti-media messages, which
ma y ~ontainlaudio or moving video information.
One system implements the concept of the
"alert " which i s equivalent to a bring-forward
mes sJge . One of the most highly arti~ulated
auto~ated off ice is Office-by-Examp~e , an IBM
product based unon nuerv-hv ~~~mnl e . ~~irly

i nt rica t e t imi ng cond i tions ma y be p laced upon
message s i n th is sys tem, prov id ing a flex i bil i ty

which most personal secretaries cannot dupl icate.

This paper discusse~ another extension, a
general ization of this concept of conditional
activity asssociated with a message. This
concept is termed "act i ve mes sag i ng," and it is
profound in i ts effects. An implementation to
be run on a VAX machine at the Un i versit y of
Calgary is currently in the process of develop
ment. Several appl ications are foreseen for the
system, including complex management information
systems which could not easily be implemented
in native code in brief periods of time.

Active messaging differs from traditional
electronic mail in that the message is "active"
during storage, transmission, d i splay and
disposition. This act ivity is preplanned , pro
grammed through a very-high-level programming
language suitable for "accompl ished" managers
or more real istically for officeware analysts
who wor k with the managers in a protot yping mode .
Activities thus preplanned are under the software
control of the sender, rather than under the
control of predefined software "options " or of
the receiver at time of receipt.

This concept represents a dramatic shift of
emphasis in electronic mail from the separate
activities of the sender in creating the message
and the receiver in purusing it . Ins t ead , the
sender creates a scenario , or , in our t e rmino logy,

Graphics Interface '83

a "protocol" which is acted out by the message
as soon as it is released to the system.

It is unl ikely that traditional electronic
mail systems can replace activities more com
plex than the mail they are designed to aug
ment. This is so because most electronic mail
systems simulate the strong separation between
sender and receiver that the post office has
been happy to put up with since the dawn of
civil ization. That is, the sender creates a
message which the sender hopes will be under
stood by the receiver and which the sender
hopes will be acted upon by the receiver in
specific ways. There are several problems
with this conception for modern organizat ions.

First, although electronic mail gets around
the problem of slow delivery by reproducing
the message electronically at the speed of
1 ight, it does not guarantee either that the
message will be read expeditiously or under
stood in the way that the sender hopes. Next ,
despite the rapid del ivery, the sender really
has no control over when the message will be
read or the environment in which it will be
read. By this I mean that a message which is
supposed to be read tomorrow might not be
read until the day after and at that time
certain documentat ion which i s important for
the understanding of the message may not be
ava i lable. In other words, although I may have
an idea of the kind of environment I'd 1 ike my
ideas received in, I cannot specify that in
fact the message must be read in this k ind of
env i ronment.

Third, although in some systems I can
specify that the message must be read before,
say 18.00 tomorrow, I may not know at this
moment whether th i s time is a g~od time 1 imit.
For example, I may desire my consultant to
read and respond to my request for another
round of prototype development. If he is un
ava i lable and hasn ' t read the message by quit
ting t ime tomorrow, I'll have to call my friend
Tom who is very good at this sort of thing .
The problem has to do with the def inition of
qu i tting time. I ' d reall y rather not bother
Tom if I don't have to. What is my consult
ant ' s quitting t ime? I don ' t know. In the
non-electronic analogue, I ' d phone my secre
tary and say "As k my consultant to tell me if
he can meet wi th me next week BEFORE HE LEAVES
WORK TODAY. " My secretary knows the meaning
of the term "BEFORE HE LEAVES WORK TODAY" but
unfortunatel y, the electronic mail system does
not . S i nce my consultant's qu i tt i ng time
tomorrow wil l probabl y be known tomorrow but
ce r t a inl y isn't known toda y, I have a log ical

- 48 -

problem in determining in advance knowledge I
cannot have until later. So long as the only
"active" part of the message is the address,
I am stumped.

Active messaging approaches this as a prob
lem in work organizat ion. One of the parameters
of my message is my conultant's quitting time.
Since it will be known tomorrow (let's say that
everyone maintains an electronic calendar which
contains that information each day), that value
can be determined at the appropriate time (i.e.,
tomorrow sometime) and the restriction on the
reading time determined then. I might have a
parameter or option on my message that takes
th i s form:

IF NOT READ BEFORE QTIME THEN
DESTROY AND ALERT MYSECRETARY .

In this statement, I note typographically
(by using a different typeface) to you, my reader
that QTIME and MYSECRETARY are variables; all
other words are reserved or optional keywords.
The value of QTIME will be determined elsewhere
and the value of MYSECRETARY (which is actually
a mailbox address set globally by me -- a con
stant variable, if you will) is used to post a
notice that the message didn't get through .

can determine QTIME in a variety of ways .
If I have access to a language processor such as
PL/l or FORTRAN, I might simply compute it in
that language, perhaps retr ieving appropriate
values using a DBMS:

QTlME = MIN (18.0, FETCH("QUITTING-TIME"
OF liB. CONSULTANT"));

I must also ensure that this statement is per
formed at the appropriate time . Since today ' s
quitting time of B. Consultant is not important ,
but tomorrow's is, I'll have to program so that
QTIME is set at 18.00 tomorrow until tomorrow
morn ing, at which time the appropriate FETCH
wi 11 be done :

IF IT IS TOMORROW THEN QTIME=MIN (18.0 , FETCH
("QUITTING-TIME" OF liB . CONSULTANT")) ;

IF NOT READ BEFORE QTIME TOMORROW
THEN DESTROY AND ALERT MYSECRETARY .

Thus the act ive part of this message de
termines quitting t ime for my consultant at the
appropriate time after I compose my message but
while it waits to~ead.

Graphics Interface '83

Active messaging therefore approaches the
three problems outl ined. First, by allowing
a great deal of freedom as to what can be
determined at the time of delivery, the possi
bil i ties of increasing understanding will be
increased . In addition, because the active
part of the message can determine, to the
extent that the sender understands it, when
a good time to del iver the message might be,
del ivery is convenient for the receiver. This
gets around the problem caused by special de
livery messages which cannot be delivered be
cause the receiver is not present. Second,
the sender has absolute control (except as
noted below) over the conditions under which
the message is read . You may condition the
reading of the message upon prior reading of
others of your messages or upon events which
are external to your message such as the
clock, the calendar, response to your' message
on the part of others, specific responses to
your prior messages, and so forth.

Third, active messaging meets the problem
of a rapidly changing world in which you
cannot anticipate specific events accurately
but do have an idea of what events might occur
because you understand how the receiver works.
In our example, because you understand that
the term "quitting time" appl ies only approxi
mately in most cases, you hesitate to use the
value of 18.00. Instead you know that indi
viduals' quitting times are scheduled in ad
vance and are ava i lable at the appropriate
time (i .e., tomorrow) .

One important idea behind the concept of
active messaging is the office modeling idea .
Whereas the traditional electronic mail con
cept adopts a rigid, and often incorrect,
model of the behaviour of individuals in
offices, active messaging accepts the notion
that we really do not have such a general
model and that models which rigidly specify
office behaviour are almost always wrong.
Th i s does not mean that electronic mail i s
useless, only that it lacks the flexibil ity
i t ought to have were it to reflect our true
knowledge of off ice behaviour.

Instead , each of us has an idea of how
others work. We use those ideas in our dail y
organizational l i fe , some more successfully
than others to be sure. Through face-to-face
i nterac t ion with others, we come to learn
abou t their behaviour and their expectations
of our behaviour . Electronic mai 1 in its
commerc ial forms adopts a Single , r ig id model ,
of the behaviour of ind iv iduals which must,

- 49 -

by its nature, have inadequacies in almost every
circumstance.

Recently this writer4 explored the idea that
in the office of the future data processing and
communication will become fused into a single
conception. These ideas were further developed
in a series of papers 5 exploring the automated
office and its impl ications for organizational
I ife. It is apparent that a flexible electronic
mail system based upon active messages more
nearly simulates face-to-face interaction and,
at the same time, provides for interesting and
profitable extensions of face-to-face contact,
just as the telephone both simulated intimate
interaction (I iterally whispering in another's
ear!) and extended, in McLuhan's sense, our
powers of interaction.

Two important benefits coming from the
extension of electronic mail through active
messaging come directly out of these ideas.
First, because an appropriate language for ex
pressing these interactions allows individuals
to express their models of one another, each
person can conceive of him- or herself as sit
ting at the apex of a virtual organization or
"virtual office." Since, unl ike electronic
mail, the user of active messages completely
controls message disposition at all t imes, one
can tailor interactions to suit one's concept ion
of one's work . This departs seriousl y from the
bureaucratic conception in which individuals re
spond to work concepts dictated from "above" and
seriously threatens the bureaucrat ic conception
(which , curiously enough, may be almost trivial
ly modeled as active messages) .

Second, because an appropriate language for
expression of active messaging is in fact a
model ing language, we have a tool for collecting
data on how people might work had they the
flexibil ity to work in ways idiosyncrat ic to
their personal ities, work requirements, and
environment. In fact, since a very-high-level
language for framing protocols is itself ma
chine readable, we can create super-models of
specific offices without first having to create
specific models and then anal yze them individu
ally. Our knowledge of what actually goes on
in the office may therefore increase by a large
quantum with every implementation of the very
high-level language.

At the University of Calgary we are cur
rentl y implementing an active messaging system
on a VAX (at the time this paper was submitted
for pr i nting the s ystem was st i ll in develop-

Graphics Interface '83

ment). The system consists of a programming
language called LAMP (Language for Active
Message Protocols) -- previously reported on
at the 1982 ACM conference on Human Factors in
Computer Systems 7-- and a run-time environment
consistent with the" active message concept.
We hope to have a number of appl ications run
ning by summer of 1983 including the follow
ing:

I. A Performance Data and DevelopmenP
system (POD), an improvement on
performance appraisal systems, in
this case intended for individuals
util izing a PDPII/70 in a word
processing mode (we will cross
implement from the VAX to the POP);

2. An implementation of computer con
ferencing which allows very long
meetings (VLM) to take place and
which integrates interaction among
individuals with real-time and
delayed presentation of materials
in a multi-media mode;

3. A simulation of the office which
provides the virtual office {VO)9
concept directly to individuals
in a prototyping mode. Individuals
will be able to develop officeware
specific to their needs and work
styles, commanding a "virtual"
office of work units and resources;

Each of these systems (POD, VLM, VO) will
appear as a very-very-high-Ievel extension
of LAMP. LAMP will be built around the C
language of the VAX. Therefore we are anti
cipating a cascading of language facil ity that
is quite complex and probably in its early
appl ications rather inefficient. Since most
electronic mail appl ications are highly I/O
bound, inefficiencies at a computational level
are probably unimportant initially.

LAMP contains a large number of statement
types which provide a great many facil ities
to the officeware analyst/programmer. These
facilities include the following:

I. Testing the time of del ivery and acting
based upon this time;

2 . Testing the identity of the receiver and
acting based upon this;

3. Asking for, testing, storing, and
generating reply messages based upon
receiver responses;

- 50 -

4. Generating cascades of messages to a
list of individuals based upon time,
identity or responses of particular
receivers at the time of message receipt;

5. Combining the above facilities to direct
messages in particular orders dependent
upon external and internal events;

6. Del ivering parts of messages in particu
lar orders at particular times to parti
cular receivers;

7. Constructing and conducting elaborate
computer conferences, real-time com
munication via computer and/or voice
(this latter obviously a relatively
expensive extension of LAMP) and control
I ing audio-visual presentations including
moving images, stills, interactive games
and simulations;

8. Combining several messages, cross
referencing existing messages, computing
the values of variables pertaining to
individuals and environments at time of
receipt, accessing exsting or to-be
constructed data bases within the message
at the time of del ivery;

9. Control I ing receipt of messages sent.

This final facil ity allows receivers to
sift through messages by sender, time, and other
parameters. This responds to the need to
pr i or i t i ze messages, to 11 i gnore" some and
respond immediately to others. Because message
content is under sender control, receivers may
only control their own time of receipt based
upon external parameters: message sender id,
response t ime requirements, message length,
etc. However, since receipt may also be pre
programmed to an extent, we automatically have
the facil ity for automatic receipt as well as
automatic sending. This concept is termed
"surrogation" and it, too, has profound impli
cations for the conduct of business, as discus
sed in the paper referenced in footnote 4.

The remainder of this paper is devoted to a
discussion of the facil ities of the LAMP lan
guage. Before doing this, a few words are in
order as to the disposition of the language:
what environment would such a language be use
ful i n7

At this moment there are a multitude of
office automation packages available through
the ma j or vendors and a variety of relat ive
newcomers. These packages all share the same

Graphlca Interface "83

characteristics:

1. A relative rigid conception of howelec
tronic mail is to be performed; .

2. A language interface which is basically
at a command level, with facil ities for
storing a sequence of commands;

3. The facil ity to modify a command with a
series of parameters or qual ifiers of a
fixed nature;

4. Almost no interaction with higher-level
languages;

5. No facil ity to branch into and out of
the actual or virtual operating system
for computational and data-base activity.

LAMP counters these 1 imitations by providing
these facil ities within the context of a VHL
programming language. Our implementation is
as an extension of C. However, there is a
price to pay for this.

First, such language extensions are condi
tioned upon the abil ity to program, and to
program in a particular language. Second, the
use of existing programming languages impl ies
that LAMP will be ~imited to a single environ
ment (such as a given manufacturer's PL/l or
FORTRAN environment). Third, it is unl ikely
that any manager or a typical clerk or princi
pal in an office will wish to write computer
programs at any time.

Therefore, although the limitations of the
traditional electronic mail package of soft
ware options are recognized, will it be pos
sible to util ize a language such a LAMP in any
organization not composed exclusively of ac
complished programmers? The answer is yes and
the technique is prototyping.

Prototyping is a generic term for a variety
of developmental, iterative techniques which
develop software cO-~8intly among programmers,
analysts, and users. Working with an analyst
the user specifies, interactively with the
analyst, what the output or work required from
a system is. The analyst will produce a work
ing model or "prototype" of the system, which
wi 11 in turn produce the output or the work.
User judgments of the work's or output's value
will direct further efforts on the part of the
analyst, who may require more programming ser
vices. In some cases the prototype is the only
s~ftware produced. l)red Brooks's admonition
t~ "throw one away" is extended in the pro-
t~typing model to "throw all but one away."

- 51 -

Other examples of prototyping inf~ude'~rchi
tecture-based" software development ,develop
mental approaches to decision-support systems,l3
and end-user software (where the analyst and
programmer f4e replaced by a program-generator)
development .

We see LAMP as a tool to be used in prototyp
ing. An analyst or programmer/analyst who knows
LAMP will be able to express to a manager or
office worker the MIS conception of the office.
The office worker will in return be able to ex
press concerns in idiosyncratic fashion which
can be turned into a prototype in LAMP. As suc
cessive versions of the prototype are turned out
the office worker is given a better and better
approximation of what was originally wanted.

In this fashion, a large amount of officeware
can be created, pertinent to individual workers
or groups of wo rkers. It is doubt fu 1 whether
an office can afford a lot of software, but it
is clear that the traditional development method
a priori rules out any but the most inflexible
packages.

In addition to the previously-cited Office
by-Example, two other important office automa
tion systems exhibit quantum units of concept
ion above the package mode. Starr Roxanne Hiltz
has built a language to generate office-related
situations for problem-solving purposes; her
language is used to create laboratory situatl'gns
for experiments. 15 Another example is OFFIS
wh·i ch was bu i 1 t to generate mode 1 s of off ices
for the purposes of studying office process.
Neither is a commercial language.

The following are examples of the use of
LAMP to imitate certain office automation func
tions. One shows how a memorandum can be pre
programmed to pass from hand to hand. The sec
ond shows a text message sent in traditional
electronic mail. The third shows the integra
tion of dictation, electronic mail and active
messaging. The fourth shows the integration of
voice communication, data processing, and tele
conferencing:

Graphics Interface '83

MEMORANDUM: "HOORAY, SALES ARE UP";
RELEASE TO TOM OR DICK OR HARRY;
PASS TO BOB AND JOE IN ORDER;
QUERY "TYPE I N OR SPEAK YOUR

COMMENTS"; MONITOR REPLY;
IF RECEIVER IS JOE THEN DESTROY

AND CONNECT (ME OR MY-BOSS};
ELSE IF RECEIVER IS TOM OR DICK

TH E N ALE R T ME; END;

In this memorandum's 1 ife, it is expected
that Tom, Dick and Harry will get first looks
at the message about sales. Whoever ge~s to
look at it first, second or third, it gets
passed to Bob and then to Joe. Whenever Joe
receives it, that ' s the end of the circulation
1 ist, regardless of whether the others from the
"optional" 1 ist have seen it. The message can
then be seen by anyone or more of Tom, Dick
or Harry and must subsequently be seen by Bob
and then Joe. When Joe gets the message, my
telephone number is rung. I f there is no an
swer or it is busy, the number referred to as
"MY-BOSS" is rung. If this number is unavail
able, no further actions are specified. If the
receiver is Tom or Dick, a confidential "alert"
is passed back to me informing me that the mes
sage called "MEMORANDUM" was received by the
specified person. I may not receive that mes
sage for days. Whomever does see the message
is required to comment upon the news, which is
monitored and saved for my reference as
"REPLI ES TO MEMORANDUM".

TEXT-MESSAGE : "HI PLEASE PHONE ME BEFORE
MIDNIGHT. ";
IF IT IS BEFORE MIDNIGHT TODAY THEN

RELEASE TO 555-1212 AND(CONNECT
US OR ALERT ME); ELSE DESTROY AND
ALERT ME AND MY-PERMANENT-FILE; END;

Here I've left a message that I've called
and wish to be responded to before midnight.
If the message is read before midnight today
it is made available indef initel y to whoever
i s at 555-1212 and my phone is tried; if the
connection is made, fine , otherwise an alert
is sent informing me that my message called
"TEXTMESSAGE" was released but I could not be
connected. If it is not read before midnight
toda y , it i s destroyed, I am alerted t o that
fact and the alert is also directed to an ad
j ress that happens to correspond t o a permanent
file called "MY-PERMANENT-FILE. ".

Note in this example that a telephone num
ber such as 555-1212 ma y be used as an address
lS well as a file-name and a traditional elec
tron ic "ma i lbox address." The in tegration of
voice and data communi cation i s ne i ther required
n0r r e s t r i c te ~ ; . i nstea -i it i s progra mma 'J le .

- 52 -

DICTATION : C## a voice message is placed
in here between the hash marks # # # ~

RELEASE TO MY-SECRETARY ;
IF IT IS TOMORROW THEN HOLD UNTIL

NOON AND ALERT ME;
QUERY ### If you can get this done

before noon, type in YES. If
you can't type N 0 and I'll find
some other way to get it done .###

IF REPLY IS "NO" THEN (CONNECT US
OR LINK SEND-TO-POOL) AND RELEASE
PARAGRAPH-OF-THANKS-ANYWAY TO
MY-SECRETARY;

PARAGRAPH-OF-THANKS-ANYWAY:
THANKS ANYWAY ## #; END

Dictation in LAMP is nothing more than a
vo ice message (handled by a dictation-handler
from the typist ' s point of work) . A voice mes
sage (indicated by the ### brackets above and
handled mechanically through a switch on whatever
unit is being controlled by LAMP) is made active
by a unit of coding which controls, in this case ,
where it is to be directed for transcription.
Note that a second message (PARAGRAPH-OF-THANKS
ANYWAY) is involved and released if the message
is res ponded to by a "NO".

It is assumed that LAMP includes the stand
ard message perusal procedures, although LAMP is
paragraph oriented rather than 1 ine oriented
(a "I ine" is not a concept of the spoken voice).
A dictation handler will control message read ing
and 1 istening to the extent that the dictation
message allows it by RELEASE-ing it to the hand
ler.

Note the odd clause IF IT IS TOMORROW. The
value of such reserved words is determined at
message-generation time. Other modifiers such
as NEXT, BETWEEN, or even SOON can be used . A
term such as SOON ma y have part icular meanings
for particular senders; its onl y restriction is
that it have a positive value.

VOICE-TELECONFERENCE: "WELCOME TO THE TELECONFER
ENCE. EVERYTHING IS UNDER SOFTWARE CONTROL
AND YOU NEED DO NOTHING BUT SPEAK OR TYPE
AS YOU WISH . " INSTRUCTIONS:" "
AGENDA: " " RELEASE TO CONF-ONE-LIST;
CALL PRESENTATION; LISTEN TO CONF-ONE-LIST ;
IF SENDER IS TOM SPEAK TO CONF-ONE-LIST ;
IF SENDER IS HARRY THEN CENSOR ALL AND

SPEAK TO HARRY;
MONITOR ALL; IF IT IS AFTER NEXT MONTH
THEN DISCONNECT ALL AND ALERT ME;

This i s a voice-and-data conference which
is expected to last the entire month. Paragra phs
of instructions and the lat est agenda are re
leased t o every par ti c ipan t. In divid ua l s may

Graphics Interface '83

have their own software handlers to sift out the
instructions (IF MESSAGE-NAME IS "INSTRUCTIONS")
permanently or only after the first time

- 53 -

(IF IT IS AFTER DATE-SENT ...). A presentation is
given, probably a model that is run in order to
obtain some consensus as to its val idity or val
ue in making a decision. Anyone on CONF-ONE-LIST
may speak at any time. But if the sender is
TOM, I have a message to give to everyone; the
communication 1 ines become simplex (one-way) at
this point and I "address" the conference.
Whether or not we are in real time, I will hold
the floor and no one will be able to send any
thing until I release the floow. On the other
hand, if Harry is the sender, then I close down
all sending and receiving and speak only to
Harry (he was supposed to keep hi s"mouth"
"shut" during this conference). I monitor all
emissions and on the first day of the month
following this one, everyone is disconnected
from the conference (this was spelled out in
the instructions) and I'm alerted to the close
down of the conference.

The great flexibil ity of LAMP poses a
problem, of course. We know little about how
we work and there is a danger of over-procedural
ization. After all, the little conference just
described is nearly non-sensical; anything even
~ore compl icated might tax anyone's ability to
lay it out without hitch. It should be expected
that LAMP will not reach full, profitable utili
zation without some effort on the part of those
'rlho use it to use it right. On the other hand,
3S each piece of officeware is created, it be
comes available for lease, loan or sale to other
~fficers. Over time, LAMP officeware may become
3nother medium of exchange among offices.

REFERENCES

Ness, D. "Office Automation Project:
Responsive Mai1." Working Paper 77-01-07, Dept.
of Decision Sciences, Wharton School, Univ. of
Pennsylvania, 1977.

2 Zloof, M. M. "Office-by-Example: A
Business Language That Unifies Data and Word
Processing and Electronic Mail," I B M Systems
Journal 21 (3): 272·;'304, 1982.

3 Zloof, M. M. "Query-by-Example: A Data
Base Language, " I B M Systems Journal 16(4);
324-343 , 1977.

., 4Li cker, P. "I n the Off i ce of the Future,
Communication Is Data Processing," Presented to
the Canadian Operations Research Society Annual
Meeting, May, 1983. Available as WP 17-82,
Fa§ult y of Management, U. of Calgary.

Licker, P. "Information Management in the
Off i ce of the Future," WP 36-82 and "Wi 11 Offi ce
Automation Provide the Theory ·II Z' Organization?"
WP638-82, Faculty of Management, U. of Calgary.

McLuhan, M. Understanding Media: Extensions
of Man. New York: New American Library, 1964
~cker, P. "LAMP: Language for Active Message
Protocols," Presented to the Human Factors in
Computer Systems Conference, Gathersburg, MD,
15-17 March, 1982.

8 Janz, T. "Personnel Decisions: Costs, Bene
fits and Opportunities for the Energy Industry,"
WP 28-82, Faculty of Management, U. of Calgary.
See also T. Janz, "Towards a Performance Data
and Development System," Resources in Education
19~2, EO 215250, ERIC/CAPS, Ann Arbor, Michigan.

Licker, P. "Information Management in the
Office of the Future," op. cit.

10 Canning, R. G. "Developing Systems by
Pr9rotyping," EDP Analyzer 19(9) , Sept. 1981.

Brooks, F. The Mythical Man-Month: Essays
in Software Engineering. Reading, Mass.!
Ad9~son-Wesley, 1975.

Benjamin, A., Carey, T. T. and Mason, R. E.
A. "Act/I: A Tool for Information Systems
Prototyping," Mimeo. ACM SIGSOFT, Columbia
MafJland, 19-28 April, 1982.

Sprague, R. H. Jr. "A Framework for the
Development of Decision Support Systems,"
M I S Quarterly 4(4): 1-26, 1980.

14 McLean, E. R. "End Users as Appl ication
Developers," M I S Quarterly 3(4): 37-46, 1979.

15 Hiltz, S. R. "Communications and Group
Decision-Making: Experimental Evidence on the
Potential Impact of Computer Conferencing,"
Research Rpt. 2, Computerized Conferencing and
Communications Center, N J I T, Sept. 1975 .

16 Konsynski, B. R. and Bracken, L. C.
"Computer-Aided Analysis of Office Systems, "
M I S Quarterly 6(10: 1-18, March, 1982.

Graphics Interface '83

