DIRECTOR-ORIENTED

3D SHADED COMPUTER ANIMATION

Nadia Magnenat-Thalmann
Hautes Etudes Commerciales
Université de Montréal
Canada

Daniel Thalmann

Département d'Informatique

et de Recherche Opérationnelle
Université de Montréal

Canada

(Invited paper)

ABSTRACT

Artists who do not know how to program a
computer have to use an artist-oriented system
offering the possibility of making most scenes of
a computer-animated film. This system must
provide facilities for controlling main actor
motions, virtual camera handling and lighting.

In the case of very complex motions,
procedural models can be programmed by a
specialist but it is essential that the control
of these procedural models be assured by the
animator in the interactive system. This means
that the new motion has been added to the system;
in fact, the system is extensible.

We have designed such a system, called
MIRANIM, composed of an animator-oriented system
called CINEDIT and an animation sublanguage
called CINEMIRA-2.

KEYWORDS
director.

Animation, actors, cameras, lights,

INTRODUCT ION

Most authors (1,2,3) distinguish two types of
computer animation: computer-aided animation and
modelled animation.

The first type of animation is used in the
cartoons of Walt Disney or Hannah-Barbera. In
this type of two-dimensional character animation,
the computer may have a role to play in three
main areas: the creation of drawings, the
production of inbetweens, and painting. In each
of those areas, computer—assisted animation and
interactive user-oriented systems are normally
used: e.g. graphics editors, key-frame systems
and paint systems.

The second type of animation corresponds to
animation sequences in which three-dimensional
models move about in three-dimensional space. The
process 1is very complex without a computer.
Modelled animation has been used in television
advertisements (4) and for special effects in
films like "Star Trek II'", "Return of Jedi" and
especially in "TRON". 3D computer animation
involves three main activities:

1) object modelling
2) motion specification and synchronization
3) image rendering.

Al though there are problems in computer-aided
animation (1) , various animator-oriented systems
have been developed (5,6,7) and they work. They
can be used by non computer-scientist artists. In
modelled animation, the problem is more complex

and always centers around the question:
programming language or animator-oriented
system ? The production of three-dimensional
computer—-animated films using a graphical
programming language 1s time-consuming. For

example, it took 14 months to produce the 13
minutes film DREAM FLIGHT (8) although we have
used structured programming with the MIRA-3D
language (9) based on high-level graphical
types (10).

Moreover, such an approach 1implies that
animators also have to be programmers.
User-friendly interactive systems have the great
advantage of being dedicated to artists but they
impose limits on the creativity of artists who
would like to exploit all the possibilities of a
computer. Special effects like the ones shown in
Fig. 1 and 2 are difficult to produce without
programming. Apart from 3D Key-frame Animation
Systems like BBOOP (l1) or MUTAN (12), there are
not many examples of artist-oriented 3D systems
except ANTS (13,14). Part of the spectacular
effects in TRON, for instance, have been produced
by Information International Inc. using
ASAS (15) which is a typical programming language
used for computer animation.

OQur approach is the following one: artists
who do not know how to program a computer (they
are the majority) have to use an artist-oriented
system. This system must offer the possibility of
making most scenes of a computer-animated film.
It must provide facilities for controlling main
actor motions, virtual camera handling,
lighting. In the case of a very complex motion,
procedural models can be programmed by a
programmer but it is essential that the control
of this procedural model be assured by the
animator 1in the interactive system. This means
that the new motion has been added to the system
that is then an extensible system. We have
designed such a system (called MIRANIM) composed

Graphics Interface '84

Fig.2 Motion of a wheel (from NIRVANA)

INE

Fig.3 An explosion (from

\

[RVANA)

Graphics Interface '84

of an animator-oriented system called CINEDIT and
an animation sublanguage called CINEMIRA-2.

DESCRIPTION OF THE ANIMATOR-ORIENTED SYSTEM

CINEDIT

This system allows the animator to specify a
complete script without any programming. The
animator can create actors with their motions and
transformations as well as virtual cameras with
their motions and characteristics. Decors can
also be built interactively. Multiple light
sources can be defined which can be moved around
at will. Eight modes are defined in the system
and there are specific commands for each mode:

1) Variable mode

This mode allows the animator Cto create
constants and animated variables. Such
variables are defined by an evolution law
describing how their wvalues are changing
during a period of time. Among the available
laws, there are Catmull laws and the main
physical motions. These animated variables
play a considerable role, because they drive
the motion of actors, cameras and lights. For
example, to define a point PT that turns from
0 to time 10 with a circular motion around an
axis passing through the vector <8,4,0> and
plane normal vector €0;0;1>; with an

angular velocity of 1 rd/sec and angular
acceleration of 0 rd/sec? we type:

VEC, PT, A, 0, 0, 0

- defines point PT as a vector with an

initial value.
LAW, MYLAW, MVTCIRC, 8,4,0,0,0,1,1,0
- defines the law MYLAW as a
circular motion.
EVOLUTION, PT, MYLAW, 0,10

- associates the law to the point from time
0 to time 10.

specific

2) Object mode

This mode offers the same possibilities to
create objects as a limited 3D graphics
editor does. In fact, basic objects must be
built outside the animation system. But they

can be modified in this object mode by
rotations, translations, scaling and
coloring.

3) Decor mode

This mode allows the animator to build a
decor with objects and to display it in order
to get an idea of its aspect.

4)

5)

6)

‘"This mode 1is

Actor mode

the most important one. The
animator defines actors (animated objects)
and then gives a list of transformations
which have to be applied to each actor. At

present, 16 kinds of transformations are
available including rotation, sizing,
translation, shears, torsion, traction,
flexion, stochastic transformation, color

changing. The parameters of a transformation
may be animated variables; the latter are
also generally used to specify the time
dependence. For example, in a rotation, the
angle can be an animated real number and the
direction of the axis can be an animated
vector.

The number of transformations associated to
an actor are not limited and the
transformations are driven by the animated
variables. For example, suppose we would like
to perform the following transformations on a
tree:

1) changing the size
2) having a flexion
3) changing the color from green to red.

This can be performed by the following

commands:

ACTOR, TREE, TREEOBJ
- defines the actor tree with the object
TREEOBJ as basis.

SIZE, TREE, V
- V is an animated vector which defines how
the size is changing.

FLEXION, TREE, V1,V2,V3,V4
- V1,v2,V3 and V4 are flexion parameters.

COLOR, TREE, VC

- VC is an animated vector which changes
from the HLS value of green to the HLS
value of red according to a law.

Camera mode

In this mode, the animator can define one or
several virtual cameras. Each camera has an
eye point and an interest point which can be

animated vectors. Moreover, clipping, spin,
viewport and =zoom can be specified for a
camera as well as being animated. The eye

point or the interest point of a camera can
also follow the motion of a specific actor.
By using several cameras at the same time,
special effects 1like wipes can easily be
achieved.

Light mode

In this mode, the animator can define omne or
several light sources and their motion(s).

Graphics Interface '84

7) Animation mode

This mode 1is the director's mode; starting
time and duration of actors, cameras and
decor are decided this way. It is also in
this mode that shooting or playback is
activated.

8) Control mode

This mode allows the animator to enter in
other modes, to save or retrieve actors,
cameras, decors or to obtain a list of the
script under the form of an "abstract table"
of all variables, laws, actors,
transformations, cameras, lights and so on.

THE CINEMIRA-2 SUBLANGUAGE

Based on our experience with the CINEMIRA
language in actor and camera data types (16), we
have designed a sublanguage called CINEMIRA-2,
less complex than CINEMIRA. This sublanguage is
limited to the programming of entities to be used
by CINEDIT; it is not possible to write a program
in CINEMIRA-2. What 1is innovative with this
approach is that an entity programmed in
CINEMIRA-2 is directly accessible in CINEDIT. For
example, an animator would like to introduce a
transformation EXPLOSION in a scene where an
actor CAR 1s running, has a crash and is
destroyed by an explosion. The animator would
like to control the EXPLOSION by parameters like
the speed of the car V and the distance to an
obstacle D. We assume that the animator does not
know how to program. He asks a programmer to
implement a transformation EXPLOSION (V,D) who
does so. Then, the animator can define in the
actor mode:

EXPLOSION, V, D

where V 1is an animated vector and D an animated
real. Fig. 3 shows an explosion.

Apart from actor transformations, CINEMIRA-2
allows the programming of six kinds of entities:

1) animation blocks
2) laws

3) transformations
4) objects

5) subactors

6) cameras.

Commands in CINEDIT allow the animator to
have access to these entities. These commands
have parameters corresponding to the parameters
of the entities defined in CINEMIRA-2. Types of
parameters can be one of the following:

1) VECTOR
2) REAL
3) OBJ for graphical objects

4) ACT for actors
5) CAM for cameras.

An animation block is a subprogram executed
at each frame.

e.g. block BALL (CENTER: VECTOR);
var SPH: SPHERE;

in

create SPH (CENTER,3);

end;

o
1]

The animator can activate a block 1in the
editor by calling the command BLOCK, and then
choose the parameters.

e.g. BLOCK,BALL,10,5,CENTER

- where 10 1is the activation time, 5 the
duration time and CENTER an animated
vector.

Laws can be defined in a similar way to
functions in PASCAL. However, the type of the
function is necessarily REAL or VECTOR and these
laws are functions of the time (CLOCK).

MVTACC (SPDINIT, ACC: VECTOR):
VECTOR;

a.g. law

begin
MVTACC := 0.5 % ACC * SQR (CLOCK) -
SPDINIT * CLOCK

end

These laws can then be used by the animator
with the command LAW of the editor.

Procedural objects can be defined under the
form of graphical types as already shown
in (9,10), and <can be modelled either as
line-drawing objects or as 3D shaded objects.
Fig. 4 and 5 show examples.

In the editor, the animator can create
procedural objects and of course he can choose
any parameter he wants by the command PROBJECT.

Subactors can either be used as parts of an
actor in the editor or as a complete actor.
Synchronization between actors and subactors is
assured by parameters. These parameters can be
animated variables. For example, we can define,
in the editor, an actor CAR with a velocity V.
The car possesses 4 wheels which are subactors.
These wheels have a rotation speed depending on
the speed of the car. The wheels are implemented
in CINEMIRA-2 under the form:

type WHEEL = subactor (CENTER,V : VECTOR)
begin
end;

In the editor, the CAR with animated wheels
is created as:

Graphics Interface '84

fig.4 3D shaded objects implementad by graphical “ypes

Fig.5 3D shaded text implemented by graphical types

Graphics Interface '84

ACTOR, CAR, CARFILE
TRANSLATION, CAR, A, POSITION

SUBACTOR, WHEELl, WHEEL, POINTI, SPEED
SUBACTOR, WHEEL2, WHEEL, POINT2, SPEED
SUBACTOR, WHEEL3, WHEEL, POINT3, SPEED
SUBACTOR, WHEEL4, WHEEL, POINT4, SPEED

HIERARCHY, CAR, WHEEL1, WHEEL2,
WHEEL3, WHEEL4

Cameras are generally defined in the editor
with numerous facilitlies to produce special
effects like these provided by optical printers.
However, it is also possible for an animator to
define procedural cameras.

In this case, he defines cameras as entities

of a camera type.

type TCAM = camera (P :
begin
if NORME(P) < LIMIT
" then PERCAMERA
(P, INT,ZOOM,SPIN)
PARCAMERA(F(P),
INT, ZOOM,SPIN)

e.g. VECTOR);

else

end;

A camera of the TCAM type can be activated in
the editor by the command

PROCAM, CAMI, TCAM, POINT
- POINT is an animated vector.

IMPLEMENTATION
CINEDIT is a 12000 source lines program
written in MIRA-SHADING (17), that is a

structured language providing the programmer the

means to specify, manipulate and animate 3D
shaded objects by wusing high-level graphical
types.

Like MIRA-SHADING, CINEMIRA-2 has been

implemented by the development of a preprocessor
written in ISO PASCAL. This preprocessor produces
standard PASCAL modules and a specification file.
To extend CINEDIT with new entities, programmed
in CINEMIRA-2, the following steps have to be
taken:

1) Precompile new entities.
2) Compile PASCAL output.
3) Link output with CINEDIT relocatable code.

At runtime, access to the new entities by

CINEDIT is performed by checking the
specification file produced by the CINEMIRA-2
preprocessor. Fig. 6 shows the complete

organization of this process.

CINEDIT and CINEMIRA-2 have been implemented
on VAX 11/780 for wvarious terminals. Shaded
images are produced with an AED 767 terminal.

5}

CONCLUSION

CINEDIT 1is a three-dimensional animation
system which requires no knowledge in Computer
science of its user. This does not mean that any
person can sit down to the terminal and produce a
complex computer-animated film in a short time.
CINEDIT has been designed for animators and
directors who are accustomed to design, motion
and colors. The animator always has to prepare
his/her script before using CINEDIT. However,
when such a script is ready, when the role of all
variables, actors, cameras, lights and decors has
been defined, it is a straightforward task to use
CINEDIT.

CINEDIT consists of a powerful set of
commands and numerous predefined motions, laws
and transformations. However, any
director-oriented system has its limitations.
With our approach, the artist can ask a
programmer to write any procedural entity he/she
needs and this entity can be controlled by the
animator as a predefined entity. Consequently,
our system offers both advantages of being
user-oriented and extensible.

ACKNOWLEDGEMENTS

We are grateful to Serge Lafrance who has
worked on the CINEDIT implementation, to Mario
Fortin who has devel oped the CINEMIRA-2
preprocessor and to Louis Langlois who has worked
on the realistic effects. The project has been
supported by NSERC and FCAC.

REFERENCES

(1) Catmull, E. "The Problems of
Computer-assisted Animation", Computer
Graphics, Vol. 12, No. 3, 1978,

pp. 348-353.

Magnenat-Thalmann, N. and Thalmann, D.,
"Principles of Computer Animation",
Springer-Verlag Tokyo Inc., 1984.

(€ 2)

€ 3) R.J. "Computer Aided Animation:
A Concise Review", Proc. Computer
Graphics'82, Online Conf. Ltd, Loandon,

1982, pp. 279-290.

Crow, F.C. '"Shaded Computer Graphics in
the Entertainment Industry", Computer,
IEEE Press, Vol.ll, Neo. 3, 1978,

pp. 11-22.

Burtnyk, N. and Wein, M,
Skeleton Techniques for Enhancing Motion
Dynamics in Key Frame Animation", Comm.
ACM, Vol. 19, No. 10, 1976, pp. 564-569.

Lansdown,

(4)

(5)

"Interactive

Graphics Interface '84

(6) Stern, G. "Softcel: An Application of
Raster Scan Graphics to Conventional Cel
Animation', Proc. SIGGRAPH'79,

pp. 284-288.

(7) catmull, E. '"New Frontiers in Computer
Animation'", American Cinematographer,
October 1979.

(8) Thalmann, D.; Magnenat-Thalmann, N. and
Bergeron, P. '"Dream Flight: A Fictional l
Film Produced by 3D Computer Animation", o
Proc. Computer Graphics'82, Online Conf. entities
Led, 1982, pp. 353-368. in

CINEMIRA-2

(9) Magnenat-Thalmann, N. and Thalmann, D.
"MIRA-3D: A Three-dimensional Graphical
Extension of PASCAL", Software-Practice
and Experience, John Wiley, Vol. 13, 1983,
pp. 797-808.

A
CINEMIRA-2
(10) Magnenat-Thalmann3 N. and Tha}mann, D. reprocessor
"The Use of 3D High-level Graphical Types

in the MIRA Animation System', TEEE J
Computer Graphics and Applications, (
Vol. 3, No. 9, pp. 9-16. f

entities
(11) Stern, G. "Bboop: A System for 3D Key | v
Frame Figure Animation", SIGGRAPH'33 I PASCAL

tutorial, pp. 240-243.

(12) Fortin, D.; Lamy, J.F. and Thalmann, D. "A e
Multiple Track Animator System", Proc. 1 CISEDIT
SIGGRAPH/SIGART Interdisciplinary Workshop i LE)
on Motion: Representation and Perception, i compiler relocatable
Toronto, 1983, pp. 180-186. 1 code

1

(13) Csuri C. et al. "Towards an Interactive

High Visual Complexity Animation System', E

entities
Proc. SIGGRAPH'79, pp. 289-299. in

(14) Hackathorn R. et al. "An Interactive i relocatable
Microcomputer Based 3D Animation System", code

Proc. Canadian Man-Computer Communications
Society Conf., 1981, pp. 181-191.

{15 Reynolds C.W. 'Computer Animation with
Scripts and Actors', Proc. SIGGRAPH'82,
pp. 289-296.

(16) Thalmann, D. and Magnenat-Thalmann, N.

LINKER

specification
file

"Actor and Camera Data Types in Computer extended
Animation", Proc. Graphics Interface'83, CINFD[T
pp. 203-210 (expanded version to appear in in

ACM Transactions on Graphies). absolute

(17) Magnenat-Thalmann, N.; Thalmann, D.; \\\‘. code
Fortin, M. and Langlois, L. "MIRA-SHADING:

A Language for the Synthesis and the (AX 11/780
Animation of Realistic Images', Technical
Report, H.E.C., Montreal, 1983.
Fig. 6 : Organization of the extension process in MIRANIM

Graphics Interface '84

