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ABSTRACT

Polynomial Catmull-Rom splines have local control, can be either approximating
or interpolating, and are efficiently computable. Practical experience with Beta-
splines has shown that it is useful to endow a spline with shape parameters, used
to modify the shape of the curve or surface independent of the defining control
vertices. Thus, it is desirable to construct a subclass of the Catmull-Rom splines
which has shape parameters.

We present such a class, some members of which are interpolating and oth-
ers approximating. As was done for the Beta-spline, shape parameters are intro-
duced by requiring geometric rather than algebraic continuity. Splines in this
class are defined by a set of control vertices and a set of shape parameter values
associated with the joints of the curve. The shape parameters may be applied
globally, affecting the entire curve, or they may be modified locally, aflecting only
a portion of the curve or surface near the corresponding joint. The interpolating
members of the class are new in that no previous local interpolating technique
possesses locally variable shape parameters.

We show that this class results from combining geometric continuous
(Beta-spline) blending functions with a new set of geometric continuous interpo-
lating functions. The interpolating functions are shown to be a geometric con-
tinuous generalization of the classical Lagrange polynomials.
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1. Introduction

Many applications of computer-aided geometric design
require the description of objects using mathematical functions
called splinee. A spline curve is a piecewise univariate function
that satisfies a set of continuity consfraints where the curve geg-
ments meet. The point at which two segments join is called a
joinl. A popular type of spline is the polynomial spline, defined
by a set of control verlices and a set of polynomial functions
called basis functions that are used to blend, or weight, the ver-
tices.

Splines are either interpolating or approzrimating. Interpo-
lating splines are required to pass through the control vertices,
while approximating splines are only required to pass "near” the
vertices. Splines can be further classified as either global, or local
representations. In a global representation, the movement of a
control vertex causes the entire spline to change. In a local
representation, it is possible to localize the change resulting from
the perturbation of a control vertex; this is the property of local
control. The recent development of the Befa-spline!:23.5 has
shown that it is possible to introduce shape parameters into the
curve formulation, which can be used to modify the shape of the
curve independent of the control vertices. Experience has shown
that shape parameters provide a designer with intuitive control
of shape.

From the standpoint of computer-aided geometric design, it
is desirable to construct local, polynomial splines with shape
parameters. Since the choice of interpolation yersus approxima-
tion is application dependent, both should be possible. The
objective of this work is to develop a class of splines possessing
shape parameters that are local, polynomial, and either interpo-
lating or approximating. This can be done by combining the
work of Catmull and Rom” with that of Barsky.?

Catmull and Rom’ introduced a class of local polynomial
splines which could be made to either interpolate or approximate
a set of control vertices." To construct a class of splines with the
properties enumerated above, we need only introduce shape
parameters into the Catmull-Rom splines. As with Beta-splines,
this is done by replacing algebraic continuity with geometric con-
tinuity.

Algebraic continuity refers to the continuity of parametric
derivative vectors of the curve. A continuous first derivative vec-
tor gives first order algebraic, or C! continuity. If both the first
and second derivative vectors are continuous, the spline has
second order algebraic (C?) continuity. Geometric continuity, on
the other hand, requires continuity of visual quantities such as
unil tangent and curvature vectors. A continuous unit tangent
vector gives first order geometric (G') continuity, while second
order geometric (G?) continuity refers to continuous unit tangent
and curvature vectors.

It has previously been shown® that C' continuity may be
replaced with G', and C? may be replaced with GZ while still
maintaining visual smoothness. Since geometric continuity is less
restrictive than the corresponding order of algebraic continuity,
the relaxation from algebraic to geometric continuity allows the

t Unfortunately, the title of their paper did not reflect the fact that both
approximating and interpolating splines ate members of the class
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introduction of new degrees of freedom called shape parameters.
The replacement of €' with G! results in one shape parameter:
replacing C* with G? results in two shape parameters.

This paper shows how the relaxation to geometric con-
tinuity can yield a class of Catmull-Rom splines, either interpo-
lating or approximating, whose shape can be modified via shape
parameters. The interpolating splines we present are new due to
their shape parameters; they are the first local, polynomial, inter-
polating splines with locally variable shape parameters. Conse-
quently, local modification of a shape parameter affects only a
portion of the curve near the corresponding joint.

2. Notatlon

Scalar quantities will be written in Italics (z, Y(u}), and
vectors and vector-valued functions will be denoted by boldface
type (V, Q(u)). Since it is often necessary to distinguish
between a piecewise function and the segments that compose it,
we will adhere to the convention that a piecewise function is
denoted by an upper case character (A(u), H,(u)), while the seg-
ments are indexed and written in the corresponding lower case
(M(u), by, (u)). Finally, the p'® derivative of a parametric func-
tion, when taken with respect to its domain parameter, will be
denoted with a superscript (p) as in W")(u) and Q")(u).

3. The Class of Catmull-Rom Splines
Splines used in computer-aided geometric design are typi-
cally defined by a set of contrel vertices V, and a set of blending
functions W,(u); i.e.
m

Qu)= Y V,W(u)

1 =0

(3.1)

Catmull and Rom extended this form by replacing the vertices
V, with vector-valued interpolating functions P,(u). Each P,(u)
Is constructed to interpolate the k+1 vertices
V..Viin Vg, for some nonnegative integer k. Intui-
tively, k sets the width of the interpolating window of the func-
tion P,(u). Thus, a Catmull-Rom spline takes the form

Flu)= 3 P,(u)W(u) (3.2)

1 =0

Catmull and Rom show that if the blending functions are
non-zero over [) parametric intervals, then a spline of the form
given in (3.2) will be approximating if k<D -2, and interpolating
otherwise. When k = 0, the function P,(u) is only required to
interpolate V,, so it is sufficient for P,(u) = V,. In this case,
equation (3.2) is identical in form to equation (3.1), showing that
the Catmull-Rom splines generalize standard approximating
techniques such as Bézier, ® B-splines, 1° and Beta-splines.?

Throughout the remainder of our discussion, we make the
following assumptions:

o  The ¢* segment of F(u), denoted f,(u), is traced out

when u is on the half-open interval [g,g+ 1) (see
figure 3.1).
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Figure 3.1.
Indering of the piecewize function F(u).
Note that the joints correspond to integrel
values of the domain parameler.

° The blending functions have local support; that is,
they are nonzero over only over a parametric width of
D. The i*® such function W,(u) is nonzero only over
the open interval (i-1,i-1+ D).

° The blending functions form a parfition of unity; that
is, they satisfy

VY W(u)=1 for 0<u<m

1 =0

(3:3)

. Finally, the interpolating functions P,(u) are con-
structed so that

P(g)=V, forg=ii+1, - i+k (3.4)
Since the blending functions have local support, the ¢'® seg-
ment of F(u) can be written as

o+1
f,(u)= }_,:—2 DP,[u}W,{u] g<u<g+1
|=q i

(3.5)

It is convenient to change the parametrization of f,(u) such that
it is traced out when its parameter varies on the interval [0,1).
To do this, we can without loss of generality assume that the
blending functions W,(u) and interpolating functions P, (u) are
piecewise functions where each of the segments is parametrized
on [0,1) (see figure 3.2). If the j*® segments of W,(u) and P,(u)
are denoted by w, (u) and p, ,(u), respectively, then a [0,1)
parametrization for £ (u) is

DA
fG‘{“)= Ecpv+l+2-9.|{“} w¢+|+2—D'|(u] 0<u<l1 {3-6}

4. Geometrle Continulty

Consider the situation at the joint where the segments
q,.i(u) and q,(u) meet (see figure 4.1). The necessary and
sufficient condition for unit tangent vector continuity at the joint
between q, ,(u) and q,(u) is®

qM(0) = #1,q}}(1) (4.1)

wphu)
P
i (
Y R (v)
= M
Foalu)
Balu)
1 : i-;-l l-:»ﬂ HD3 D2 HD1 o
Figure 3.2.

The j'* segments of W,(u) and P,(u) are denoted by
w,,(u) and p, ,(u), respectively. They are indezed from
right to left, as shown above.

i—'—\

q; (1)

q,,(0)

o

Figure 4.1.
The joinl common to the segments q,(u) and q,(u)
corresponds lo q, (1) and q,(0).

This constraint must hold for all values of A1,. The condition
for C' continuity is a special case of (4.1), occurring when
Bl, = 1. If B1, # 1, equation (4.1) prescribes a discontinuity in
the first parametric derivative. However, due to the parametric
representation of q, ;(u) and q,(u), this discontinuity does not

affect the visual smoothness at the joint.3

Recall that a uniform quadratic B-spline blending function

is C'. The segments of the blending function are given by
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u’-2u41
mlv) = —5—
—2u?+ 2u+1
nifu) = — s (4.2)
2
u
ny(u) = o=

where each segment is parametrized on [0,1) and the indexing is
from right to left, as in figure 3.2. The G' analogue of the uni-
form quadratic B-spline is the G' Beta-spline, the segments of
which are given by?

b o(u) = m'“l (v*-2u+1)

ﬂl|+l+

bx.l':u] = {_(ﬁllﬁll+l+ 2n81:+ l)u2+

981, (AL, 4+ 1)u—BL, 4+ D)/((BL+ 1)(81, 41+ 1) 49

balv) = 15y

Second order geometric continuity (G*) requires not only
continuity of the unit tangent vector, but continuity of the cur-
vature vector as well. Thus, for G* continuity, equation (4.1)
must hold in addition to®

a{?(0) = p17a®(1) + £2.q(1) (4.4)
where A1, and A2, can be freely chosen. G? reduces to C*? when
Al, =1 and f2, = 0. When 51, and £2, do not have these
default values, equations (4.1) and (4.4) specify discontinuities in
the first and second parametric derivatives, respectively.

Just as the G' Beta-spline is the geometric analogue of the
uniform quadratic B-spline, the G? Beta-spline is the geometric
analogue of the uniform cubic B-spline. The segments of the
blending functions are fairly complex, but can be found in Good-
man.?

6. Geometric Continuous Catmull-Rom Splines

We now apply the notion of geometric continuity to the
Catmull-Rom spline. The resulting subclass can conveniently be
described by Table 5.1.

T T Continuity Constraint
width G! G*
k =0 | Approximating * | Approximating
k =1 | Interpolating * Approximating
kE>1 Interpolating Interpolating
¢ Explicitly constructed in section &
Table 5.1

The rows of the table correspond to the width of the
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interpolating window (k) used in the construction of the function
P,(u) in equation (3.5). Since the splines in the first column are
G' continuous, they possess one shape parameter per joint; the
splines in the second column have two shape parameters per
joint.

5.1. Decoupling

To construct a Catmull-Rom spline F(u) subject to the
first order geometric continuity constraint (4.1), it is sufficient to
use blending functions W,(u) and interpolating functions P, (u),
each of which separately satisfies equation (4.1). The proof
proceeds by differentiation of (3.6), followed by substitution of

w,,(0) = w,,,4(1)
wi(0) = 1, wfil, (1)
P,.(0) =p,,(1)
p!(0) = 81, p{N4(1)

j=gq+i+2-D (5.1)

which must hold if W,(u) and P,(u) are G' continuous. One
can then show that the resulting expression is equivalent to

£(0) = 21,£0(1) (5.2)
Thus, the determination of a first order geometric continuous
Catmull-Rom spline decouples into two smaller problems: the
construction of G' blending functions W,(u), and the construc-
tion of G' interpolating functions P,(u). Using a similar tech-
nique, it is possible to show that G? Catmull-Rom splines result
from the combination of G? blending functions and G? interpo-
lating functions.

The geometric continuous blending functions necessary to
construct geometric continuous Catmull-Rom splines are known;
they are the G' and G* Beta-spline blending functions.®® All
that remains is the development of G* and G? interpolating func-
tions P, (u).

5.2. Geometric Continuous Interpolating Functions

Before embarking on the derivation of the geometric con-
tinuous functions P (u), we examine the functions originally
used by Catmull and Rom to show that they are not geometric
continuous, and hence cannot be used to construct a geometric
continuous Catmull-Rom spline. However, a generalization of
the functions they chose can be used.

5.2.1. Lagrange Interpolation

Recall that the function P,(u) must be constructed to
interpolate the vertices V,\'V, .y, - -+ V4, for some nonnega-
tive integer k. Catmull and Rom chose functions of the form

P,(u)= )iOV,H L,(k;u-i) (5.3)

1=

where the L,(k;u) are the classical Lagrange polynomials, defined
by

oot

= (5.4)

k
L,(ku)= ]I

p =0
P#FE
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It is easy to show that the Lagrange polynomials satisly the
Kronecker delta relation

0forr # j
L(k;r)=36,, = {1 Lo p we § forr =01, ",k (5.5)
In fact, any set of functions satisfying equation (5.5) can be used
to construct an interpolating function of the form given in (5.3).
We now examine the continuity of P, (u).

A function P,(u) as in equation (5.3) is a single polynomial
of degree k, and as such is everywhere C® continuous. It is
impossible for such a function to have the derivative discontinui-
ties required by the geometric continuity conditions (4.1) and
(4.4). Intuitively, the Lagrange polynomials are oo smooth to be
geometric continuous. For our purposes, we must construct a set
of functions that satisfy both a Kronecker delta relation similar
to (5.5) and either first or second order geometric continuity. We
do this by developing a set of piecewise polynomials that can be
shown to be a generalization of the Lagrange polynomials
presented above.

5.2.2. Geometrie Continuous Lagrange Interpolation

Since a single polynomial is everywhere €, we must resort
to a piecewise polynomial representation to obtain interpolating
functions that have the derivative discontinuities necessary for
geometric continuity. We choose functions of the same form as
(5.3), but we replace the Lagrange polynomials with a set of
piecewise functions A, ,(k;u) to get

Pu)= 3 VA, (k5w (5.6)

J =0

The properties of A,,(k;u) determine the behaviour of P,(u).
For P,(u) to interpolate V, 'V, 4y, -+ V. ;, the functions
A,,(k;u) must satisfy the Kronecker delta relation

A, (kir)=28,, forr=1,i+1, " i+k (5.7)
Moreover, since the continuity of A, ;(k;u) is inherited by P,(u),
A,,,(k;u) must be constructed to possess geometric contizuity at
its joints.

Let )\,U,.s[k;u), j=01,---k,and # =0,1, -+ ,D-1be
the s'® segment of A, (k;u), as shown in figure 5.1. For conveni-
ence in developing a [0,1) parametrization for f,(u), we require
each of the \,  ,(k;u) to be parametrized on [0,1).

Observe that A, (k;u) requires D segments, where D is the
width of the blending function W,(u) that will ultimately weight
it. Any additional segments of A, ,(k;u) would not contribute to
(3.2) when weighted by W,(¢). If A, ;(k;u) had fewer segments,
it would not be geometric continuous at each of the joints within
the support of W,(u).

Although the Lagrange polynomials have an elegant, con-
cise definition (equation (5.4)), we do not know of a closed form
for the functions A, ,(k;u) for arbitrary k and D; they must
currently be constructed on a case-by-case basis for a given k
and D. We demonstrate their construction by the following
example.
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A, o (ki) Mgy lleu)
Figure 5.1.

The function A, ,(k;u) has segments X, ; ((k;u), indezed
from right to left, as shown above.

Consider the case where it is desired to construct G' con-
tinuous A, ,(k;u) for k=1 and D = 3. The six functions
Mys(liu), 5 =01, ¢ =0,1,2 must be determined subject to
the Kronecker delta constraint and first order geometric con-
tinuity. The Kronecker delta constraints for the segments of
A, o(1;u) are (see figure 5.2).

k‘_ozll;ll =1

k:,D.l(I;OJ =1
Nipoo(l;1) =0 (5.8)
k|,l3.0(l;0} =0
and the G! constraints are
M Bo(1,0) = A1, 42 Ha(11)
(5.9)

A0a(1,0) = AL BA11)

A (1:u)
‘ ’\\’k 18] (1)

Lt
Wl T el
. w e

A (L)
.00

1.3

Figure 5.2.
The position and indezing of the segments of A, o(1;4)

This set of equations imposes six constraints on the three func-
tions X, 00(L;u), M oa(l;u), and X, go(1;u). If each function is
written in terms of two unknowns, the system will be completely
specified. In other words, it is sufficient for each of the functions
to be a polynomial of first degree. Assuming they are linear
functions, solution of the system yields

Nioofliu) = —B1, 4 u

Moal(liu) = 1-u

B1,+ 1-u
p1,

(5.10)

>‘|.0.2{1;“] o
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A similar system of equaticns can be generated and scived to
produce the components of A, ,(1;u):

Moaolliu) = Bl u + 1

Maa(liu)=u (5.11)
Xx,m[llu} - :;I,l

When 81, = 1 for all i, it is easy to show that A, o(1;u)
and A, ,(1;u) are piecewise linear representations of Lg(1;u-i)
and L(1;u—i), respectively. This verifies that A, ,(1;u) form a
G' generalization of the first degree Lagrange polynomials. The
analogous G? functions A, ;(2;u) can be constructed by requiring
that the twelve functions ), ,.(2;u), j =012 ¢ =0,123
satisfy an appropriate Kronecker delta relation, and the G' and
G? constraints from (4.1) and (4.4).

5.3. The General Form

In this section we merge a set of geometric continuous
blending functions W,(u) with a set of geometric continuous
interpolating functions P,(u) to produce a geometric continuous
Catmull-Rom spline.

We wish to obtain a [0,1) parametrized version of f,(u)
similar to equation (3.6) using the form of the interpolating func-
tions given in (5.6). To do this, we require a form for the seg-
ments of P,(u) referred to in (3.6) in terms of the segments of
A, ,(u). The appropriate expression is

k
Poti+2-04(8) = Y Vogipops) Agrg2n,y (ki) (5.12)
1 =0

By substituting (5.12) into (3.6), expanding the summations, then
regrouping terms and changing summation indices, f,(u) can be
rewritten as

l'+_‘l
fi(u)= 3 Vi bo,lu) (5.13)
§y=2-D
where
$q5lu) = Nehg4p-2-nn(kiu) woppa(u)(5.14)
Bmin S & € Ko
and
a = q-D+2
hmax = min(g+ D-2,D-1) (5.15)

b = max(0,9+ D-2-k)

Equations (5.13) and (5.14) together define the class of
geometric continuous Catmull-Rom splines. A particular
member of the class is determined by the order of geometric con-
tinuity, either G' or G*, and the width of the interpolating win-
dow (k). The functions ¢, ,(u) are called the geometric continu-
ous Calmull-Rom basis functions. Several important properties
of the class can be identified:

(1) Every member of the class has local control. From equa-
tion (5.13), f,(u) depends only on the k+ D vertices
Vite0.Vitsp: """ Vegriprr Modification of vertices
outside this range has no effect on the segment. Thus, per-
turbation of a given vertex will only affect k+ D segments
near it.

(2) Every member has shape parameters. The G? splines have
one shape parameter per joint; the G2 splines have two
shape parameters per joint. Due to the local control pro-
perty (1), modification of a particular shape parameter
affects at most k+ D segments of the curve.

(3) Members of this class can be either interpolating or approx-
imating. Since this class is a proper subclass of the
Catmull-Rom splines, if k<D-2, the spline will approxi-
mate the vertices, otherwise it will interpolate the vertices.

(4) If the functions X, ,(k;u) and the functions wyy,,(u)
satisfy

Et: Myalkiu) =1 (5.16)
1 =0

and

Yuwy(v)=1 (5.17)

then the resulting Catmull-Rom basis functions ¢, ,(u) will
form a partition of unity. This is a necessary property
since it guarantees that the spline will be coordinate system
independent. The )\ functions constructed in section 5.2
and the Beta-spline blending functions satisfy (5.16) and
(5.17), respectively. Their combination according to equa-
tion (5.14) therefore gives rise to a coordinate system
independent Catmull-Rom spline.

The functions appearing on the right of equation (5.14)
need not be polynomial, but previous sections have shown exam-
ples of polynomials satisfying the necessary constraints. The rest
of the discussion will assume a polynomial representation for
#,,4(u), but it should be noted that the class defined by equa-
tions (5.13) and (5.14) is much more general.

If a G' Catmull-Rom spline is desired (a member of the
first column of Table 5.1), the functions w,;(u) are the G'
Beta-spline blending functions b, ,(u) from (4.3), and the )\ func-
tions are constructed to possess G' continuity subject to the
appropriate Kronecker delta relation. To define a G? Catmull-
Rom spline, the w, ,(u) are the G* Beta-spline blending func-
tions, and the X\ functions are constructed for G* continuity.

6. Examples

We now construct the splines corresponding to the
"starred” entries of Table 5.1, thereby demonstrating the use of
equations (5.13) and (5.14).
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6.1. The k = 0 Row

In Section 3, it was shown that when k£ = 0 a Catmuli-
Rom spline reduces to the standard form for an approximating
spline. Thus, the entries in the £ = 0 row of Table 5.1 are the
G' and G* Beta-splines. The G' blending functions were given
in equation (4.3) and the GZ blending functions may be found in
Goodman. ?

8.2. The ( k = 1, G') Spline

The spline in the (k = 1, G') position of Table 5.1 is con-
structed by combining the G' Beta-spline blending functions
from equation (4.3) with the G' functions A, (1;u) frem equa-
tions (5.10) and (5.11). The combination is governed by (5.14)
with D =3 and k= 1. Since k = 12> D-2, the resulting
spline will interpolate the control vertices. Substituting D = 3
and k = 1 into (5.14) yields the following basis functions

Boalu) = M100(l;u) wy_yo(r) (6.1)

p12u3-28124+ f12u
Al +1

Beolu) = Xpiao(liu) wegou) + Mg oa(l;u) wy,(u)(6.2)

= ((B1481 41+ Bly+ 1)u*~(281, 81,41+ 261+ 1)u?
+((A14-1)81 41+ B1,-1)u+1)/(81 441+ 1)

Goalu) = Mga(Liu) woalu) + Xogyo2dliu) wogro(ul6.3)

= —((B1,81,4.1+ B1,+ 1)u°

~(281,81 gyt B+ 1)u®-F1 1 41u) [(Blg41(B1,+ 1))

beolt) = Npr12(Liu) wopyo(u) (6.4)

ud-u?

- Bl p1(B1,+ 1)

Examination of the basis functions reveals that ¢, ,(u)
depends only on f1,; ¢,u) depends only on 1, and fl,4;
¢,.(u) depends only on 81, and f1,4,, and ¢, o(u) depends only
on fl,4,. Thus, the curve segment f (u) depends only on the
shape parameters f1, and 81, ,. In other words, modification of
the shape parameter associated with vertex V, affects only two
segments: f, ,(u) and f (u). This behaviour is shown in figure
6.1.

7. Conclusion

This paper has introduced a subclass of the Catmull-Rom
splines that possesses geometric, rather than algebraic, con-
tinuity. The replacement of algebraic continuity with the less
restrictive geometric analogue allows the introduction of shape
parameters that can be used to modify the shape of the spline
without moving the control vertices. There are either one or two
shape parameters per joint which can be independently varied to
control the shape of the curve. In addition to shape parameters,
members of the class have local control. Some of the splines in
the «class interpolate the control vertices, while others

approximate them (see Table 5.1).

The class results from the combination of Beta-spline
blending functions and a set of geometric continuous functions
related to the classical Lagrange polynomials. The class is a
proper generalization of the algebraic-centinuous Catmull-Rom
splines. Moreover, the class includes the G*' and G* Beta-splines,
which are local, approximating, polynomial splines with shape
parameters.

The (k = 1, G') spline, from section 6.2, and the (k = 2,
G?) spline are new to computer-aided geometric design; they are
local, polynomial, interpolating splines possessing locally variable
shape parameters. Previous interpolating splines either had
shape parameters, but were global representations,* 8 11.12,13 o
were local with no shape parameters.”
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Figure 6.1.

The figures above depict a (k = 0, G') geometric con-
tinuous Catmull-Rom spline. The value of 81 associated
with each of the joints {or equivalently, the vertices) in
(a) is 1. In (b} the value of Bl for the vertez pointed (o
by the arrow has been changed to 1/2.. Note that only
the lwo segments adjacent to the vertex have been
affected. The value of Bl in (c] iz 2, showing how re-
ciprocal values of f1 bias the curve in opposite direc-
tions.
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