Experience with the Cedar Programming Environment
for Computer Graphics Research

Richard J. Beach
Computer Science Laboratory
Xerox Palo Alto Research Center

Abstract: Cedar is an integrated programming environment for building
experimental computer systems. The environment consists of a
well-coordinated collection of tools and packages and a language that
encourages and enforces their coordination.  Cedar incorporates a
device-independent imaging model for presenting all information and relies
on input interaction techniques to control the environment,

The computer graphics research accomplished with Cedar covers a
broad range from basic computer graphics technigues to various design tools
with sophisticated graphical interfaces to graphic-arts-quality typeset
documents with imbedded color illustrations.

QOur experience with Cedar confirms the benefits to a software
researcher of shared module interfaces. compiler type-checking. automatic
storage management. interpretive graphics programming languages. and
device-independent imaging models. The ‘object-oriented” programming
style and the integration of graphics within Cedar below the screen window
manager and document formatter have led to more effective software designs
than those designed with traditional languages and programming
environments. Cedar provides a software research environment where one
quickly integrates the work of others and redesigns one’s own work after
experimenting with it in a functional prototype.

Résumé: Cedar est un environnement de programmation destingé a la
construction de systémes informatiques expérimentaux. Il est constitué
d'une collection proprement structurée d'outils et de modules de
programmes, ainsi que d'un langage encourageant et supportant une telle
organisation. Cedar utilise un modéle graphique indépendant du dispositif
d'affichage pour présenter toutes les informations. et sappuie sur des
techniques d’entrée interactive pour controler I'environnement.

La recherche graphique réalisée avec Cedar couvre un large domaine.
depuis des techniques élémentaires de graphique par ordinateur jusqu‘aux
différents outils de conception dotés des interfaces graphique sophistiquée.
en passant par la composition de documents de trés haute qualite avec des
illustrations en couleur.

Notre expérience avec Cedar confirme le bénéfice qu'un concepteur
de programmes peut tirer des outils suivants: des interfaces entre modules
partagés. un vérificateur de types au niveau du compilateur. une gestion de
mémoire automatique. des langages interprétés de programmation
graphigue. et enfin des modéles d'images indépendants de I'affichage. Le
style de programmation par objet et l'intégration d'outils graphiques en
Cedar a un bas niveau (inférieur 4 la gestion de fenétres ou au compilateur
de documents) ont conduit 4 des programmes plus efficaces que ceux congus
avec des langages et des environnements de programmation traditionnels.
Cedar fournit un environnement de recherche a l'intérieur duquel 1l est
possible d'intégrer rapidement les réalisations d'autrui. et de modifier son
propre travail aprés avoir expérimenté avec plusieurs prototypes.

CR Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools
and Techniques: D.2.6 [Software Engineering): Programming Environments:
D.3.3 [Software Engineering]: Language Constructs: H.0 [Information
Systems]: General: [.1.3 [Computing Methodologies]: Languages and
Systems: 1.3.2 [Computer Graphics]: Graphics Systems: 1.3.6 [Computer
Graphics]: Methodology and Techniques: K.8 [Personal Computing].

Introduction

This paper outlines experience with the Cedar programming
environment and its support of computer graphics research.
The first section provides an overview of Cedar: its origins
and goals. some important language features. the integrated
environment, and some productive software development
features, The second section outlines several computer
graphics research and development projects undertaken in
relation to the Cedar project. These projects cover a broad
range from basic computer graphics techniques to interactive
design tools to graphic arts quality typeset documents with
imbedded illustrations.  Subsequent sections describe our
experiences with the language features and with producing
software in the Cedar environment.

Cedar: An Environment for
Experimental Programming

Cedar is a programming environment for developing
experimental programs. We define experimental programming
to mean the production of moderate-size software systems that
are usable by moderate numbers of people in order to test
our ideas about such systems. The ambitious project of
building such an environment was undertaken by the
Computer Science and Imaging Sciences Laboratories at the
Xerox Palo Alto Research Center (PARC) over the past five
years.

The requirements for an experimental programming
environment [10] evolved from an assessment made of the
three computing environments in use at PARC in 1978:
Smalltalk [13. 14, 16]. Interlisp [33]. and Mesa [11. 23]. This
report prioritized a long catalog of capabilities sought in a
programming environment. Many requirements focused on
system issues such as object management. static type-checking,
memory  management, abstraction  mechanisms.  fast
turn-around for program changes, run-time efficiency. and
software development techniques. Another group of
requirements dealt with information presentation through
formatted documents, scanned or synthetic graphical objects,
and uniform screen management,

The resulting Cedar environment supplies an integrated
software development facility that incorporates a graphics
package. a window manager. a structured editor, document
preparation tools, and a refined set of software development
tools.

Graphics Interface '84



s Bh =

The PARC Computing Environment
Computing Resources

Cedar runs on the family of Xerox Scientific Workstations.
The most powerful of these is the Xerox 1132, the Dorado
[18. 26] which is the personal computer available to all
computer systems researchers at PARC. This family of
high-performance personal computers shares a common
hardware architecture and can execute all of the PARC
computing environments in addition to Cedar. All PARC
workstations are connected via Ethernets [22] to each other
and to network services.

Imaging Devices

Each Cedar workstation has a high-resolution large-format
black-and-white display. The display is bit-mapped with 1024
by 808 pixels resolution and is large enough to present the
formatted information of almost two 8.5 by 11 inch sheets of
paper side by side. Additional color displays can be configured
by software in several resolutions and pixel densities.
Common configurations are NTSC-compatible resolutions of
640 by 480 pixels at 8- or 24-bits per pixel. and a
high-definition television resolution of 1024 by 768 pixels at
8-bits per pixel.

Each workstation provides a keyboard and mouse pointing
device [20]. Additional input devices such as a digitizing tablet
or a five-finger keyset can be connected to the workstation.
These input devices are remarkable since the workstation can
sense any key transition. This permits n-key rollover and
chording actions. For example. pointing actions can be
modified by depressing the CONTROL or SHIFT keys. or by
the frequency or duration of key clicks.

No special graphics hardware is required for Cedar
graphics. The only microcode assist is a BITBLT operation [17]
equivalent to RasterOp [25]. The memory for the graphic
displays is allocated from the Cedar virtual memory and
accessed through display control blocks.  Obviously one
necessary feature of the workstation architecture is a high
memory bandwidth to support these displays. The cursor has
been implemented both in microcode. using a 16 by 16 bitmap
for the black-and-white display. and in software. providing an
arbitrary full-color cursor for the color display.

Hardcopy devices are made available through the network
for shared access as spooled printers. Raster printers of various
resolutions are used. ranging through Versatec color plotters.
medium resolution Xerox product laser printers. to
experimental high resolution typesetter quality printers. Using
color separations printed on these laser printers. we can
generate high-quality color images.

Network Services

Cedar both accesses network services on behalf of its users as
well as relying on the Ethernet [22] for its own operation. For
example. Cedar users are authenticated through the use of
distributed databases called Grapevine registries [4]. Electronic

message traffic among Cedar users and other workstations
anywhere in the Xerox Research Internet [6] is transported by
Grapevine protocols [31]. The Internet spans several thousand
Xerox workstations throughout the world. There are in fact
two electronic mail message systems implemented in Cedar. a
file-based message manager and a more elaborate one that
relies on the Cedar database server [7. 8] for the organization
of message sets.

The workstation file system is properly thought of as a
local cache of remotely stored files. Thus, the Cedar user will
retrieve files stored anywhere in the Internet. Users normally
operate without regard for the amount of free disk space on
the local workstation, since remotely stored files can be flushed
from the local cache to make space available. Users depend
heavily on version control tools [30] to manage related sets of
files, for example to bring into the cache collections of files
in a software package or to store changed versions back onto
a remote file server.

Several interesting research projects based on Cedar rely
on these network services. Among them are transmission of
voice information over an Ethernet [12, 32] and distributed
computing protocols [5]. The latter project defines a protocol
for workstations or servers to cooperate remotely over the
network using the familiar concept of a procedure call with
arguments. This remote procedure call mechanism permits
experimental distributed services to be designed and first
implemented within a local workstation environment then to
have services distributed via the network.

Cedar Language Features

The Cedar language is an extension of Mesa [23. 11]. Both
Mesa and Cedar are strongly-typed, statically-checked
languages in the Pascal family. Mesa added the concepts of
explicit module interfaces. with type checking across module
boundaries. exception handling, lightweight processes, and
monitors. Further Cedar extensions provide automatic storage
management, safe pointers. immutable strings. lists. atoms, and
object-oriented programming support by delayed binding.

Module Interfaces

The module interface concept is a ‘programming in the large’
mechanism for subdividing large programming projects.
Modules come in two flavours, interface definitions and
program modules. A client program imports the interface
definitions module to access the procedures and data types of
an abstraction. An implementor of a module interface exports
the program code that will execute when a procedure is called.
The module interface establishes a contract between the client
program and the implementor program. Once the interface
has been compiled, it establishes in writing (with compiled
symbol table and version stamps) the agreement between those
programs. The binder and loader further verify the correct
use of an interface by comparing version stamps of the
imported and exported modules. Using software development
and version management tools based on these interface
concepts, we undertake extensive changes to experimental
software with relative ease.

Graphics Interface '84



Automatic Storage Management

Providing automatic storage management in a strongly-typed
language results in several benefits. The foremost benefit is
eliminating the concern over ownership of shared objects.
When a module interface returns a new object (a pointer to
some newly allocated memory space) there is certainty as to
who owns the space: it is neither the client nor the
implementor programs: it is always the storage management
system. The client program may use the pointer as it sees fit,
pass it on to another client. retain it. or dispose of it. Since
the storage management system can discover what storage is
accessible. only when no remaining valid references to the
object exist will the storage be reclaimed. A secondary benefit
is the simplified exception handling in modules using allocated
storage: no action to dispose of allocated storage is needed
since it will be reclaimed automatically.

Object-oriented programming support

Another benefit of the Cedar storage management scheme is
the runtime type mechanism and its support for object oriented
programming. The storage manager uses a type table to
identify pointers during garbage collection. Exposing this
typing information to the programmer permits the language
to support generic pointers without violating any type
checking. An object may be declared to contain a generic
pointer. called a REF ANY in Cedar, with only a few generic
operations possible such as assignment or passing it as a
procedure argument. When the generic pointer is to be used
to reference data. first it must be narrowed from a generic to
a specific type of pointer. The Cedar NARROW operation uses
the runtime type mechanism to verify the expected type
specification and produces either a pointer of that type or an
error.

Thus Cedar objects are a source of extensibility. A Cedar
object that contains a generic pointer to client-specified data
can be customized by a client without violating the type
checking or obliging the interface definition to be changed.
The Cedar language also supports an object-message
programming style by providing an object instance, message.
parameters format.

Integrated Environment

Cedar programmers are concerned about effective user
interfaces. Graphical techniques exist at a low level in the
Cedar environment to ensure that good visual feedback
techniques are possible, that good typography is available with
a selection of fonts and embellishments, and that pictures can
be used whenever appropriate.  User input interactions
through the keyboard and pointing devices are supported and
connected to the visual feedback mechanisms.  These
techniques are more effective when they are uniform
throughout the environment.

67

Uniform User Interface

The text editor and window manager provide good facilities
for dealing with text and interaction. Most new applications
extend them rather than present different user interfaces.
Furthermore., when a new consensus develops within the
laboratory, the expectation is that these pivotal packages will
be changed. When new interaction techniques are
implemented. they eventually augment the window manager
interface.

Generally, if a client program wants to deal with text
interaction. a text window backed by the text editor will be
provided. Client programs can deposit text in the window for
display or examine text to obtain user-supplied options or
parameters. Thus the same editing skills and actions for
editing documents are useable in the user interface of this new
program. When a client program needs to provide a menu
or control panel, the window manager supplies the interfaces
to lay out a menu and to handle the input events on behalf
of the new program. Thus the same cursor positioning skills
and feedback mechanisms will transfer to the operation of this
new program.

Embedded Graphics Package

A key factor in the effectiveness of our user interface is visual
interaction. The graphics package resides at a very low level
in the Cedar system architecture, above the virtual memory,
storage manager, and file system. but below the window
manager. text editor and other applications. The window
manager has access to the graphics package for presenting text
in various fonts, for drawing lines around window borders and
headers. for feedback cues by changing colors, and for drawing
iconic pictures. In particular, the window manager can use
graphics clipping regions for restricting client window refresh
procedures. Embedding the graphics package at this level
provides graphics facilities to all the clients of the window
package as well.

Window Manager and Text Editor

The window package provides the essential abstraction of a
virtual display, keyboard and pointing device for each
program. The window manager allocates screen real estate to
open windows using two columns and collects icons for closed
windows at the bottom of the display. Each window supplies
hints about its preferred size when it is open. Operations
common to each window such as opening, closing, or adjusting
the size hints for a window are implemented by the window
manager. Operations specific to a client such as repainting
the window contents or handling input events are implemented
by clients of the window package.

The text editor is a client of the window package and
implements a document window class. Each document
window is an instance of that class and uses the same text
editor implementation but with document-specific data.
Menus and buttons are two more examples of window classes.
Each button has the same event handler but a different

Graphics Interface '84



command name and action procedure. Window classes may
contain other window classes nested within them. enabling a
window designer to build on existing software and to extend
the uniform user interface easily.

Recall that workstations may have both a black-and-white
and a color display. The device-independent graphics package
permits the window manager to treat both displays equally.
In fact windows may be moved from one display to another
and the cursor slides smoothly from device to device. The user
can declare whether the color display is placed to the right or left of the
standard black-and-white display.

Software Development Productivity

Creating experimental software is a major goal of the Cedar
programming environment. Producing software quickly is
essential. Concurrency. a large virtual memory. distributed
development and a large collection of preprogrammed
packages and tools contribute to the productivity of Cedar
programmers.

Concurrency and Lightweight Processes

The normal way to use Cedar is to do several things at once.
Multiple windows display documents for editing. programs
and tools operate in parallel without preempting your
attention. and several things can happen in the background
such as the posting of timely reminders or the automatic
retrieval of new mail messages. The lightweight process
mechanism [19] in Cedar supports this concurrency.
Interactive user interfaces and graphics applications benefit
from cheap process creation and synchronization functions.
Processes abound in Cedar for controlling input and output
devices. repainting windows with a process for each window.
and executing programs with perhaps a new process for each
menu button activation.

Virtual Memory and Runtime binding

A large virtual memory was one of the priority requirements
for a new programming environment. Cedar provides a virtual
memory as a single 24-bit address space. Since all programs
running in Cedar share this virtual memory space. they coexist
together and can more easily communicate and depend on
shared interfaces. The concurrency of multiple processes is
enhanced by this ability to switch between processes without
loss of state within the virtual memory. Applications built on
top of Cedar further extend this integration resulting in a very
broad spectrum of facilities built independently that appear
coordinated and designed together.

Distributed development

Connecting all the Cedar workstations to a ubiquitous network
creates a community of developers. Sharing software packages.
communicating insights, and reporting problems are all easily
accomplished over a network with suitable protocols and
servers. Our remote file system coupled with good version

68

control tools ensures that consistent sets of files can be shared
under appropriate access controls. This encourages researchers
to build on the work of others. to share their packages. and
to repair code for clients. especially when the compiler and
binder help by checking the consistency of module interfaces
and versions.

Catalog of Packages & Tools

As Cedar matures. the catalog of packages continually grows,
Basic system interfaces provide access to the virtual memory.
runtime type system. file system. and the graphics package.
Additional packages exist for symbol tables. network
communication. compiling and binding. timing. database
storage. Built on those interfaces are the window manager
and the text editor. followed by software development tools.
document preparation tools. mail systems. illustrators, games.
and so on. Generally. each application package. in addition
to a user interface. also provides a program-accessible interface
that permits integration into some further development project.

Computer Graphics Research

The computer graphics research accomplished in the Cedar
environment spans a very broad range. Basic computer
graphics algorithms are incorporated into the Cedar graphics
package [34] that has a device independent and resolution
independent imaging model. shown in Figure 1. A language
for bitmap manipulation [15] was studied with a prototype
implementation in Cedar.  Interaction techniques using
cursors, menus. buttons. and sliders are incorporated into the

Figure 1. The imaging model used in the Cedar graphics package [34]
includes an imaging source (top) passed through a mask (top middle) and
clipped to a region (bottom middle) to produce the final image (bottom).

Graphics Interface '84



window package. An experimental debugging package using
graphics to display data structures was created on an early
version of Cedar [24].

Several illustrators are available for creating synthetic
graphics. The Griffin illustrator [1] has been converted from
an older Mesa implementation.  With automatic storage
management and the Cedar file system few restrictions on
image complexity remain in Cedar Griffin, as shown in Figure
2. The spline outlines for the elaborate 'S’ were computed
from a scanned image using curve fitting techniques [27] that
we are applying to font generation techniques. Another
illustrator uses constraints on points, lines and curves to
establish the geometry of a line drawing. Two bitmap editors
are available to create iconic pictures and to tune bitmap fonts,
[Nustrators and design tools for integrated circuits and VLSI
layouts [28] are in daily use.

Figure 2. The "Fancy S' was scan converted from artwork and fitted to
splines with approximately 850 control points. The curve fitting algorithm
first determined an outline contour of the sampled image and then chose
spline control points to efficiently and smoothly represent the outlines
synthetically. The Griffin illustrator took the outline representation and
applied various transformations.

Three-dimensional  solid modelling and rendering
algorithms are being implemented using Cedar. Solid shaded
objects can be created and rendered with the SolidViews
illustrator package [3]. A new texturing algorithm for
rendering anti-aliased images was implemented using summed
area tables [9].

High-quality document formatting and documentation
graphics are important research areas within PARC. The text
editor provides a sophisticated document structure for editing
and formatting.  This structure has been extended to
accommodate illustrations [2]. Digital printing techniques are
being investigated for producing halftones, color., and
black-and-white images on laser printers. Color image
processing. the calibration of color imaging devices, color
specification models and the interrelationship between various
models are also being explored within the Cedar environment.

Experience with the Cedar Language

As described earlier. the Cedar language evolved from Mesa
[23. 11] which has been referred to as “industrial strength
Pascal.” Mesa is the implementation language for the Xerox

69 -

Star office workstation while the Cedar programming
environment is implemented in the extended Cedar language.
Both are strongly typed languages with module interface
specifications, while Cedar provides automatic storage
management and supports an object-oriented programming
style.

Strong Typing

The Cedar language provides static checking of data types at
compile time both within modules and across module
interfaces. For example. the Cedar Graphics package [34]
interface defines several abstract data types for graphical
objects. such as vectors. rectangular boxes. colors, texture
patterns, paths, device objects. fonts, and procedures for
graphical operations such as transformations and clipping.
Clients of the graphics package obviously must specify the
appropriate data types as arguments to graphics procedures.
Generally this rigor eliminates oversights and coding errors
before compilation is successful, so much so that Cedar
programmers tend to rely on the compiler to catch their
mistakes. When a module compiles correctly, many programs
run correctly on the first attempt. In designing experimental
programs this saves both time and effort in testing software.

Providing all the necessary type specifications can be a
tedious overhead. A few programming aids that integrate with
the editor relieve some of the coding overhead. The text
editor knows how to expand abbreviations, and programmers
frequently use a collection of abbreviations that expand into
templates for Cedar program structures and type declarations.
The editor deals with structured documents composed of a
hierarchal tree of nodes, each node being a paragraph or
heading. Cedar programs are represented as a forest of
document trees. one tree for each procedure or declaration,
with subtrees for nested control structures or record fields.
and nodes for each statement or field declaration. Most coding
is done by filling in templates or by copying from elsewhere.
Long names are easy to use: once entered, they may be quickly
copied from their declarations.

For example, the following code fragment contains one
node per line, and nested nodes are children of the node
above. Appropriate typography is used throughout Cedar to
make program code more readable. Types and procedure names
are bold: keywords are small capitals: comments are in italics. The compiler
sees only the uncommented text without any of the typographic
embellishments.

ColorTag: TYPE = {rgb. stipple}:
An enumerated type with for two color schemes

Color: TYPE = RECORD[
A variant record based on the ColorTag
spec: SELECT tag: ColorTag FROM
rgb => [red. green. blue: [0..256)). -- & bits of intensity
stipple => [ARRAY[0..16) OF BOOLEAN], -- a 16 bit pattern
ENDCASE]:

Graphics Interface '84



- 70

ColorTolntensity: PROC [color: Color] RETURNS [intensity: REAL]

Compute the monochrome intensity of a color
rgb uses NTSC luminance: stipples use black percentage
WITH c: color SELECT FROM
rgb =>{
1: REAL:
IF c.blue=c.red AND c.green=c.red THEN
i« cred
ELSE
The NTSC luminance formula:
i « 0.30*c.red+0.11*c.blue+0.59*c.green:
intensity « i/255.0 }:
stipple => intensity « StippleTolntensity[c]:
StippleTolntensity is defined elsewhere.
ENDCASE =2 intensity « 0:
RETURN[intensity]:

Module Interfaces

To understand a system as large as Cedar. you need an
effective chunking mechanism. The module interface defines
the data and procedures for an abstraction. In the graphics
package. there is the abstraction of graphical objects and
procedures to transform and display them. In the window
manager, it is the virtual screen abstraction of a window. its
class definition and procedures to manipulate windows. Such
abstractions occur frequently in Cedar and they increase the
number of packages used in experimental software.

The Cedar compiler and binder both check types and
versions across module interfaces. All coding syntax errors
and incompatible version dependencies are eliminated prior
to execution.  Thus considerable software revision is
undertaken with confidence in the discipline of satisfying the
interface specifications. More discussion of module interfaces
appears below in the sections on automatic storage
management and interface evolution.

Automatic Storage Management

A module interface can create objects without concern for
who will own the newly allocated space. Neither the client
nor the implementor of an interface own the space: it is always
the storage management system. Only when no possible
reference to an object exists will the object be reclaimed.
Upon reclamation, the Cedar garbage collector provides
finalization of storage. permitting an implementation to process
the object prior to its being discarded. For example, we use
finalization to implement font caches. where several client
programs may be using the same font and when the cache is
about to be reclaimed because the font is no longer in use.
we get the chance to close the font file and free its buffers.
The Cedar garbage collection [29] is designed to minimize
its impact on runtime efficiency. The garbage collector
reclaims storage incrementally and operates as a background
activity concurrently with other.operations. Microcode support
speeds up pointer update and reference counting operations.
Programs are generally designed without regard to the
intrusion of the garbage collector. However time-critical
portions of interaction techniques and server programs are

carefully crafted to avoid frequent allocation of storage: the
use of preallocated caches is often sufficient. Performance
monitoring tools [21] can measure the allocation activity of a
running program to help in tuning it.

Object Oriented Programming Style

Objects in Cedar are record definitions with associated
procedure operations included as procedure variables. Objects
can include client-specified data to permit clients to customize
object classes. When an object contains a collection of
procedure variables for object operations. clients can replace
all or a subset of those operations for alternative
implementations. For example. the graphics package interface
provides a display context object and a graphical operations
object. Implementors of a new graphical device, such as a
color display or a laser printer., provide alternative
implementations of the display context routines. All the
graphical transformation. clipping. and reduction algorithms
use the device operations from the current context. extending
the power of the graphics package in a device-independent
way. Graphical display lists are implemented by providing an
alternative graphical operations object in which each operation
records its arguments on a list. We use these object-oriented
programming schemes as an architecture for extending the
graphics package to handle new devices or new functionality.

The window manager also provides an extensible interface
for clients to design their own window semantics. Clients of
the window package create their own window class, provide
any client-specific window operations, and register it with the
window class mechanism. Client-specific operations might
include repainting the window contents when the window is
opened or scrolled. or destroying private data structures when
an instance of this window class is destroved. As members of
the window class. all generic window operations still apply
such as opening. closing. moving windows. and adjusting the
size of windows.

The typesetter knows how to format text files, but it has
no direct knowledge for incorporating illustrations or other
nontextual matter. However, the document is formatted by
using a formatting object that has two operations: layout and
paint. The layout operation receives a node from the
document and returns its formatted dimensions. After the
document is laid out. the paint operation receives the
document node with positioning parameters and renders the
information into an output object. Output objects are usually
a printer file although other objects exist for previewing the
formatted output on a display. A key feature of such a
structure is its extensibility. New formatting objects for
illustrations. tables. or photographs are easy to build and they
can incorporate text within them by recursively invoking
another instance of a text formatting object. We used such a
scheme in the TiogaArtwork documentation graphics
experiment [2]

Graphics Interface '84




Software Development Experience
Productivity

The text editor plays a major role in enhancing our
productivity. Pieces of programs. identifiers, declarations,
control structures are more easily copied error-free or inserted
from abbreviations than typing everything. Programmers feel
so confident of their abilities in this environment that they
print very few listings. For example. the Cedar Nucleus (virtual
memory. storage management, file system. initialization code)
was just rewritten by a small group of programmers. Code
was copied. retyped. compiled. edited. and shared without
listings. Our facilities for browsing program modules and
intermodule references surpass the value of paper listings.
Frequently used facilities include find the next occurence of
the selected word or phrase, find the definition of the selected
identifier or procedure, open a window on the selected module
interface or its implementation, position the window to the
selected compiler error. display only the top level of the
document tree, search for the surrounding matching brackets.

Summer Intern Projects

One measure of productivity is to observe the quality and
quantity of software produced by people exposed to Cedar
for the first time. Xerox hires summer research interns from
graduate school with good programming skills but no Cedar
experience. When they arrive, they are confronted with the
very large Cedar programming environment. Even though
the documentation is fragmented and uneven in quality. these
students have acclimated well and produced substantial
software projects during their visits.

Here is a sample of intern projects. The IconEditor is a
simple bitmap editor for creating and modifying collections of
small picture icons and is now part of the Cedar system release.
The ShowPress package displays printer files on the screen
by decomposing the printer file format and relying on the
graphics package to display text. line art. and scanned images
(photographs) as they would appear on the printed page.
‘ShowPress is now part of the Cedar release and is integrated
with the typesetting tool. A prototype MenuPackage
investigated textual definition of a new menu layout and
semantics for our window package. Parts of this design will
be folded into a window package redesign. The ColorTool is
an experimental user interface for several color models (red
green blue, hue saturation lightness, hue saturation value, color
naming system, CIE). A client-extensible slider mechanism
was created and is now part of the window package. The
PathTool is an interactive editor for trajectories composed of
lines and curves. Incremental refresh techniques using
concurrent processes permit the rubberbanding of complicated
spline outlines. TiogaArtwork [2] incorporates illustrations
into the typesetter and integrates the text editor, graphics
package, typesetting software, graphics interpreter, and the
formatting style machinery. SolidViews [3] provides both an
interactive package for constructing three-dimensional solid

Tl

objects and a rendering package for producing shaded colored
views of solid objects.

These projects were implemented by six interns during
one or two summer visits totaling approximately one and a
half work-years of effort. Not all interns are as successful or
productive. Motivation is rarely a problem. but lack of
appreciation for the rich Cedar language and the concurrency
available in Cedar can lead to frustration. Interns who do
well have systems programming experience: generally they
appreciate that previous difficulties they had in systems
projects are eliminated with automatic storage management,
exception handling, more general data typing. and object-style
programming.

Certainly integrating editing with concurrent execution
suits most interns. The ability to change your focus from
debugging a program to editing several modules to reading
mail to managing the file system to investigating
documentation without losing any state in the suspended
activities 1s a crucial feature cited by most interns.

Interface Evolution

Interfaces are the currency of shared development projects.
They represent the contract between client and implementor.
With interfaces in place, a client can design his application
independent of the implementors. When errors are discovered
or should performance problems dictate a different
implementation, these can be corrected without changing the
interface or affecting the client software. except to notify
clients to reload the revised implementation of the interface.

However, the evolution of interfaces themselves does
affect a client program. Upward compatible changes, such as
adding new data types or procedures to an interface, require
only recompilation of the client programs so that the expected
versions will match with the new implementations. The
compiler and binder enforce these version matches to prevent
sloppy software management. Incompatible interface changes
require editing of client programs, such as revising procedure
call arguments, modifying data type declarations, or changing
names. The checking by the compiler ensures that necessary
changes have been completed.

Two examples of changes to Cedar demonstrate the value
of interfaces and the checking by the compiler and binder.
The Cedar graphics interface made paths and trajectories
explicit objects. whereas previously they were defined
implicitly by move, draw line, and draw curve operations. The
changes to many graphics clients were straightforward,
although some client programs required changes to the
interfaces they exported, cascading the effects to other clients.
The Cedar Nucleus was rewritten to provide a new virtual
memory implementation, a new automatic storage manager, a
new file system. a new stream input-output interface. and new
initialization code. Obviously these changes presented a major
upheaval to client programs. Considerable coordination and
some delay was needed to collect many interface changes at
once. Again, such a substantial conversion could be made
with assurance through the checking by the compiler and
binder. In fact, the release of Cedar with the new Nucleus

Graphics Interface '84



- 72

was acknowledged to be one of the most reliable releases with
such major changes.

Debugging graphics applications

Even with the checking assistance of the compiler and binder,
design errors may not be discovered until the program executes
incorrectly. Symbolic debugging based on source and object
version maps of the Cedar release components is convenient
and effective. The resident debugger catches errors not
handled by an executing program. suspends the process and
creates an action area window. Assuming that the suspended
process is not one of the window manager processes. then
debugging proceeds concurrently while other processes
execute. A separate action area for each error provides a new
context should an additional error occur either in another
program or during attempts to debug the first error. Clients
of the graphics package can debug without interfering with
the graphics context of the running programs due to the virtual
display abstraction of the window manger.

Should an error occur that prevents the resident debugger
from creating an action area. such as when the error is within
the window manager. then a world-swap debugger is available.
A world-swap debugger operates in a totally separate address
space and examines the saved address space of the system in
error. It might execute locally on the same computer or
remotely in a different computer which accesses the saved
address space over the Ethernet. Most graphics applications
are debugged without resorting to the world-swap debugger.

Runtime Binding and
Interpretive Graphics Languages

Runtime binding is the dynamic linking of modules during
execution. Programs are loaded into the Cedar virtual memory
and export their interfaces for binding with other clients. This
binding scheme encourages the integration and sharing of
programs and profoundly affects our development strategies.
Interpretive languages rely on runtime binding to provide an
extensible command repertoire.

Application design and testing

There are two interpretive languages available for Cedar: a
full interpreter for Cedar expressions, and a simple stack-based
interpreter with graphics facilities, Both interpreters can
invoke procedures written in the Cedar language and both are
useful for experimenting without building a user interface.

The stack-based graphics interpreter provides a display
window and commands to invoke the graphics package.
Compiled Cedar modules can be loaded with this interpreter
that register new interpreter commands.  Using these
commands the modules can be exercised from the interpreter,
We often collect such exercises into a command file for
repeated use and testing. However, these command files are
rarely executed by the interpreter top-to-bottom. but rather
they provide a script from which sections can be copied to
the interpreter using the editor.

Graphics experiments developed this way include the
graphical style [2] and curve fitting [27] projects. For example.
Cedar modules for the curve fitting algorithms and a suite of
interpreted functions constituted the curve fitting prototype.
Experience with these algorithms lead to revisions and
development cycles from Cedar code to interpreted code and
back. When the cycles converge on a stable implementation,
the modules are packaged with a module interface suitable for
use by illustrators or other clients.

Programmed illustrations

The interpretive graphics language provides another means of
generating pictures.  Some illustrations are more easily
generated by a program than an artist interacting with a paint
program or a line drawing program. For instance. Scott Kim's
infinity spiral, Figure 3. was created by taking letters defined
as spline-outlined areas in the interpreter and mapping them
along a spiral using Mesa code loaded with the interpreter.

Figure 3. The infinity spiral created by Scott Kim and John Warnock. Kim
designed the letters as spline outlines and Warnock developed the mapping
from outlines onto a spiral. ® 1981 Scott Kim.

Application Integration

Integrating applications was an important consideration in the
design of the Cedar environment. The module interface
concept provides a convenient way for client program
designers to share abstractions. The object-oriented
programming concept permits clients to extend and customize
those abstractions. As described earlier. the window manager
and the typesetting software both use object classes to extend

Graphics Interface '84




the set of facilities they provide while at the same time to
make it easier to integrate new applications. [llustrators may
integrate with our printing software by using the printer file
writing interface directly or by using a graphics device object
that captures the displayed graphics and text in a printer file.

Unfortunately such integration reveals weaknesses in the
abstractions. Our current graphics package for displays has a
slightly different imaging model than our printer software.
The treatment of sampled images (scanned photographs or
shaded images) and the semantics of text are slightly different
in the two models. Work is underway to design a new graphics
package with a uniform imaging model that is suitable for
static images as well as with the interaction semantics necessary
for dynamic images.

Another example of integration within Cedar ranges well
beyond graphics yet depends on it heavily. The Cedar
Whiteboards database is a facility for posting objects on virtual
whiteboards using the window manager. A whiteboard is like a
blackboard except it is white: all the offices at PARC have porcelainized
white surfaces that can be written with erasable marker pens. The
postable objects contain text documents, graphical images.
programs, printer files, or icons representing objects or other
whiteboards. Relationships between objects are represented
in the database and can be drawn graphically. The most
widely used whiteboard database is the documentation
whiteboard. It provides a new Cedar user with a browsing
facility for searching documentation, experimenting with
various tools, and reading the module interface code.
Whiteboards integrates most of the Cedar features and
applications to accomplish its task.

Computer Graphics Experiences

Surprisingly large numbers of applications in Cedar utilize
graphics. Many applications use the visual graphics provided
by the window package to draw boxes around buttons. to
highlight interactions with color changes, and to display text
with appropriate typography. Others use graphics directly, for
example, the performance monitor tool displays animated bar
graphs for processor and disk utilization: a clock icon displays
an analogue watch dial: the typesetter tool displays animated
pie charts to indicate the percentage of work remaining. These
examples illustrate the pervasiveness of visual information that
Cedar programmers choose to provide when the graphics tools
are easily available.

The device independence of the graphics package has
proven to be valuable. Devices have been implemented for
the black and white display. the color display in all its
configurations, the printer file format and the graphics lists
facility. Experience with the first few implementations lead
to adopting an object-oriented design for devices in the
graphics package. Now we have a much better appreciation
for the subtleties of imaging models across devices and
between static and dynamic imagery.

One insight follows from the shared use of our color
mapped display. Since the window package willingly supports
concurrent programs on the color display. the single color map
becomes a shared resource. Our original color display device

T3

lacks a virtual color map so chaotic color schemes are possible
if two windows attempt to use the same portion of the color
map. The problem will be addressed in the redesign of our
graphics package.

Certainly the acceptance of the Cedar graphics package
required some exceptional engineering triumphs.  Using
floating point coordinates within the graphics package
prompted skepticism that the package would be fast enough
for interaction. Yet through careful crafting of the graphics
algorithms for the easy versus hard cases. microcode assistance
for floating point calculations and careful use of allocated
storage. interaction with the Cedar environment is acceptable
even on our least powerful workstation.

User Interface

Although Cedar is very large. the user interface tends to be
uniform across a wide variety of applications. Since most
textual information is presented with the editor. most tools
and programs that require information from the user use the
same editing interface. The two most significant benefits are
the consistency of editing actions and the universality of text
on the screen. Consistency is achieved by brute force: since
all editing is done by the same editor. all the editing actions
will be the same. Fortunately. most people in the Cedar
community prefer this editor over others they have
experienced. Universality of text on the screen enables you
to compose the information you need from anywhere text is
presented by the editor (sadly. the small amount of text not
displayed by the editor does not belong to this universe).
Commands to execute can be copied from documentation:
expressions to interpret can be copied from the program code:
file names can be selected from mail messages or directory
listings: and so on. '

The central placement of the window package encourages
a uniform user interface. Generally a new application will
find it easier to use the interaction interfaces provided by the
window manager and customize them for special needs. Hence
a strong culture exists for using the mouse buttons and
function keys on the keyboard. This culture has been refined
over a decade of experimentation and provides the richest
interaction environment the author has experienced.

Novice Cedar users have reported difficulty mastering the
manual skills necessary to operate the user interface. More
hand-eye coordination is necessary to point with a mouse than
to hunt-and-peck on a keyboard. Left-handed people report
frustration with the right-handed placement of the mouse,
although the function keys on the keyboard are duplicated on
the left and right to make it easier for lefties. Still after some
period of adjustment most novices demonstrate adeptness with
pointing and two-handedness.

A key ingredient to this learning process is a robust undo
facility in the editor. Experimentation quickly increases when
the user demonstrates proficiency in undoing editing changes.
purposeful or accidental. More undo facilities are required
before the remainder of the environment permits the same
confidence or experimentation.

Graphics Interface '84



- 74

Real-time Support

Interacting with a pointing device and a highly formatted
display requires an abundance of computing power. When a
mouse button is depressed and the mouse quickly passed
through menu buttons, text. or scroll bars. the screen reacts
promptly even on our least powerful workstations. Such
feedback of a causal effect appears crucial to the development
of hand-eye coordination skills. Concurrent processes permit
feedback to execute at a high priority while less time-critical
computation proceeds when feedback is static or unneeded.

A significant contribution to the interactive responsiveness
is due to the design and engineering of the software. Where
performance is of great concern. measurement tools [21]
provide insight into the critical areas of resource intensive
code. These tools operate without modification to the code
being monitored. The prolific rate of accomplishing change
to software with the tools available enables greater
experimentation with alternative designs.

Conclusions

Experimental programming was the focus of the Cedar project.
A productive environment with appropriate tools to build
moderate sized software systems is now in daily use at Xerox
PARC. With this environment, considerable computer
graphics research and development has been accomplished.
Many software projects are into their second generation or
beyond. The Cedar language. the module interface concept.
the software development tools, and the distributed computing
system design all collaborate to permit us to stand on one
another shoulders. rather than standing on one anothers toes.

References

[1] Baudelaire. Patrick and Stone. Maureen. “Techniques for Interactive
Raster Graphics.” Computer Graphics. 14. 3. July 1980. pp. 314

[2] Beach. R.J. and Stone M. “Graphical Style — Towards High Quality
Mustrations.” Computer Graphics 17. 3. July. 1983, pp. 127-135.

[3] Bier. E. SolidViews: An Interactive Three-Dimensional [llustrator.
MSc thesis, MIT. 1983,

[4] Birrell. A.. Levin, R., Needham. R. and Schroeder. M. “Grapevine:
An Exercise in Distributed Computing.” Comm. of the ACM 25, 4.
April 1982.

[5] Birrell. A, and Nelson. B.. “Remote Procedure Call,” ACM
Transactions on Computer Systems 2. 1. February 1984.

[6] Boggs. D.R.. Shoch, J.. Taft. E. and Metcalfe. R.. “Pup: an
Internetwork Architecture.,” /EEE Transactions on Communications,
28. 4. 1980, p. 612.

[7] Brown. M.. Kolling. K. and Taft. E. The Alpine File System. 1o
appear as a Xerox Palo Alto Research Center Report. 1984,

[8] Cattell. R.G.G. Design and implementation of a
relationship-entity-datum data model. Xerox Palo Alto Research
Center Report CSL-83-4, May 1983.

[9]1 Crow. Frank, “Summed-Area Tables for Texture Mapping.” to
appear in Computer Graphics 18. 3. July 1984,

[10] Deutsch. P. Requirements for an Experimental Programming
Environment. Xerox Palo Alto Research Center Report CSL-80-10.
1980.

[11] Geschke. Charles M., Morris, James H. Ir. and Satterthwaite. Edwin
H. Early Experience with Mesa. Xerox Palo Alto Research Center
Report CSL-76-6. 1976.

[12] Gonzolves, Tim. “Packet-Voice Communication of an Ethernet Local
Computer Network: An Experimental Study.” Proceedings of Third
International Conference of Distributed Computing Systems. Miami.
Florida. Oct. 82.

[13] Goldberg. A. “Introducing the Smalltalk-80 System.” BYTE. 6. 8.
August 1981.

[14] Goldberg. A. and Robson, D. Smalltalk -80: The Language and ils
Implementation. Addison-Wesley, Menlo Park. 1983.

[15) Guibas. L. and Stolfi. J. “A Language for Bitmap Manipulation.”
ACM Trans. on Graphics 1. 3. 1982, pp. 191-214,

[16] Ingalls. Dan. “The Smalltalk-76 Programming System: Design and
Implementation.”™ Proceedings of Principles of Programming Language
Systems, ACM. Jan. 1978.

[17] Ingalls. Dan. “The Smalltalk Graphics Kernel.” BYTE. 6. 8. August
1981.

[18] Lampson. B.W. and Pier. K.A.: Lampson. B.W.. McDaniel. G.A. and
Ornstein S.M.; Clark. D.W.. Lampson. BW. and Pier, K.A. The
Dorado: A High Performance Personal Computer. Three Papers.
Xerox Palo Alto Research Center Report CSL-81-1. January 1981.

[19] Lampson. B.W, and Redell. D.D. “Experience with Processes and
Monitors in Mesa.” Seventh Symposium on Operating System
Principles. Asilomar, Dec 1979 and Comm. ACM 23. 2. February
1980.

[20] Lyons. R.F. The Optical Mouse. and an Architectural Methodology for
Smart Digital Sensors. Xerox Palo Alto Research Center Report
VLSI-81-1. 1981.

[21] McDaniel, G. “The Mesa Spy: An Interactive Tool for Performance
Debugging.” Conference on Measurement and Modeling of Computer
Systems. Seattle. Washington. Sept 1982.

[22] Metcalfe. R.M. and Boggs. D.R.: Crane. R.C. and Taft. E.A.: Shoch.
LF. and Hupp. J.A.: The Ethernet Local Network: Three Reports.
Xerox Palo Alto Research Center Report CSL-80-2, February 1980.

[23] Mitchell. J. Mesa Language Manual, Xerox Palo Alto Research
Center Report CSL-79-3. 1979.

[24] Myers. Brad A. “Incense: A System for Displaying Data Structures.”
Computer Graphics. 17. 3. July, 1983, pp. 115-125.

[25] Newman. W.M. and Sproull. R.F. Principles of Interactive Computer
Graphics. 2nd ed.. McGraw-Hill. New York. 1979.

[26] Pier K. A4 Retrospective on the Dorado. A High-Performance Personal
Computer. Xerox Palo Alto Research Center Report ISL-83-1. August
1983,

[27] Plass. M. and Stone. M. Curve-Fitting with Piecewise Parameteric
Cubics. Computer Graphics. 17. 3. July. 1983. pp. 229-239,

[28] Petit. Phil. “Chipmonk. an Interactuve VLSI Layout Tool.” /EEE
Computer Society International Conference. San Francisco, Feb 1982.

[29] Rovner. P. On Adding Garbage Collection and Runtime Types to a
Strongly-Typed. Statically-Checked. Concurrent Language. 10 appear
as a Xerox Palo Alto Research Center Report, 1984

[30] Schmidt, E. Controlling Large Software Development in a Distributed
Environment. PhD Thesis. U.C. Berkeley EECS Dept. December
1982: also available as Xerox Palo Allo Research Center Report
CSL-82-7. 1982.

[31] Schroeder. M. D.. Birrell. A.D. and Needham. R.M.. “Experience
with Grapevine: the Growth of a Distributed System.” Proceedings of
Ninth ACM Symposium on Operating Systems Principles. Nov, 1983.

[32] Stewart. L.C.. Swinehart. D.. and Ornstein. S. “Adding Voice to an
Office Computer Network.” Proceedings of GlobeCom 83, IEEE
Communications Society Conference. Nov. 28, 1983.

[33] Teitelman. W. and Masinter. L. “The Interlisp Programming
Environment.” Computer 14, 4. 1981, pp. 25-33.

[34] Warnock. J. and Wyatt. D.K. “A device independent graphics
imaging model for use with raster devices.” Computer Graphics, 16, 3.
July 1982. pp. 313-319.

Graphics Interface '84




