75

PED: A *DISTRIBUTED’ GRAPHICS EDITOR

Theo Pavlidis
Bell Labs (2C-456)
Murray Hill, NJ 07974

ABSTRACT

PED (Point EDitor) is a program intended for creating technical and other schematic illustrations using the bitmap terminal
Blit designed at Bell Labs. The major new feature of PED is that it has two parts, one running on the Blit and the other on the
host computer. In addition to the usual operations that are common in graphics editors, it allows the user to specify splines, fill
arbitrary polygons with texture, rotate objects, etc. The files produced by PED resemble display lists and it is easy to write pro-
grams for displaying them on other devices, including a phototypesetter.

KEYWORDS: Bitmap terminals, interactive graphics

Introduction

Graphics editors are programs for creating and
manipulating files that describe line drawings.
Sutherland’s Sketchpad [1] is one of the earliest and
best known. Recent programs include Grace [2]
developed at UC Berkeley, and Juno [3] developed at
Xerox PARC. These exemplify two trends. Grace
describes objects by their spatial coordinates while Juno
describes objects by procedures. PED (Point EDitor)
uses descriptions in space like Grace. It is intended for
creating illustrations using the bitmap terminal Blit
designed at Bell Labs [4,5] although its origin goes
back to a “device independent” program [6, pp. 239-
243]. PED runs under the UNIXT operating system A
major feature of PED is that it has two parts, one run-
ning on the Blit and the other on the host computer.
Most other editors run either on a single work station or
on the host computer using only the low levels graphics
routines of their graphics devices. However both parts
of PED are of about equal importance. (Coinciden-
tally, both have about the same text size.) For simple
pictures the host is used only as a link to the file system
and all operations are done on the Blit. As the complex-
ity of the picture and the complexity of the type of
operations required increases, the use of the host
becomes greater. In this way the user has the quick
response of a personal workstation combined with the
power of the host machine. (Similar division of labor is
characteristic of other Blit programs, such as the text
editor jim [5].) Additional features of PED that are not
always found in graphics editors include arbitrary
polygons filled with texture, splines, rotation by any
angle, ‘beautification’ procedures, and hierarchical
organization of the objects in the drawing. Figures 1
and 2 show some examples. The first two were drawn
entirely with the Blit part. Because the Blit allows
multiple windows, one can use PED without losing con-
tact with the rest of the computing environment.
(Reading mail, making notes using a text editor, etc.)

PED files resemble display lists and as such can
be displayed with little effort on any other graphics dev-
ice. (Certain textures may not be reproduced this way,
but it is possible to specify color in their place.)

+ UNIX is a Trademark of AT&T Bell Laboratories.

Currently there is a rroff filter that allows illustrations
created by PED to be phototypeset. Figure 1 has been
printed in this way. It is also possible to make a copy
of the bitmap of the Blit screen and display it on any
raster graphics device. The copies of Figures 2 to 4
were made in this fashion.

Data Structures and Object Types

The basic data structure of PED is an object that
contains the following information: (1) A pointer to an
array p, of x,y coordinates, which is allocated at
object creation time. (2) An integer n denoting the
number of points in p,. (3) A rype flag which indicates
how the object will be plotted and what kind of opera-
tions are allowed on it. PED allows five basic types of
objects: polygons, splines, filled polygons, text, and fam-
ilies. (4) An integer size that has different interpreta-
tions depending on the trype. For example, for text it
denotes the point size, while for families it counts the
number of members. (5) A status flag that is set when
an object is modified and reset whenever the file is
saved. (6) and (7) Two variables color and pen with
the obvious meaning. (8) A pointer pp that is used to
point either to an array of object pointers mem if the
object type is family, or to a string of characters rxt if
the object type is text or spline.

The form of an object depends less on the con-
tents of the object structure, than on the way these data
are interpreted by the plotting routines, depending on
the type. If the type is spline, the vertices of p, are
used as control (or guiding) points. The character
string associated with a spline denotes whether a vertex
of the polygon is multiple or not. The splines used by
PED are parabolic splines of the kind described in [6,
pp. 262-269]. In particular, they are tangent to the
sides of the polygon and pass through the midpoint of
the sides. They also pass through all multiple vertices
and are still tangent on the sides. In this way multiple
vertices can be used to create corners. If the type of an
object is filled, then the sides of the polygon p, are
used as inputl to a scan conversion algorithm that pro-
duces a set of horizontal line segments. Each such seg-
ment is overlayed on a textured pattern and the result-
ing texture is displayed on the Blit screen.

If the type of an object is family, the most impor-

Graphics Interface '84

tant part of the data structure is the array mem which
lists the objects belonging to the family. Since the type
of some of the latter objects can also be family there is
a facility for building recursively complex objects out of
simpler ones.

The display of a polygon (or a spline) does not
have to be connected: when the plotting routine finds a
point with negative coordinates in p, it skips that point
and does a “move” (rather than “draw line”) to the
next point. This feature is essential for allowing filled
polygons with holes to be single objects.

Objects are drawn or pointed to with the help of
the mouse cursor. For pointing the mouse coordinates
are checked against the list of all objects. For families
the search is done recursively and if a match is made
the searching routine does not return the actual object
but the one highest in the hierarchy above it. Similar
recursion is used with all editing operation so that fami-
lies can be handled as single objects.

Host-Blit Interaction

The host has two lists of objects: one of inactive
objects H and another of active objects 4. The Blit
has only one list of objects B. PED tries to maintain
the lists A4 and B as close Lo as possible. There are two
major differences in the form of the object data struc-
ture between the host and the Blit. One is that coordi-
nates are kept in floating point form on the host and in
integer form on the Blit. The second is that the host
points have a third coordinate which used for the same
purpose that negative coordinates are used on the Blit.
(While negative coordinates have no meaning on the
Blit, they do on the host.) The host program knows a
scale factor S and a shift vector X, V. Instead of send-
ing the coordinates x.p to the Blit, the host sends the
rounded off values of (x — X)}*S (y —=Y)*S. The
inverse transformation is applied to coordinates read
from the Blit. When objects are created or edited on
the Blit the lists 4 and B differ until an updating of A
from B is performed. It as convenient to think of an
object as a display list and of plotting an object as a
mapping from a display list to the refresh memory of
the Blit, R.

When a file is read, it is placed in the inactive list
H. Objects can be displayed on the screen of the Blit in
two ways. (1) The (scaled) display lists of the objects
in H are transmitted one at a time, plotted on R, and
then erased. Since R is not affected by the display list
erasure, what is seen on the screen on the Blit
corresponds to what is the host and there is no real
limit on the complexity or size of the displayed image.¥
Note that in this case both 4 and B are empty. (2) A
set of objects are transferred from H to A, and then a
scaled copy of A4 is made in B. Since these objects now
reside in the Blit, they can be displayed, and also
edited.

Any new objects drawn are placed in B. Depend-
ing on the extent of modifications either parts or the

* The only time where there would be a problem is when the
size of a single object exceeds the available space on the Blit, an
unlikely occurrence.

76

whole list B is copied to 4 periodically. Any request
that might bring more objects from the host to the Blit
initiates the following sequence: B is copied to A and
then B is erased: all objects of A are transferred to H:
a selection procedure is applied on H and a new list A
is created; the new A is copied to B. The typical way
to edit a file is to display it on the Blit screen, select
interactively a part to be transferred from H to 4 (and
then to B) and then work on the latter. Interactive
selection (and most other operations) are possible even
though the dispiay lists are not on the Blit because posi-
tional information from the Blit can be sent to the host
with the inverse scaling transformation. Some editing
operations are always performed on the host, but this is
transparent to the user (except for a slower response).
Other operations, such as copying a group of objects,
are performed explicitly on the host. This is how Fig-
ure 2 was creaied. First a dragon was drawn locally,
then the remote was selected and a copy of the dragon
was made and transformed to create the reflected
image. Zoom and pan operations are achieved by
modifying S, X, and Y. When a zoom operation is
requested and B is not empty, A is updated from B (if
necessary), and then 4 is recopied on B with the new
transformation.

Summary of Operations

PED has eight menus and at any given time one
of them is displayed on the Blit screen. The names of
the menus appear in a small menu controlled by one of
the mouse buttons. There is a user’s manual describing
in detail all the operations. The following is a summary
of what is available with an explanation about the
implementation of the less common operations.

Basic: Controls communications with the host. It
includes a selection that activates the keyboard so that
file manipulation commands can be passed directly to
the host.

Draw: Contains commands for creating objects,
Polygons, splines, text, circles, boxes, ovals, and fami-
lies. Also for establishing a grid where points of the
drawn objects arc forced to lie. Three grid meshes are
possible and these are expressed in unscaled coordinates
50 they do not change between sessions.

Reshape: Contains modification operations such as move
a point, delete a point, change the type of a polygon
into a spline, undo an editing operation, and ‘formalize’
an object. The latter command changes the location of
vertices so that lines whose direction is close to a set of
chosen directions (vertical, horizontal, 45 degrees, and
135 degrees from the horizontal) are made to have
exactly those directions by modifying their endpoints
appropriately.

Refine: Similar to *Reshape’ with commands for editing
text, make a line dashed, or double, or heavy, etc. The
computation for plotting double lines is done in the host
because it requires extensive use of floating point arith-
metic and trigonometric functions. Double or heavy
lines belonging to objects in the Blit part are marked by
tags and are plotted single as shown in Figure 3. When
a plot using the host facilities is requested, then such

Graphics Interface '84

lines appear in their proper form as shown in Figure 4.

Move: move an object, copy an object, ete. Also delete
objects, and move them so they are aligned or centered.

Shade: contains a selection of 10 textures and an ‘unfill’
option. Polygons are filled with texture as following:
The user selects a texture from the menu and then
points to a polygon. The only things that change in the
data structure are the type and the color. The plotting
routine uses a scan conversion algorithm to produce the
filled polygons.

Change size: Contains fixed shape and size transforma-
tions, such as reducing the size by a fixed percentage.
There is also the possibility to apply an arbitrary size
and orientation change by selecting the “rotation™ com-
mand form the menu.

Remote: Operations such as copying or scaling groups
of objects performed directly on the host. Also files can
be read into specific parts of the screen, or objects may
be selectively written into files.

It would seem that the lack of constraints would
make it difficult to drawing ‘neat’ looking pictures but
as Figure 1 shows this is not the case. The use of grids
and aligning commands results in ‘beautification’ of
drawings. Of more interest is an automatic beautifica-
tion procedure that modifies a drawn picture as to
satisfy certain forms of constraints. As of this time only
small parts of this procedure have been implemented
and are used with the *formal’ selection in the ‘reshape’
menu. It is expected that more extensive procedures
will be added in the future.

Conclusions

One conclusion from the experience of developing
PED is that the “interactive graphics” routines are the
least important part of a “picture editor,” if one is
interested in drawings of any significant complexity or
size. Problems of file manipulation, recursive definition
of objects, viewport selection, etc. become dominant, in
the same way that they are dominant in a text editor.
These problems are more difficult in the case of draw-

77

ings than they are in the case of text because there is
no obvious linear ordering in drawings as there is in
text. Splitting the program between two machines pro-
vided considerable flexibility in the design but also
required many decisions about where things are to be
done. Time is an ample resource in the Blit, but space
is scarce. The opposite is true for the host machine. In
addition, the communication channel between the two
machines is a resource that must be used carefully. As
a rule, operations that are expected to be infrequent are
assigned to the host.

Acknowledgments

George Wolberg helped with the implementation
of many of the routines, and in particular those dealing
with variable size characters. | have also used code
provided by Ken Thompson (creating the double lined
objects) and Tom Killian (making copies of the Blit
screen). Paul Pavlidis was my first user and created
the drawing used in Figure 2. | have also received use-
ful comments on the program or the manuscript from
Doug Mcllroy, Steve Mahaney, Lorinda Cherry, and
Mary Bittrich.

References

[1] Sutherland, I. E. *“Sketchpad: A Man-machine Graphi-
cal Communication System,” in [963 Spring Joint
Computer Conference, reprinted in Interactive Com-
puter Graphics, H. Freeman, ed., IEEE Computer Soc.,
1980, pp. 1-19..

[2] DeRose, A. D. “Status Report on the Graphical Curve
Editor (GRACE)" Tech. Rept. Univ. of California,
Berkeley, Graphics Lab, Sept. 1952 AD-A120664

[3] Nelson, G., personal communication.

[4] Pike, R. “Graphics in Overlapping Bitmap Layers,”
ACM TOGS, 2 (1983). pp. 135-160. Reprinted in
SIGGRAPH'S3. pp. 331-356.

[5] Pike. R. “The Blit: A Multiplexed Graphics Terminal,”
Bell System Technical Journal, (in press).

[6] Pavlidis, T. Algorithms for Graphics and Image Pro-
cessing, Computer Science Press, 1982,

Graphics Interface '84

1

(]
-
4

1

b

(]

-

4]

(a)

type comm
view host
bring in
markers(t]
HELP/plot
zoom

unzoom

scroll

()

Figure

(c)

blitblt

exit

Figure 2

Graphics Interface '84

- 76 =

edit text

adj t(CRL

dashed(t)

double(t) ' T

heavy(t) ‘

undo *

Figure 3

type_comm

vied host
bring in

markers(t

HELP/plot

Zoom

unzoom

scroll

plitblt

exit

Figure 4

Graphics Interface '84

