- 81

DYNAMIC ATTRIBUTES HANDLING ON A GKS WORKSTATION

M.Rudalics
Johannes Kepler University, Linz, Austria

ABSTRACT

Attributes handling has been cited as one of the more distinctive features of the new
graphical standard GKS. Beforemost dynamic attributes handling facilities have been
introduced in the standard with the capabilities of intelligent workstations in mind.
However, a final attempt of attributes unification in the transition from version 7.0 to
version 7.2 defeated some of the earlier design decisions for GKS. In the consequence
special problems emerged for two-stage pipelines, where the generation of the display
image is subdivided into a transformation/clipping part followed by a subsequent display
list interpretation part. This paper attempts a classification of GKS attributes
according to their type, scope, binding and the moment of their evaluation. Further a
technique for dynamic attributes handling on a multi-microprocessor based vector refresh

device is described.

"KEYWORDS:" Attributes Classification, Intelligent Graphics Workstations, GKS.

1 Introduction

The presence of attributes in graphics systems
has been dictated by two reasons:

(1) Attributes allow to address device specific
functions, like the capability of a line
generator to draw various linestyles, or the
capability of a character generator to display
text in different sizes and fonts.

(2) Transmission and intermediate storage of
primitives is more efficient when attributes may
be employed: Transmitting and storing text is
less time and space consuming when text has been
encoded as a character string accompanied by some
attributes specifying writing direction, font,
et.al., than as series of strokes.

The Graphical Kernel System (GKS) [3], considers
attributes handling as the performance of
particular manipulations, which define position,
size, shape, appearance, and identification of an
output primitive on the viewing surface of a
workstation. Dynamic attributes handling is the
retroactive execution of these manipulations,
i.e., for primitives which already appear on the
display surface.

Workstations with low capabilities for dynamic
attributes handling, like raster or storage tube

devices, require for each retroactive
modification of an attribute (with the exception
of colour on a raster device) a regeneration of
the display image, in GKS also referred to as new
frame action. Workstations with high dynamic
attributes handling capabilities, like vector
refresh displays, allow retroactive modifications
of attributes to occur immediately, e.qg.,
on-the-fly from one refresh cycle to the next.

In the following chapters we will attempt a
classification of GKS output primitive attributes
under the special aspect of their adaptability to
dynamic modification, and describe our
realization of attributes handling on a
multi-microprocessor based vector refresh device.

2 Classification of GKS Output Primitive
Attributes

GKS output primitive attributes have been
classified by various sources [1], [3], [5], (7]
according to their type, scope and binding (see
also Table 1).

(1) Types of Attributes

Geometric attributes, like character height or
text path, affect shape and position of an output

Graphics Interface '84

Attribute

Aspect Source

Bundle Index

Individual Attributes

Pick Identifier

Other Primitives' Attributes
Representations
Normalization Transformation
Normalization Transformation
Clipping Indicator

Clipping Rectangle

Clipping Rectangle
Workstation Transformation
Segment Name

Insert Transformation
Segment Transformation 1)
Segment Transformation
Visibility

Highlighting

Priority

Priority

Detectability

Echo Type 2)

Echo Transformation 3)

Type

Implicit
Implicit
Non-geometric
Identification
Geometric
Non-geometric
Geometric
Implicit
Implicit
Geometric
Geometric
Geometric
Identification
Geometric
Geometric
Geometric
Non-geometric
Non-geometric
Identification
Geometric
Identification
Non-geometric
Geometric

- G2 =

Scope Binding Evaluation

Global Static + Bundle Index/Individual
Global Static + Representation
Global Static Display

Retained Stat Picking

Global Static DC Transformation
Local Dynamic Display

Global Static NDC Transformation
Global Static + Clipping Rectangle et.al.
Global Static + Clipping Rectangle
Global Static DC Transformation
Retained Dynamic DC Transformation
Local Dynamic DC Transformation
Retained Dynamic Picking

Retained Static NDC Transformation
Retained Static NDC Transformation
Retained Dynamic DC Transformation
Retained Dynamic Display

Retained Dynamic Display

Retained Dynamic Picking

Retained Dynamic Display

Retained Dynamic Picking
Retained/Local Dynamic Picking
Retained/Local Dynamic DC Transformation

1) The segment transformation of the inserted segment frozen during an insertion.

2) Echo type for the pick device, defines how the appearance of a primitive has to be altered
(blinking), for providing the appropriate feedback to the operator during a pick process.
3) The echo transformation may be applied to a segment when choice echo type five has been selected.

Table 1: GKS Attributes Classification

primitive.

Non-geometric attributes, like linetype or
1linewidth, affect merely the appearance of the
output primitive.

Identification attributes, like the segment
name or the pick identifier, serve for
identifying the primitive in a pick process.

Implicit attributes define an attribute of one
of these three types indirectly, e.qg.,
normalization transformation and clipping
indicator define the clipping rectangle of a
primitive.

(2) Scopes of Attributes

Global attributes, like the normalization
transformation or character height, are applied
to an output primitive on all open output
workstations.

Local attributes, like the workstation
transformation or text representation, are
applied to primitives which appear on a specified
workstation only.

Retained primitives' attributes, like the
segment transformation or the pick identifier,
are only applied to primitives which have been

put into a segment before.

In connection with input some attributes
(echo transformation, echo type) are of retained
and local scope.

(3) Bindings of Attributes

Static attributes, like the pick identifier or
text direction, are bound to a primitive for its
lifetime. When a static attribute is evaluated
(i.e., applied to the primitive), the value of
the attribute is taken from the context valid at
the time of creation of the primitive. This value
has to be stored until evaluation along with the
primitive on any intermediate storage.

Dynamic attributes, like colour representation
or highlighting, may be modified retroactively
throughout the lifetime of the primitive. When a
dynamic attribute is evaluated, its value is
taken from the context valid at the time of
evaluation.

In what may be considered a final tour de force,
the GKS designers attempted a unification of
these concepts by establishing the two

Graphics Interface '84

- Q8 =

Qutput Primitives in World Coordinates

| Evaluate Normalization Transformation
I

Evaluate Segment and
Insert Transformation «-----==--c-coeamam

Retained Output Primitives in
Normalized Device Coordinates

Evaluate Remaining Geometric Attributesl

Qutput Primitives in Device Coordinates

Evaluate Non-geometric Attributes i

Qutput Primitives on Display

Evaluate Identification Attributes

Pick Report

Figure 1:
jdentities: geometric = static = global vs.
non-geometric = dynamic = local attributes.

Excluded from this unification were only segment
attributes and the workstation transformation,
due to their inherent dynamic character.
Unfortunately character spacing and the
character expansion factor have been
reclassified from geometric - GKS 7.0 - to
non-geometric - GKS 7.2 - and thus dynamic
attributes, consequently also subject to
retroactive modification. This decision creates
considerable difficulties for workstations, where
the output pipeline is divided into a
transformation/clipping part which creates a
display list or refresh buffer in device
coordinates notation, and a subsequent display
part which interprets the display list for
refreshing the display image: As in GKS 7.2 a
text primitive may be modified dynamically by
updating the character spacing and character
expansion factor entries of the corresponding
text bundle, the transformation/clipping process
has to be initiated also for modifying the
representation of text displayed in CHAR quality.
This problem may not be circumvented, as the
standard requires explicitely, that character

The GKS Viewing Pipeline

spacing has to be evaluated exactly.
a similar problem has been avoided with the

marker size - another "non-geometric" attribute -

by allowing an implementation to provide one
marker size only.

3 Evaluation of Attributes - the
GKS Viewing Pipeline

The purpose of a viewing pipeline is to describe

where and when the evaluation, i.e., the

application of an attribute to a primitive, has

to be performed (Fig. 1).
- GKS requires the evaluation of certain

attributes to occur before other actions may be

taken: Before primitives may be stored on the

Workstation Independent Segment Storage (WISS) or

on a metafile they have to be transformed to
normalized device coordinates (NDC) space.

- GKS requires the evaluation of other attributes
to be postponed: The clipping rectangle must not

be evaluated for retained primitives at the
moment of NDC transformation, as a subsequent

Graphics Interface '84

Note, that

Py =1

WISS administrated by
General Purpose Processor

Qutput Processor

Device Interface =====c=csssS=sSSsS=s=sS=====

Device

General Purpose
Processor

Qutput Primitives in World or Normalized
Device Coordinates

Evaluate all Geometric and
Non-geometric Attributes

Output Primitives on Display I

| Evaluate Identification Attributes ‘

Pick Report ‘

Figure 2: Encarnacao's VLSI Pipeline

insertion of the segment containing the
primitives may require (due to a different
normalization or clipping context) another
clipping rectangle.

Generally, in a GKS implementation attributes
evaluation may occur at one of the following
moments:

- transformation to normalized device
coordinates space

- transformation to device coordinates space

- displaying (i.e., mapping of abstract to
device functions)

- picking.

Note, that in GKS the evaluation of attributes is
independent from whether the attribute has been
specified modally or as part of the primitive
specification. The evaluation of dynamic
attributes may be controlled seperately on each
workstation which creates visible output with the
help of the deferral state.

The evaluation of attributes may be combined as
on Encarnacao's [2] one-stage VLSI pipeline

(Fig. 2). The VLSI chip has been designed as an
interface between a GKS implementation
administrated by a general purpose processor, and
an output device which is continuously refreshed
by the VLSI processor. No intermediate storing of
output primitives in device coordinates
description is assumed. The VLSI pipeline
requires some overhead, as:

- The segment storage has to accomodate
non-retained primitives too.

- Due to restricted chip size, which requires
polymarkers and text to be reduced to polylines,
various capabilities of an output device, like
character or marker generators, may not be
addressed. Consequently the amount of text or
polymarkers to be displayed may severely restrict
the throughput of the device.

- Concatenating all transformations requires
either to store normalization transformation and
clipping indicator together with the primitive on
the WISS, or to refrain from using the segment
facility, as has been proposed for Minimal GKS

[6].

The Dubna IGT [4] is a two-stage interpretation
of the GKS pipeline (Fig. 3). The IGT accepts
output primitive defined in NDC space only. All
attributes which have been expressed in world
coordinates (like the character height or the
character up vector) have to be transformed to
NDC space, and have to be retransformed whenever
the valid normalization transformation is
altered. When inserting a segment, the segment
transformation of the inserted segment and the
insertion transformation are bound to the
primitives contained in the segment. Their
evaluation is postponed until these
transformations may be concatenated with the
transformation of the segment open at the time of
insertion and the workstation transformation.
After the evaluation of all geometric attributes,
the transformed and clipped primitives are stored
on the display list from where the display image
is refreshed.

Graphics Interface '84

Host

Device Interface

i — 2l
Bind Segment and

WDSS

Transformation/
Clipping Processor

Display List

Display Processor

Figure 3:

4 Dynamic Attributes Handling on the
Workstation Level

The dynamic memory of the Dubna IGT has been
subdivided into three logically distinct
partitions:

- The Workstation Dependent Segment Storage
(WDSS) contains the description of retained
primitives in normalized device coordinates.

- The display list contains the description of
retained and non-retained primitives in device
coordinates.

- The bundles partition may be accounted in equal
parts to: (1) the WDSS - as bundle indices are an
integral part of the primitives defining a
segment, (2) the display list - as the display
process uses the information contained in bundles
for displaying primitives (references to bundles
are inserted accordingly in the display list),
(3) the workstation state list. Latter is
required by GKS.

Qutput Primitives in World Coordinates

Insert Transformation «--------

Retained Output Primitives in
Normalized Device Coordinates

‘ Evaluate Remaining Geometric Attributes
(including eventual Transformations
resulting from an Insertion)

OQutput Primitives in Device Coordinates

Evaluate Non-geometric Attributes |

OQutput Primitives on Display

Evaluate Identification Attributes

Pick Report

The Dubna IGT Pipeline

Initially the bundles partition contains only
predefined bundles. Like segment or display list
elements, settable bundles may be created
(allocated in the memory) dynamically without
violating GKS rules. A new bundle has to be
constructed when it is referenced for the first
time in a SET...INDEX or a SET...REPRESENTATION
function and may not be deleted until the
workstation is closed.

On the Dubna IGT each bundle has two associated
flags, which may be set every time the
transformation process encounters an output
primitive.

Flag 1 is set when a non-retained primitive
which has to be displayed according to the
information contained in the bundle is
encountered (and may be clipped to non-existence)
by the transformation process.

Flag 2 is set when a retained primitive which
has to be displayed according to the information
contained in the bundle is encountered (and may

Graphics Interface '84

- 86 -

be clipped to non-existence) by the
transformation process.

If all entries of a bundle are shaded by the
corresponding individual attributes (according to
the current setting of the aspect source flags)
neither flag 1 nor flag 2 are set.

Both flags are reset every time the display
surface is cleared.

For displays operating in combined (store/refresh
or write-thru) mode, flag 1 additionally reflects
the usage of the bundle for displaying retained
primitives in store mode. Flag 2 is set only when
a retained primitive which is to be displayed in
refresh mode uses this bundle.

Taking into account the current setting of these
flags, three situations may arise when a dynamic
attribute modification is about to be performed.
- When a SET...REPRESENTATION function modifies
one of the entries of a bundle which has flag 1
set, a new frame action becomes necessary. This
has the obvious consequence that all non-retained
primitives will be thrown away with the next
regeneration.

- When a SET...REPRESENTATION function modifies
one of the entries of a bundle which has flag 2
set (but not flag 1), a reevaluation of all
retained primitives becomes necessary
(non-retained primitives are not affected by this
process).

- When a SET...REPRESENTATION function modifies
one of the entries of a bundle which has neither
flag 1 nor flag 2 set, no action needs to be
taken. This situation will usually occur during
the initialization of a new bundle.

Both flags stand for the fact, that on the Dubna
IGT it is impossible to modify dynamically the
appearance of an output primitive, whenever a
geometric entry of a bundle is involved.
Modifying geometric aspects requires a
reevaluation of the primitive for a correct
application of the clipping algorithm. On the
Dubna IGT the following entries of bundles may be
modified dynamically: Linetype, polyline colour,
marker type, polymarker colour, text font in
STRING or CHAR quality (due to the fact that we
use monosized fonts and clipping is performed on
the character box), text colour, and fill area
colour. A dynamic modification of other bundle
entries, including character spacing and
character expansion factor, may only be achieved
through a reevaluation of all segments or a
regeneration of the display image.

5 Conclusion

The implementation of dynamic attributes handling
on a GKS workstation has been described. The
realization reflects some of the difficulties
encountered in the transition from GKS 7.0 to GKS
7.2. Nevertheless, the technique allows the full
exploitation of the interactive facilities of the
device, as a regeneration of the display image
has only to be performed, when a visible change
of the size or shape of an output primitive on
the display surface is highly probable.

References:

[1] Arnold, D.B. The Importance of a Correct
Approach to the Design of Metafiles
Standards. In: Proc. of Eurographics '82,
North-Holland Pub., 1982, pp.93-102.

[2] Encarnacao, J.L., Lindner, R., Mehl, M.,
Pfaff, G., and Strasser, W. A VLSI
Implementation of the Graphics Standard GKS.
Computer Graphics Forum 2, 2/3 (Aug. 1983),
115-121.

(3] Draft International Standard ISO/DIS 7942,
Information Processing Graphical Kernel
System (GKS), Functional Description, Version
7.2, NI-5.9/1-83, Nov. 1982.

[4] Leich, H., Levchanovsky, F.V., and Prikhodko,
V.I. A Multi-Microprocessor Based Intelligent
Graphics Terminal. Microprocessors and
Microprogramming 12 (1983), 175-180.

[5] Rosenthal, D.S.H. Managing Graphical
Resources. Computer Graphics 17, 1
(Jan. 1983), 38-45.

[6] Simons, R.W. Minimal GKS. In: Proc. of
SIGGRAPH '83, Computer Graphics 17, 3
(July 1983), 183-189.

[7] Sutcliffe, D.C. Attribute Handling in GKS.
In: Proc. of Eurographics '82, North-Holland
Pub., 1982, pp.103-110.

Graphics Interface '84

