TWO ALGORITHMS FOR DRAWING ANTI-ALIASED LINES

Dan Field

Computer Graphics Laboratory
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl
(519) 886-1351

ABSTRACT

Twe new algorithms are presented for drawing anti-aliased lines. The algorithms do not require floating
point or table lookup operations within their inner loops. When rendering against a constant background,
inner loop multiplications can also be eliminated. These qualities make the algorithms attractive for
hardware and firmware implementations. Inner loop operation counts show the algorithms to be faster than
others reported in the literature. Anti-aliasing is accomplished using a square area integration filter; one
algorithm approximates filter response, the other computes response values exactly.

On présente deux algorithmes pour le tracé de courbes décrénelées. Les boucles itératives de ces algor-
ithmes ne font appel ni 4 la virgule flottante ni & des opérations de référence a des tables de conversion.
Les cas dans lesquels I'arriére-plan est uniforme peuvent étre traités en éliminant les multiplications
I'intérieur des boucles d’itération. Ces qualités sont particuliérement attrayantes pour l'incorporation de ces
algorithmes & des matériels ou des microprogrammes. Le comptage du nombre d'exécution des boucles
d’itération montre que ces algorithmes sont plus rapides que ceux décrits dans la litérature. Le dérénelage
(anti-aliasing) fait intervenir un filtre d'intégration par surfaces carrées; un algorithme donne une approxi-
mation de la réponse du filtre et I'autre calcule les valeurs exactes.

Key Words: Aliasing, anti-aliasing, filtering, algorithms

1. Introduction

Anti-aliasing algorithms operate by replacing previous pixel
values according to the blending function

pixel (i ,j)—al +(1—) pgck)

where [is the colort of the object being drawn, [, is the previ-
ous color of pixel (,j), and a is the response of a low pass filter to
the object at (i,j). Normally, 0=a=1. Typically, the filter func-
tion is computationally expensive and is stored in a lookup table
indexed by the distance from the object to (i,j). Thus, for each
pixel modified by the algorithm, table lookup, multiplication, and
normalization operations are required within the inner loop steps.

Values for a can be determined directly when the filter func-
tion is computationally inexpensive. Pitteway and Watkinson
[Pitt80] show how the remainder value of Bresenham’s algorithm
[Bres65] may be used to obtain the response of a square area
integration filter. However, their algorithm uses floating point
addition, subtraction, and multiplication operations within the
inner loop steps, and makes poor"approximations of @ in certain
cases.

This work was supported in part by the NSF under grant MCS81-14207.

#To simplify presentation of the algorithms, we shall assume that we are using a
grayscale raster device. Later, we describe how to generalize to full rgh color.

In this paper, we present two algorithms for drawing anti-
aliased lines that compute of directly without lookup tables or
floating point operations. The first algorithm uses approximation
techniques to compute filter response values. In some applications,
it is important that the filter be computed exactly. The second
algorithm achieves this using results from elementary number
theory. With a constant background, inner loop multiplications
can be eliminated entirely resulting in algorithms that are espe-
cially attractive for hardware or firmware implementations. We
show that the approximation algorithm is faster than the table
lookup algorithms of Gupta and Sproull [Gupt81] and Turkowski
[Turk82]. With non-uniform backgrounds, we resort to multiplica-
tion within the inner loop, while remaining faster than [Gupt81]
and [Turk82]. The algorithms presented here are an extension of
the ideas contained in [Pitt80].

The remainder of this section describes the fundamentals of
computing the filter values a. The next two sections describe
approximation and exact computation schemes for a. Section four
contains implementation details about accuracy, conversion from
rational to integral arithmetic, and word length characteristics. In
Section five we describe some extensions to the algorithms. We
conclude in Section six with an analysis of the algorithms.

Graphics Interface '84

- A8

1.1. Fundamentals

We shall assume that a raster device is modeled by a square
grid of integral points (i,j) called pixels. We define an el (i,j) in
the grid to be the unit area region (x,y) where i=x=i-+1 and
j=y=j+1. The filter response a for pixel (i,j) is the area of
intersection between the line and the el (i,j).

Consider the problem of drawing a line segment of color /
between the points (0,0) and (dx.dy). It is assumed here that the
segment lies within the first octant, implying dy=dx. We
represent the segment by a parallelogram defined by the points
(0,1/2), (dx,dy+1/2), (0,—1/2), and (dx ,dy —1/2).

Drawing a parallelogram using our anti-aliasing technique
involves tracing the upper bounding segment (UBS), (0,1/2),
(dx.dy+1/2); tracing the lower bounding segment (LBS),
(0,—1/2), (dx,dy—1/2); and computing the parallelogram-el
intersection areas. It is enough to trace only UBS since LBS
always lies one vertical grid unit below. This is achieved by a
variant of Bresenham’s algorithm. Computing intersection areas is
achieved by exploiting the linear increase in area between UBS
and the line y =0 as we move from left to right along the x axis.

The vertical position of UBS at x;=i is given by the equa-
tion

(2)

Here, g; and r; are integral and 0=r,<<2dx. The quantity g,
represents the integral height of UBS above the x axis, and the

L i ; .
quantity YT is the fractional height above y=g;. When i=0,

we have go=0 and ry=dx. Simple recurrence formulas for g,
and r; follow directly.

gi+1 = 4 ry<2dx—2dy
Qi1 = q;+1 2dx —2dy =r; S
and
rig1 = ri+2dy r;<<2dx —2dy
Fisy = rp+2dy —2dx 2dx —2dy=r;)

Thus, tracing the parallelogram is accomplished by generat-
ing the values g; and r; for the upper segment. The lower seg-
ment, LBS, has remainder values r; identical with the upper seg-
ment; its integral vertical heights are g;—1. The two remaining
edges of the parallelogram, (0,1/2), (0,—1/2) and (dx,dy +1/2),
(dx,dy —1/2), having unit length and being vertical, are traced
implicitly by starting the upper segment trace at x =0 and finish-
ing at x =dx.

Intersection areas for els are determined on a column-by-
column basis as UBS is traced. Since dy=<dx, and UBS is
separated from LBS by a vertical distance of 1 grid unit, the
parallelogram intersects either two or three els in any column (See
Fig. 1). The two cases are distinguished by the value of r,. If
r;=2dx —2dy, then two els are intersected by the parallelogram in
column i. Otherwise, 2dx —2dy <<r;, and the parallelogram inter-
sects three els in column i. In both cases, the total intersection
area in column 7 is 1.

A counter A; is used to keep track of the areas for the upper
one or two els intersected by the parallelogram in column i. When
the parallelogram intersects two els (i,g;) and (i,g;— 1), 4; is the
intersection area contained in (i,g;). The intersection area con-
tained in (i,g; —1) is therefore 1 —A4; (See Fig. 2).

When the parallelogram intersects three els, (i,g;+1), (i.g;).
and (i,g; —1), A4; is defined to be the trapezoidal area bounded by
the lines UBS, x =i, x=i+1, and y=g;. If B; is the intersection
area contained in (i,g;+1), then A4;—2B; is the intersection area
contained in (i,q;), and 1—A;+B; is the intersection area con-
tained in (i,g, — 1) (See Fig. 3).

/,/:}Bs
o
. P

(0,0)

/
/
0 1 2 3 4

Fig. 1. The parallelogram crosses two els in columns 0, 2,
and 4, and three els in columns 1 and 3.

¥
_ii A/; Tiv1 it 2dy

vy

Fig. 2. Intersection areas for two els crossed by the paral-
lelogram in column i.

éh-l fu*"?ab'-%
A 2dx T 2dx
e ¥

1_4‘!4‘3!

- E’]"‘ [
e

Fig. 3. Intersection areas for three els crossed by the paral-
lelogram in column §.

Graphics Interface '84

We are left with specifying the computation of 4; and B;. It
can be seen from the previous discussion that the values for 4; and
B; are determined solely by the remainder r; and are defined by
the following equations.

rit+dy
: 2dx)
and
ri+2dy —2dx)?
B; = L) o (6)

8dxdy
Simple recurrence formulas can be employed to iteratively com-
pute A;. Initially,

2dx

The recurrence formula for 4; is

dx r;<<2dx—22dy
2dx —2dy =r; ®)

Unfortunately, B; is a quadratic function of the non-
monotonic parameter r;, and does not have a simple recurrence
formula. In the next two sections we investigate an approximation
scheme for B; and an alternate approach in which exact values for
B; may be computed.

2. Approximating B;

There are three properties that we would like of an approxi-
mation B, for B;.

1) B;’ can be computed without multiplication or division.
2) B;’ is as accurate as possible.
3) B;’=B;=0 when r,=2dx —2dy.

The reasoning behind the first two properties is straightfor-
ward. The third property allows the combination of some special
cases. We have seen that g;4, and r;4; have different iterative
calculations when r; <<2dx —2dy and 2dx —2dy=r;. The paral-
lelogram intersects three els only when 2dx —2dy is strictly less
than r;. Therefore, three different actions are necessary when r; is
less than, equal to, or greater than, 2dx —2dy. We can consider
the parallelogram as crossing three els instead of two at
r;=2dx—2dy. The intersection areas for the two cases will be
equivalent only if B;"=0 at this point. The third property allows
the combination of the cases r;=2dx —2dy and 2dx —2dy<r;,
saving extra conditional and branch operations.

We shall use the approximation

B/ = o - 9
; 1/2,4,+—L2dx 1] 9)

Since this can be evaluated with an addition, subtraction, and
shift, the first property is satisfied. When r;=2dx —2dy, the

value of A4; is 1 —?‘:!L. Therefore, the third property is satisfied.
X

89

What about other choices for B;? Combining Egs. (4), (5).

¥
and (9), we see that B,—’=l/22'7+1 . The third property forces any
x

3 : ri
approximation for B; to take the form ¢ 2';:

for some constant c.

Since the first property precludes the use of multiplication and

division, we are forced to use shifts and adds to obtain a suitable

value for ¢. As B;’=B;, the next logical choice for ¢ is 1/4.

However, max | B;—B;"| =max|B;—1/2B;’|. that is, the max-
1 I

imum error for ¢ =1/2 is less than that when ¢ =1/4. While it is
possible to obtain constants between 1/4 and 1/2, extra shifts and
adds are required. Therefore, we use ¢ =1/2 for the approxima-
tion.

The error in the approximation is

- rd+2r(dy —2dx)+4dx*—4dxdy
i 8dxdy

and is greatest when r;=2dx —dy. The error is small enough to
ensure a smooth transition in the intersection areas along horizon-
tal rows of els. In practice, the lines drawn with B,” appear as
good as those drawn with the exact value of B;. See Plates 1
through 5 for examples.

B,—B =0 (10

3. Exact Calculation of B;

We have seen that B; is a quadratic function of the non-
monotone parameter r;. We shall cause the remainder values to
increase monotonically by permuting the order along the x axis in
which UBS is traced. This allows exact calculation of B; through
forward differencing techniques.

The different trace order invalidates the formulas developed
for g;, 4;, and B;. In what follows, we give new formulas for A4;
and B; and redefine the trace parameters x;” and g;".

Assume that ged(dx,dy)=1 (this restriction will be removed
later). If dx is even, the remainders r; form a permutation of the
integers 0,2,4,....2dx —2. If dx is odd, the remainders form a per-
mutation of the integers 1,3,5,...,.2dx —1. This implies that there
exists an ordering x;” along the x axis such that the remainders r’;
increase monotonically. That is,

ry' = 2 +pg (rn
where py, =0 if dx is even, 1 otherwise.
Substituting r;” for r; in Eq. (5), we obtain
2i +dy +pyy
A4, = — - Tax¥ 12
! 2dx 4

The monotonicity of r’; simplifies the iterative formula for A4;.
Initially,

dy +de
g e X 13
. 2dx e
The new recurrence for 4; becomes
1
A;+| =A,-+E “4)

As long as r;"=2dx —2dy, the parallelogram intersects only
two els in column x;*, and the value of A4; suffices to compute both
intersection areas. The parallelogram intersects three els in

Graphics Interface '84

column x;” when 2dx —2dy <r;’, which is equivalent to the condi-
tion M =i where

M = dx—dy—pg+1 (15)
Substituting #;” for r; in Eq. (6), we obtain
2j +2—pax)?
Bys; = (2j+27pax)” (16)

8dxdy

for 0=j. Bp.; is now a quadratic function of the monotone
parameter j. Forward differencing techniques reduce its computa-
tion to two additions. Initially,

e 4—3py,
M 8dxdy
12—4pgy,
kil (7
ABy = —gixdy
8
A’B,, =
M Sdxdy

Forward difference formulas for By, 4 j are
Bpytjar = Bprsj T ABy 4
ABptj+1 = ABM+_J+AZBM+;'
A23M+J'+1 = AZBM-U

(18)

for 0=j. We are left with determining the current coordinates

(x;".q;") for the trace of UBS. From Egs. (2) and (11) the equa-
tion of the line containing UBS is

dy ,

1/z+d—ix,-

2i +de

19
2dx (19)

= ‘?i"+

Congruence relations for x;” and g;” may be obtained from Eq.
(19).
Let dx™! represent the multiplicative inverse of dx modulo

dy, and dy~' represent the multiplicative inverse of dy modulo
dx. Then
x;"=idy "'+ c e (mod dx) (20)
. . ~Ef d-“"'de
where ¢4, is a constant with value |dy —z mod dx,

Since the x;" lie in the half open interval [0,dx), this congruence
can be used to derive a simple recurrence formula for computing
x;. Initially,

X0 = Cgx 21
Then
x;'+dy ' <dx
dx=x;'+dy™!

s xl_f+dy—l
= x/+dy '—dx

xi+1
(22)

Xi4y
A congruence for g;” may be obtained similar to Eq. (20).

gi'=—idy ' +cgz(mod dy) (23)
dx —Pax

3 J mod dy. This congruence can be

where g, = |dx 7! l

used to obtain a recurrence formula for ¢;". We must be careful,
however, because the g;’ lie in the closed interval [0,dy], while the

20

congruence distinguishes values only for the half open interval
[0.dy).

This is handled by a special case. We need to determine

when ¢;"=dy. This occurs only near the segment endpoint
(dx,dy). Tt is not too hard to see that ¢;=dy only when
ll/2dxj
dx— | ———— |=x;". The following recurrence formulas itera-
dy !
tively compute g,. Initially,
90" = cay (24)
Then
ll/2de ‘
ax= [
g+ = dy dy I
@i+ = q'—dx™! 0=g/'—dx"' (25)
Gi+y = q/'—dx""+dy g;'—dx"'<0
Suppose now that ged(dx.dy)=g. Let dx’=% and

d}-‘=£}. The parallelogram can now be divided into g identical

pieces modulo an integral translation. Therefore, intersection
areas for els (j+/dx’k +ldy’), where 0=j<dx',0=k <dy’, and
0=/<g, are equivalent. The quantities g, dx’, dy’, dy’~", and
dx’"" can be obtained using Knuth's [Knut81] extended ged algo-
rithm. The algorithm runs in time ©(logdx). A tighter analysis
reveals that the loop in the ged algorithm is never executed more
than 4.79log odx +1.68 times. For dx =1024, this is less than 16
iterations. We shall see that this small preprocessing time is dom-
inated by the time to draw a line.

4. Algorithm Implementation

The key term in the computation of the blending function is
the product a/ (See Eq. 1). The el intersection areas lic in the
range a€[0,1]. This range can be mapped to [0,/] by considering
the area of an el to be [instead of 1. With the mapped range
[0.1], pixel values for anti-aliasing are identical to el intersection
areas. Note that range mapping takes place once in the initializa-
tion steps; no inner loop multiplications need be performed.

The two algorithms APPROXIMATE _B; and EXACT_B,;
are depicted in Figs. 4 and 5. As defined in the figures, they
render grayscale lines against a constant background of black.
Later, we shall show how to extend the technique to full color and
non-uniform backgrounds. We now describe some implementation
details that have been used to obtain the algorithms in the figures
from the earlier results.

4.1. Rational Representation

Thus far, we have defined 4; and B, to be rational quantities
and operated on them as such. Through the representation of
rational numbers as integral and fractional portions with an
implied denominator, perfect accuracy of A; and B; can be
retained using only integer arithmetic. In the following, we will
use the suffix err appended to variable names to represent frac-
tional numbers with implied denominator den.

Graphics Interface '84

Algorithm APPROXIMATE _B,

A

dx +1{dx +dy)]
2dx 3

Aerr — (dx +1I(dx +dy)) mod 2dx;
Tri 1 dx +1dy]

- 2dx !
HessTri —] —Tri;

21d
Sq— | ==L |;
4 lzdx

Sgerr —21dy mod 2dx;

over— 2dy —2dx;

under— 2dy;
r—2dy —dx;
q.—0;

for x =0 to dx —1 by 1 begin

if r=0 then begin
A—A—1I;
L lI/Z(Trr'_A)L
pixel(x,g+1)—L+A4;
pixel(x ,q)— llessTri;
pixel(x,g —1)—L;
r—r+over,
q—q+1; end;

else begin
pixel(x,q)—A;
pixel(x,g —1)—1—A4;
r—r +under; end;

ADDF(2dx A ,Aerr A ,Aerr Sq,Sqerr); end;

Fig. 4. Algorithm for drawing anti-aliased lines approximat-
ing the value of B;.

It is convenient to define an operator ADDF which adds two
rational numbers v and w represented in this fashion.

ADDF (den ,u ,uerr v verr w werr)

represents the following operations:

u—v+tw;
uerr— verr +werr;
if uerr =den then begin w.— u +1; uerr — uerr —den; end,;

Note that fractional portions always lie in the half open interval
[0,den).

All rational numbers in the algorithms must be split into
integral and fractional portions. This process occurs once at the
beginning of the algorithm as a preprocessing step.

91

4.2. Round Off Errors

We have shown that final pixel colors are obtained by sums
and differences of the 4; and B;. Several of these operations can
be saved by clever combinations of the operations. We will
explain the case when the parallelogram crosses three els in a
column with algorithm APPROXIMATE _B; the other cases are
left to the reader to verify.

Recall that here we want

pixel (i,q; +1)—B;’
pixel (i ,q;)—A; —2B;’
pixel (i ,g;—1)—I—A4;— B}’

(26)

Note that these values have been mapped to the range [0,/].

. ldy
Let Tri=—=—,
] rl 2dx

Eq. (26) can be rewritten as

Substituting with Eq. (9), the formulas in

pixel (i g; +1)—1/2(Tri +A4;—1I)
pixel (i q;)—I — Tri
pixel (i,q;—1)—1/2(Tri —A; +1)

(27)

Since I —Tri is constant, this value is pre-computed and
stored in variable [IlessTri. Using a temporary variable L, we
obtain a faster, equivalent series of assignments.

Ay—A;—1
Le1/2(Tri—A;)
pixel(i,q; +1)—L+A4; (28)

pixel (i ,q;)—1lessTri
pixel (i,g;—1)—L

Since values on the right hand sides of the above assign-
ments are rational numbers represented as two integers, additions
and subtractions should be performed on both integral and frac-
tional portions of the representation. In the interest of speed and
at the expense of some accuracy, we ignore fractional portions in
the above assignments. We can do better than full truncation of
the values by performing a pre-rounding operation. If we assume
that 4; and Tri are artificially increased by 1/2, the maximum
error can be cut in half over full truncation. Pre-rounding is
achieved by increasing fractional portions by half the implied
denominator before entering the inner loop of the algorithm.

We leave the reader to verify the following:

Fact 1: The maximum truncation error with pre-rounding of any
pixel for algorithm APPROXIMATE _B;lies in the range
[—1,+1).

Fact 2: The maximum truncation error with pre-rounding of any
pixel for algorithm EXACT_B; lies in the range
[—1.5,+1.5].

Fact 3: Every pixel is given a color in the range [0,/].

For applications that require full accuracy, rounding must be
performed.

Graphics Interface '84

Algorithm EXACT _B;

if dy = 0 then begin
draw the horizontal line from (0,0) to (dx,0); return; end;

find g; dx’; dy’; dx’"'; and dy’ ™"
p l4dx’dy'+4f(dy'z+pd_‘.v) J

- 8dx'dy’ ’
Aerr — (4dx'dy’+41 (dy"*+pgy)) mod 32dx7dy”;
R l4dx’dy‘+f(4—3pd,-)J_

o 8dx‘dy’ *
Berr — (4dx'dy’+1(4—3pa,)) mod 8dx'dy’,

1(12—4py.) J

Bdx'dy’

ABerr —[1(12—4py,) mod 8dx’dy";

AB.

N 817 ;
D G lﬁdx’dy' j'

A*Berr— 81 mod 8dx'dy’;

Bldy j
32dx’dy’ |

Recterr —81dy mod 32dx'dy";

Rect — l

X Caeth
q—Cdy}

17245
Cl—dx'— T :

M dx'—dy’ —pac+1;
for i=0to M —1 by | begin
if x=C1 then g—dy”;
for 0=k <g pixel(x +kdx',g +kdy')—A.
for 0=k <g pixel(x +kdx',g +kdy' —1)—I—A:
X—(x+dy’"") mod dx";
q—(g—dx'"") mod dy";
ADDF (8dx’dy’ A Aerr A Aerr Rect Recterr); end;
for i=M to dx’—1 by | begin
Tmp—A—B;
for 0=k <g pixel(x +kdx',qg +kdy'+1)—B;
for 0=k <g pixel(x +kdx',g +kdy’)—Tmp —B;
for 0=k <g pixel(x +kdx',g +kdy'—1)—I—Tmp;
Xe—(x+dy’™") mod dx’;
q—(g—dx""") mod dy";
ADDF (8dx'dy’, A Aerr A Aerr Rect Recterr);
ADDF (8dx’dy’,B ,Berr B ,Berr AB ABerr),
ADDF (8dx'dy’ AB ABerr AB ABerr A*B,A’Berr); end;

Fig. 5. Algorithm for drawing anti-aliased lines using the
exact value of B;.

4.3. Parallelogram Width

The width of a parallelogram determines the response of
area integration anti-aliasing. The perpendicular width of the
parallelogram varies according to its slope. When horizontal, it has
a width of one grid unit. When it has slope 1, it has a width of

5 grid units. Hence, parallelograms with slopes near 1 appear

thinner than those with slopes near 0.

This effect can be eliminated with an initial intensity com-
pensation dependent on the slope. We scale the intensity [to
obtain a new intensity /" that is used throughout the algorithm.

, 72
TR (29)
!m;\&
where [, has value
ddx —dy)l
e ¥) (30)

since M
4dx

sects a single el.

is the maximum area that the parallelogram inter-

4.4. Word Size Requirements

Many of the constants and variables used in both algorithms
can have magnitudes that are large. For example, in algorithm
EXACT_B, the implied denominator is 8dxdy. When the display
device has a resolution of 2'°X2'%, this denominator can be as
large as 2¥. We look at the magnitude of these numbers and
sketch a technique for reducing the word size requirements. We
shall make the assumptions that the display device has a spatial
resolution of 2'9X2'% and intensity resolution of 27,

First, we examine APPROXIMATE _B; This algorithm con-
tains no quantities whose magnitude exceeds 2dx. The maximum
value for this quantity is 2'' and easily fits into a 16 bit word
length common to many microcomputers.

While no final value that is stored in a variable exceeds 11
bits, intermediate values may. In particular, the initial computa-
tion that splits rational quantities into integral and fractional por-
tions have intermediate values that are large. For example, the

numerator of involved in the computation for the initial

values of 4 and Aerr may take 19 bits to represent. The whole
term may be computed without using more than 15 bits using the
following normalization scheme.

Ay sl xfi xl_” 31

2dx 27 27 dx
The first step is to express each term on the right hand side as a
sum of integral and fractional portions. The first two terms are
then multiplied to obtain another sum of integral and fractional
portions, this time with denominator 2'*. The final multiplication
is carried out in a similar fashion. Being careful to reduce
remainders to within allowable ranges (in this case 27 and 2'Y), all
the intermediate terms will have a magnitude less than 2% —1.
This type of normalization procedure works for the initialization of
all quantities in the algorithms.

Graphics Interface '84

We have seen that the implied denominators in EXACT_B,
will not fit within 16 bits. This is not a problem if the algorithm is
to be implemented in hardware or most bit-slice firmware proces-
sors. However, many mini and micro computers do not support
the word sizes required by this algorithm. We note that the mag-
nitudes of numbers in EXACT _B,may be reduced to 2** by being
careful in the computation of B;. As technology progresses, we
expect the next generation of mini and micro processors 10 support
24 bit word lengths; there is already a 32 bit microprocessor in
production. Algorithm EXACT_B; will then be efficiently imple-
mentable in more host CPU's.

5. Extensions

5.1. Full Color and Non-black Backgrounds

It has been assumed throughout that the line rendering algo-
rithms have been implemented on a grayscale raster device and
that the lines are drawn against a black background. For most
applications, these assumptions are prohibitively restrictive. It is
simple to generalize the algorithms to draw full color lines against
constant colored and non-uniform backgrounds.

There are two different techniques for drawing lines in full
color. The first is to run three identical algorithms on each of the
rgh primary colors. Three grayscale values are computed for each
pixel and are mixed to obtain color. At first glance, it might seem
that this method would triple the time over drawing a single grays-
cale line. However, the time only doubles since none of the logic
that determines pixel locations along the line need be repeated.
This technique is an obvious candidate for hardware implementa-
tion where parallelism may be exploited.

The second option for drawing full color lines is to map the «
range from [0,1] to [0,2¥] where 2¥ is the maximum resolution of
each rgh channel. Pixel colors are computed by multiplying a in
the new range by each of the line primary colors and normalizing
by 2%, For example, if the line has a red component of /, and @ is
the intersection area of el (i,j), then pixel (i.j) will have a red
component of

al,
B (32)
where the division is implemented as a right shift of k bits.
Unfortunately, this introduces six to nine multiplications per inner
loop step since each pixel color computed will require three multi-

plications.

By rearranging terms of the blending function, it is easy to
see how our algorithms can draw against a constant, non-black
background with little extra work.

of — (1 =M pack = A =1 pack) + 1 pack (33)

Instead of mapping the range of a from [0,1] to [0,/], we now map
to the range [0,J —Ip,k). The only extra work over the original
algorithm is to add the value /4,y to each of the computed pixel
colors. This is takes two or three more operations per inner loop
step for grayscale implementations, or six or nine more operations
per inner loop step for full color implementations. When [—/p.
is negative, the blending function can be rewritten as

93

=0 pack = 1) — 1 pack) (34)

Here we map o to the range [0,/,,.— 1], subtract /44 from com-
puted pixel colors, and change the sign.

When drawing against a non-uniform background, each pixel
must be read from the frame buffer before computing the blend-
ing function. In general, there is no a priori knowledge of the
background color and the blending function must be computed
directly. Here we map « to the range [0,2%] as before, and do the
necessary multiplications.

5.2. Different Filter Functions

We have been careful throughout to distinguish els from pix-
els. By changing the functional correspondence between the two,
different filter functions may be used for anti-aliasing. For exam-
ple, instead of a direct one-to-one correspondence, we can allow the
final value of each pixel (i,j) to be the weighted sum of els
(i)i+ 1) ,j+1), and (i +1,j+1). By halving the size of an
el in comparison to a pixel, endpoints of lines can be specified at
twice the resolution available on the raster device. With an
appropriate selection of el resolution and weights, virtually any
filter can be simulated. Of course, computation time degrades as
the functional mapping from els to pixels becomes more complex.
In [Fiel83] we give some examples and analyze the performance of
the algorithms under different filters.

5.3. Application to Polygons

It is not hard to see how the algorithms can be modified to
anti-alias polygon edges. In [Fiel83] we report an anomaly that
arises with long, thin portions of polygons when the filter response
is not computed with full accuracy. We show how the filter accu-
racy available using EXACT _B; is enough to eliminate the ano-
maly.

6. Analysis

Ordered from top to bottom in Plates 1 through 5 are lines
rendered by algorithms [Bres65], [Gupt81], [Turk82],
APPROXIMATE _B; and EXACT_B; Note that lines produced
by approximating B; are indistinguishable from those produced
with exact values of B;. Dissimilarity between the lines of a par-
ticular slope are caused by different filter functions.

To obtain performance estimates of the algorithms we total
the number of operations performed within the inner loops (those
that are executed £(dx) number of times). Addition, subtraction,
multiplication, and branch instructions are all considered to
require equal execution times. In [Fiel83], we give a more
detailed description and justification of the underlying machine
model used for algorithm timing statistics.

Table 1 contains rendering speeds for drawing grayscale lines
from (0,0) to (dx.dy) on a constant black background. Algorithms
[Gupt81] and [Turk82] each need three or four multiplications per
inner loop step. Since our machine model does not distinguish
between different types of operations, the time figures for
[Gupt81] and [Turk82] are slightly skewed in their favor. We see
that APPROXIMATE _B;is the fastest of all the anti-aliasing algo-
rithms and runs at least two, but less than three times slower than

Graphics Interface '84

the bilevel lines produced by [Bres65]. The large time required
for [Turk82] is owing to the bitwise cordic rotation operations per-
formed within each inner loop that are more suitably implemented
in hardware.

Algorithm T
[Bres65] 8dx +8+dy
[Gupt81] 26dx +26+dy
[Turk82] =192dx +94dy

APPROXIMATE _B, 16dx +8dy

EXACT_B; =27dx+13dy—13

Table 1.
rithms.

Rendering times for various line segment algo-

Modifications of [Gupt81] and [Turk82] to cope with full
color and non-black backgrounds add extra inner loop multiplica-
tion and addition operations. Even when our algorithms require
some inner loop multiplications, APPROXIMATE _B, is always
faster and does not use lookup tables. It is true that the square
area integration filter we use does not always reduce the artifacts
of aliasing as well as the other algorithms. Our algorithms lie
somewhere on a “time-beauty tradeoff curve” between the bilevel
lines produced by [Bres65] and the anti-aliased lines produced by
[Gupt81] and [Turk82].

Because they are well suited to hardware implementation,
our algorithms should see wide use in the future.

- 94

References

[Bres65]

[Fiel83]

[Gup81]

[Knut81]

[Pitt80]

[Turk82]

Graphics Interface '84

BRESENHAM, J.E. Algorithm for computer control
of a digital plotter. IBM Systems J. 4, 1 (1965),
25-30.

FieLp, D. Algorithms for drawing simple
geomelric objects on raster devices. Ph.D. Thesis,
Princeton University Technical Report #314 Jun.
1983.

GUPTA, S. AND SPROULL, R.F. Filtering edges for
gray-scale displays. Computer Gr. 15, 3 (Aug.
1981), 1-5.

KNUTH, D.E. The Art of Computer Programming

Vol. 2: Seminumerical Algorithms. Addison-
Wesley, Reading, Mass., 1981.

PITTEWAY, M.L.V. AND WATKINSON, D.J.
Bresenham’s algorithm with grey scale. Commun.

ACM 23, 11 (Nov. 1980), 625-626.

TURKOWSKI, K. Anti-aliasing through the use of
coordinate transformations. ACM Trans. on
Graphics 1, 3 (Jul. 1982), 215-234.

Plate 1. [Bres63]

Plate 3. [Turk82]

Plate 5. EXACT_B;

Plate 2. [Gupt81]

Plate 4. 4PPROXIMATE _B;

Line angles run from 0 to 90 degrees in 3 degree increments. To
accentuate the differences between various rendering algorithms,
the lines were photographed at 2x hardware magnification. All
lines are 200 pixels long measured before magnification resulting
in lengths of 400 pixels after magnification. Gamma compensa-
tion was performed for the display monitor only and does not
include the photographic and printing processes.

Graphics Interface '84

