=, OYg .=

Some New Ingredients for the
Cookbeok Approach to Anti-Alinsed Text

Avi Naiman

Computer Systems Research Group
Department of Computer Science
University of Toronto
Toronto, Ontario, M5S 1A4

ABSTRACT

Recently, much attention has been d2voted to the creation and display of
high-quality text on raster scanned display devices with gray scale capability.
While the filtering and sampling methods needed to create the necessary
character fonts have been outlined in great detail, the problems of font
storage and proper character positioning have not been adequately dealt with.
This paper presents a modified run-length encoding algorithm which takes
advantage of the high coherence of character forms to achieve increased com-
paction rates. In addition, an inexpensive method for positioning the anti-
aliased characters at subpixel resolution is described. Finally, kerning, a spac-
ing technique which has been incorporated into the system, is discussed, along
with some of the problems associated with trying to automate this process.

RESUME

Recemment, beaucoup d'attention d €té€ porté sur la création et l'affichage
de texte de haute qualité sur systéme d’affichage 4 quadrillage avec échelle
d’'intensité. Les méthodes pour filtrer et échantilloner les jeux de charactéres
sont bien connues mais les problémes de mise en mémoire des charactéres et
du choix adé€quat de leur placement demandent encore de I’é¢tude. Nous
presentons ici une modification de I’algorithme d’encodage par longueur de
série qui utilise la grande cohérence des formes des charactéres pour aug-
menter le taux de compaction. Nous décrivons aussi une méthode peu
couteuse de placement de charactéres anti-aliassés 4 une fraction de pixel prés.
Nous discutons le crénage, une technique pour espacer les charactéres qui a
été incorporée dans le systéme et des problémes associés avec 'automatisation
de ce procédé.

Key Words: anti-aliasing, binary-picture representation, character representa-
tion, computer graphics, data compaction, fonts, high-quality text, kerning,
proportional spacing, raster scan typography, subpixel resolution.

Graphics Interface '84

Introduction

The motivation for the work presented in this
paper comes frcm research into the problems of
developing an interactive display system that allows
users to design high-quality slides of tixt for talks
and presentations. A diverse sct cf primitives is
supplied, providing great flexibility in design styles.
The user can specify the text to be displayed on the
raster scanned display device, where to display it,
and what ink color to use. Additional attributes
include shadowing, underlining, blending,
justification, and spacing constraints. After judging
the aesthetic quality of the displayed text, the user
can repeatedly modify any of the parameters (eg.,
the spacing constraints) and redisplay the text, until
the image is satisfactory.

To reduce the amount of computation neces-
sary during the interactive session, character
representations are precomputed as multiple-bit-
per-element matrices, where a value in the matrix
indicates the weighted area of the corresponding
pixel which is covered by the character. While
recent research has led to the development cf
several algorithms for computing filtered, multiple-
bit-per-pixcl low-resolution character fonts from
single-bit-per-pixel high-resolution master fonts
[CROW78, KAJI81, SCHM80, and WARNESJ], it is
expensive, both in storage and c¢ompute time, to
create many fonts in various styles and sizes.

One should further note that, although the
efficiency and simplicity of matrices is very appezl-
ing, scalings and rotations are not easily performed
on images in pixel form (but see [CROWTS,
CATMS0, and WEIMS0]). Even worse, as the size
of a font changes, the width of the characters
changes disproportionately with the height, serifs
must be thickened or thinned, and ascenders and
descenders must be shortened or lengthened relative
to the x height of the font [BIGES3]. More informa-
tion zbout the character’s shape, available in a
higher-level representation, is needed to scale prop-
erly; this information is lost when characte:s are
represented as pixel arrays.

Alternatively, information about the outline of
the characters can be retained — by approximating
with anything from simple lines to cubic spiines
[FREE61, KIND76, KNUT79, PAVLS83, and
PLAS83] — in order to more easily perform 2-D
and 3-D transformations. However, the complexity

100

of encoding and scan converting (to a raster
representation) characters which are represented as
outlines, has caused implementations to utilize the
simpler matrix representations of the fonts. In this
light, we have concentrated on some of the
difficulties encountered in these systems:

® to reduce storage costs, we have devised a vari-
ation of the run-length encoding algorithm
which takes advantage of the spatial coherence
of characters to minimize storazz of the master
fonts;

® we have devised a rendering algorithm which
automatically calculates new bit-map represen-
tations of characters from existing ones to
achieve sub-pixel positioning resolution;

® as traditional automated spacing techniques are
not sufficient, since they cannot handle the
unbalanced spacing introduced by characters of
varying densities, we have implemented a
method of kerning characters to achieve a more
perceptually uniform spacing. However, since
the aesthetics of spacing are not yet fully
understood [KIND76], we have left ultimate
control of the spacing constraints with the user,
by allowing him to override the automated pro-
Cess.

Basic Recipe

Based on the work reported in [WARNSO0],
character masters of a Helvetica font were created
by digitizing 12-inch high Letraset characters at a
resolution of 256 by 256 and thresholding to obtain
a single-bit-per-pixel representation. Care was
taken that all characters were aligned on a common
baseline during digitization. However, since the
text is proportionally spaced during the rendering
phase, positioning of the characters in the horizon-
tal axis was of little importance. An interactive
paint program was then used to remove noise along
the borders of the characters and more exactly posi-
tion the characters on their baseline (see [SCHMS80
and NEGR80] for more on the problems of obtain-
ing high-quality masters). The compaction tech-
nique to be discussed below was then invoked, and
the master font stored.

To display text, a two-phase process is invoked.
In the first phase, those fonts which will be used are
computed by specifying a master font, the size of
the font to be computed, the type cf weighting
function (filter) and its parameters to apply (see

Graphics Interface '84

[WARNS0]), and the phase of the sampling grid
relative to the master characters to use. Once all of
the necessary fonts are created, the seccnd phase is
invoked for interactive specification of the desired
text and text attributes.

Font Compression

The total storage requirements for the 94 print-
able ASCII characters that we digitized would be
752 K bytes ((94x256x256x1)/8) without any compac-
tion. A first look at compaction techniques
motivated us to applying a run-length encoding
algorithm, whereby two-byte fields would indicate
lengths of runs of pixels of either the foreground
(i.e. the pixels that define the character) or back-
ground. However, since most of the runs were
under 256, we restricted runs to being contained on
rows of the character matrix, so that run-lengths
could be encoded in 1-byte fields. The new compac-
tion algorithm, then, ran a run-length encoding
algorithm on each row of the matrix, so that 256
row structures were created and stored sequentially.

Run-Length Encoding

Traditional run-length encoders store values
which alternately specify the lengths of foreground
runs and background runs, with (a one bit) over-
head of specifying what type of run the first one is.
During decoding, then, a row is constructed by
using the successive values to alternately lay down
foreground and background pixels, stopping when
the last pixel on the row has been specified. If
there are n runs on a row, then it takes n bytes plus
one bit to encode the row.

Alternatively, one can record the starting and
ending locations of just one type of run, preceded
by a count of how many runs of that type there are
on the row. We will assume that, since there are
256 positions on a row, it will take one 8-bit byte to
store the starting location of a run, and another to
store the ending location (although fewer bits may
be sufficient if assumptions can be made about the
characteristics of the runs). Therefore, if there are
m foreground runs on a row, we can encode the row
in 2m+1 bytes. Note that if there are only m-1 back-
ground runs, we could have encoded the row in
2m-1 bytes. However, typically, the first foreground
run does not start at the first position on a row and
the last foreground run does not end at the last
position on a row; so there are usually fewer fore-
ground runs than background runs.

101

Alhough character forms are very coherent, the
presence of noise in the image should not cause the
compaction technique to require more storage than
the original image would have needed if stored on a
pixel-by-pixel basis. Furthermore, if special charac-
ters (arbitrary images) are to be allowed and dealt
with, no assumption of coherence can be made.
Since only 32 bytes are required to store the values
of 256 bits (i.e. the raw data of a row), if there are
more than 16 runs of foreground pixels on a row, it
will take more bytes to encode the data tlian to store
it in raw form. Therefore, only 4 bits are needed to
specify the number of runs on a row, including an
escape value to indicate ihat a row is being stored
unencoded.

Replication Fields

In looking at certain characters, we noted that
there was often a tendency of extreme row-to-row
coherence. For example, the Helvetica character ‘E’
has a very regular shape and could be geometrically
encoded as four rectangles of foreground pixels. Its
simple, ccherent structure causes many successive
rows to be encoded identically. Therefore, a replica-
tion count field can be included prior to a row
structure to indicate how many exactly identical,
successive rows will be encoded by the following
row structure. Since there can be, at most, 256
identical, successive rows, it takes one byte to store
the replication count. In this manner, the ‘E’
described above would only take 17% bytes to
encode, regardless of its height, compared with 2%n
for an n-pixel high ‘E’ compacted without a replica-
tion count field.

We must be careful about how much overhead
is being introduced. For example, the character ‘O’
typically has no two successive rows which are
exactly identical. If we record a replication count
of 1 for each of the rows of the character, we have
increased our overhead quite substantially (possibly
by as much as 256 bytes). The solution is to ircor-
porate a way to turn off inclusion of a replication
count field. Since a replication count of zero is less
than meaningless, we can use that value to indicate
that the replication field will not exist for the
number of rows specified by the following byte.

Graphics Interface '84

- 102

For the letter ‘O’, then, we would have a two-
byte overhead in the encoding of the character: the
first byte is a replication count of zero to turn off
the replication mechanism, and the second byte is a
row count indicating the height of the character.
Note that turning off the replication mechanism for
a single non-replicated row is more expensive than
specifying a replication count of 1 for that row. In
fact, there is no savings in turning off the replica-
tion mechanism unless there are at lezst three suc-
cessive rows which cre not replicated.

Row Order vs. Column COrder

Some other observations that we made con-
cerned the geometry of characters. For example,
the character ‘H’, while quite amenable to the repli-
cation ccunt approach, can be compacted with even
greater efficiency if we change ocur point of view
and, instead of encoding on a row-by-rew basis,
encode on a column-by-column basis. Though, in
this case, the savings is minimal (due to the replica-
tion count scheme having achieved such a high com-
paction of the ‘H’), it is clear from this example that
one chould look at compacting both ways, and then
determine which is cheaper ir storage and include
an additional flag as to whether the encoding is
row-by-row or column-by-cclumn.

Even greater compaction rates can be achieved
if we consider encoding the rare at which runs
change from row to row, and exploit the symmetry
of most clharacters around the x=c, y=c, x=y+c, or
x=c-y axes (where ¢ is some constant). However,
although decoding is often trivial, if the original
character form has no higher-level representation by
which such slopes and symmetries can be found, it
can be quite difficult to glean such information
merely from the bit-matrix representation (but see
{PLAS83]). The intert here is not to find an
extremely efficient way of representing a character
form, but rather to improve on standard encoding
schemes by exploiting the coherence of characters.

Simple run-length encoding reduced the storage
requirements to about 57 K bytes. Simple run-
length encoding using the minimum of the row-
order and column-order compaction passes reduced
the storage requirements to about 39 K bytes.
Run-length encoding employing replication fields
reduced the storage requirements to about 28 K
bytes — over a 96% compaction rate compared with
the unencoded 752 K of data.

Proportional Spacing

The aesthetic quality of the displayed text
depends not only on the colored contours of the
characters, but also on the positioning of the indivi-
dual characters to achieve perceived uniform spac-
ing. Keeping in mind the dictum that, as objects
become too small to resolve spatially, size and inten-
sity become interchangeable [CORN70], we can con-
sider the spatial position of the edge of a character
as integration of luminance over area. This implies
that changing the intensity values along the sides of
a character’s matrix representation can effectively
move the boundaries of the character a fraction of a
pixel [SCHMS80]. This can result in an improvement
of the apparent spacing.

If character matrices can only be positioned on
pixel boundaries of the display device, then the
spacing can be off by as much as one half of a pixel.
For example, if the right-hand column of the previ-
ously displayed character only covers one quarter of
the pixel column in which it is displayed (i.e. it has
intensity values of 25%), then that pixel column will
be interpreted as one quarter of a pixel of charac-
ter, and three-quarters of a pixel of space. If 2 pix-
els of spacing are required and the left-hand column
of the current character being displayed also covers
only one quarter of the pixel column in which it
will be displayed, then a choice must be made
between skipping a whole pixel of space before lay-
ing down the current character — causing a per-
ceived spacing of 2 and a half pixels — or not skip-
ping a pixel — causing a perceived spacing of 1 and
a half pixels. Either way, the spacing is one half of
a pixel off from the 2 pixels that were required.
Worse yet, one pair of characters may have one half
of a pixel too little, while the next pair has one half
of a pixel too much (see figure 1 for an example
where one pixel of spacing was required).

Graphics Interface '84

- 103 -

Figure 1. Unbalanced spacing due to roundoff.

Multiple Representations

One method for improving the perceived spac-
ing is to produce multiple versions of each character
font, differing from each other only by the phase of
the sampling grid relative to the filtered master
character [WARNS0]. To increase the apparent
accuracy of the spacing, the version of the charac-
ters which adheres most closely to the spacing con-
straints is used. In the example above, a search of
the various representations of the current character
being displayed would be made, and the one whose
left column most closely covers three-quarters of
the pixel column would be selected. Using this
technique, to guarantee an accurate subpixel posi-
tioning within 1/n of a pixel, n/2 different represen-
tations of the character font would have to be com-
puted, using n/2 equi-spaced phases of the sampling
grid relative to the filtered masters.

A serious drawback of this technique is that
many copies of each font must be computed and
stored. Though the time it takes to retrieve the
multiple versions and decide which is most useful
may not be great, the time it takes to compute the
many versions, and the storage requirements to
keep them on-line, can be prohibitive.

Average Representation

One possibility for improving the spacing con-
stancy is to compute only a single representation of
the characters, but to guarantee that each
character’s left-hand column covers approximately
half of the pixel column in which it will be

displayed. In this manner, though, in the worst case,
the spacing will still be off by a half of a pixel (e.g.
when the previous character’s right-hand column
completely covers its pixel column), the average case
will have improved to an error of only ore quarter
of a pixel. However, this is, In general, not
sufficient (Figure 2).

Figurc 2. Improved spacing through average
representation.

Subpixel Adjustments

This line of thinking has helped us to devise a
method whereby a single representation of the char-
acters can be computed, and adjusted right or left
at subpixel resolution to reduce the spacing error.
The adjustments correspond to taking a percentage
of each column of the character’s gray scale matrix
representation, subtracting it from that column’s
values, and adding it to either the column to its left
or right if the character is to be moved to the left
or right, respectively. The percentage that needs to
be used is calculated from the amount of space that
is needed to complement the amcunt already
displayed. In our first example from above, we
would like the current character’s left-hond column
to contribute exactly one quarter of a pixel of space.
If the character has been computed to cover one
half of the pixel column it lies on, then it needs to
be moved left one quarter of a pixel (i.e., that is the
percentage used in computing an adjusted version of
the character; see Figure 3).

Graphics Interface '84

Figure 3. Balanced spacing through subpixel ad-
justments.

Care has !o be tzken to employ some heuristics
along the sides of the character being adjusted.
Since, at character-display time there is no longer
enough information to determine how a particular
intensity value was arrived at, onz must, in general,
assume that the intensity value of a particular
matrix entry is evenly distributed over the pixel in
which it is displayed. However, the same need not
be true along the sides of the character. In the left
column, we can assume that the intensity values
imply coverages evenly distributed over the right
half of the pixels they will lie on.

For example, instead of interpreting an inten-
sity value of 25 percent in the left column to mean
that the character covers one quarter of the pixel it
lies on (evenly distributed over the whole pizel),
interpret it to mean that the character covers ore
half of the right side of the pixel (evenly distributed
over the right half of the pixel). We can, in fact,
guarantee this when precomputing the character’s
representation, by choosing the particular phase
which centers the filter function iaatrix over the
left-most column of the character. In this manner,
our heuristic becomes a fact along the left side of
the character.

When adjusting left one quarter of a pixel, we
know that the left column’s values all remain in the
left column after the adjustment, since the adjust-
ment is less than one half pixel. So, whereas non-
side columns will lose some of their values (that
part which is computed to be on the left side of the
pixel, and hence moved to the pixel to its left), we
do not move any percentage of the values in the

104

left-hand column out of that column. We simply
add to them the appropriate percentage of the
values from the column on its right.

In an analogcus fashion, we assume that the
values in thke right-hand column are evenly distri-
buted on the left side of the column. Even though
this can’t be guaranteed (and, in fact, is wrong
when considering a horizontal serif), this is a rea-
sonable heuristic as the right side of the character
will, in general, be closely connected with the rest
of the character. Therefore, we simply subtract
from its value the amount of the adjustment, and
add that to the column to its left. If anything
remains in the right-hand cclumn, then it is
displayed; otherwise, the right-hand column is
removed. Similar action is taken when adjusting the
character to the right.

For example, if the character is moved one
quarter of a pixel to the left, and the value in the
right-hand column is 15%, then we add the 15% to
whatever remains in the column to its left. If the
value in the right-hand column is 35%, then we add
25% to the column to its left, and cisplay the value
of 10% in the right-hand column.

Since the assumption that the intensity values
are uniformly distributed over the whole pixel is not
accurate, this scheme does not remain strictly faith-
ful to the character’s original representation. How-
ever, we have found that, in practice, the characters
do not noticeably degrade, while the spacing
improves ccnsiderably especially when the
amount of space required between characters is
relatively small. This is mainly due to the fact that
the adjustments are, on average, on the order of
one quarter of a pixel in either direction (and
always less than one half of a pixel), while the char-
acter fonts being displayed are typically of display
size (greater than 20 pixels high). At smaller font
sizes (less than 10 pixels), though the spacing
improves, the characters sometimes become severely
distorted and, at times, unrecognizable, since the
percentage of adjustment is large relative to the
absolute width of the charccters. This obviously
affects thin, non-dense characters more severely
than wide, dense ones.

Kerning

Of even more consequence in producing per-
ceived uniform spacing are the gaps and holes intro-
duced into the text when characters of widely vary-
ing densities lie side by side. An example of this

Graphics Interface ‘84

- 105 =

problem occurs when an ‘A’ is followed by a ‘Y’, as
in ‘AYE’. Simplistic, automated spacing algorithms
position the left edge of the ‘Y’ one unit of inter-
character spacing to the right of the right edge of
the ‘A’. However, since the ‘A’ is sparse in the
upper right-hand corner, and the “Y’ is sparse in the
lower, left-hand corner, we perceive too much spzc-
ing between the characters (Figure 4a). The solu-
tion to this problem is to back the ‘Y’ into the ‘A’
until the spacing appears proportional; e.g., ‘AYE’.
This process, referred to as kerning, was once car-
ried out by hand, when characters were mounted on
rectangular pieces of metal of fixed width. The
human typesetter had the opportunity to judge the
perceived spacing betv,een the characters, and phy-
sically cut into the metal blocks to make them fit
better (Figure 4b). With the advent of automated
computerized typesetting, we often have no control
over these aesthetic decisions.

Figure 4a. [BIGE83] Figure 4b.

Width Tables

One of the first methods employed to take care
of the worst of these problems was that of spacing
tables [SCHM80 and BIGES3]. In this approach, a
character’s representation would have two values
associated with it. The first would be a character
width, indicating the width, in pixels, of the
character’s matrix. The second would be a spacing
width, which would indicate how many pixels to
move over from the right side of the character
before laying down the next character. The spacing
widths could be negative, allowing the next charac-
ter to back into the current one.

For example, the ‘T’ might have a negative
spacing width so that the next character would not
seem so far removed from it. This method is seri-
ously deficient in that it does not take into con-
sideration the next character to be displayed, and
how the shape of the left side of the next character
interacts with the shape of the right side of the
current character. If, for instance, the character

following the ‘T’ is an ‘I’, then no kerning should
take place, lest the two characters touch each other;
eg., “II'.

Table Kerning

The next development involved the creation of
kerning tables for character fonts. These tables
specify, for character pairs, how much the second
character should be kerned into the first. The main
drawback of this technique is the storage required
to store all of the kerning values. An exhaustive
table would have n? entries where n is the number
of characters in the font. If a font includes all of
the upper and lower case characters, the numerals,
punctuation marks, and some special characters, n
could easily reach 100. The exhaustive table would
then have 10,000 entries per font! (Modern compu-
terized typesetting houses typically need at least 100
font faces on-line.)

Fortunately, the tables need not be exhaustive.
Many characters, completely vertical on both sides,
cannot be kerned at all, and, therefore, need never
appear in the kerning tables (e.g. the ‘H’). Other
characters have this property on only one side (e.g.
the ‘P’). Furthermore, many characters, though
likely candidates for kerning, cannot be kerned
when juxtaposed with certain other characters on
one side or the other (e.g. the ‘T’ with the T’).
Quite often, the tables can be reduced further by
grouping together, under the same entries, several
characters which behave similarly on one or both
sides. For example, the ‘P’ and ‘F’, and the ‘W’ and
‘V’. However, this is vzry dependent on the font
style.

Another drawback of this technique is that it is
based on an overly simplistic assumption: that kern-
ing is dependent only on the pair of juxtaposed
characters. Figure 5 demonstrates how the ‘a’ has to
be kerned to the ‘T’ by different amounts depending
on the characters which follow the ‘a’. In general,
the amount which two characters need to be kerned
seems to depend on, at least, the rest of the charac-
ters in the word, though the spacing between words
and lines, and within other words on the line and
page, may also influence the amount of space
needed between two characters [KIND76].

Recently, many systems have introduced the
capability of specifying kerning triplets; that is,
values by which the current character should be
kerned to the previous character, based on the pre-
vious, current, and following characters. Although

Graphics Interface '84

= 106 =

the exhaustive kerning tables based on character tri-
plets is n3, the actual 3-dimensional matrix is very
sparse. However, determining which entries are
non-zero, and determining their values, is no trivial
task.

Tail
Tart
Tame
Taboo

Figure 5. The characters following 'Ta’ influence
how much the ‘a’ has to be kerned to the
%

Sector Kerning

A more sophisticated approach called sector
kerning has appeared in recent years. This method
stores a crude representation of the character’s
shape on the left and right side and uses that infor-
mation to calculate, on the fly, how much to kern
each pair of characters.

Some number of horizontal sectors (not neces-
sarily of equal height) are specified for a particular
font face (Figure 6a). Then, for each character in
the font, one specifies the distance within each sec-
tor that another character is allowed to penetrate
from both the ieft and right sides of the character
(Figure 6b).

Before a character is displayed, it is determined
which sector allows for a maximum penctration of
the current character with the previous character.
This is done by taking the minimum of the pairwise
sums of the penetration values from the left side of
the current character and the right side of the pre-
vious character. The resulting value is used as the
amount by which the the pair of characters is
kerned.

Figure 6b. Penetration values.

Since the position and height of the sectors can
be established by the font designers, more weight
can be given to those areas which are more critical
in spacing techniques. It has been suggested that,
since the eye follows just along the x height when
reading lower case text, the ascenders contribute
very little, if any, to the spacing, and the descenders
even less (Figure 7 — [KIND76]). Therefore, one
may be able to place all of the kerning sectors
within the x height of the characters, and ignore the
ascenders and descenders as far as spacing is con-
cerned.

Graphics Interface '84

ahoye
nove

Figure 7. Ascenders and descenders do not affect
the spacing [KIND76].

The situation becomes even more complex
when reading upper case text (where the eye tracks
along the top of the capitals) or mixed upper case
and lower case. For example, the ‘T’ in ‘Toe’ needs
a closer fit to the ‘o’ than it needs to the ‘h’ in “The’
(Figure 8). This may indicate that, in the first case,
the eye is interpreting the ‘T’ as a lower case letter
with an ascender, and therefore the spacing needs
to be uniform at the x height, whereas, in the
second case, the eye is interpreting the ‘h’ as a capi-
tal, and therefore the spacing needs to be uniform
at the cap height [KIND76]. This suggests that
alternate sets of penetration values may be useful
depending on the nature of the text being read.

The Moe

Figure 8. Case sensitivity is necessary to properly
space text [KIND76].

The most immediate advantage of this tech-
nique is that the storage requirements are relatively
low while the information content is high. If n sec-
tors are used, and it takes one byte to store a pene-
tration value, then 2n bytes are needed to store the
kerning information for each character. For a 100-
character font, to store 5 sectors per character
requires only 1,000 bytes. Not only is there a
corresponding reduction in the amount of human
interaction needed to specify the kerning informa-

tion, the process of specifying the penetration
values lends itself to automation. Arnother advan-
tage is that, although this technique does not pro-
vide an immediate solution to the problems of the
influence of the surrounding text on the spacing of
character pairs, it allows greater flexibility in experi-
menting with different spacing 2lgorithms to achieve
a more uniform perceived spacing of the text.

Summary

We have concentrated on three problem areas
inherent in producing high-quality text on raster
scanned display devices from pixel-oriented
representations of the character forms:

1) Taking advantage of the high spatial coherence
of characters, we managed to increase the com-
paction rate of the standard run-length encod-
ing algorithm by encoding each row separately
as a structure of runs of the foreground pixels,
and including a replication count field to avoid
repeating identical, adjacent rows. Care was
taken to ensure that the overhead incurred by
including the replication count field never
increased the size of the compaction in cases
where there were no identical, adjacent rows.,

In order to improve the spacing of characters at
subpixel resoiution, we computed an average
representation of the characters and adjusted
them by shifting small percentages of the inten-
sity values in each column to the left or right.
By applying heuristics along the sides of the
characters, we were able to avoid computing
multiple representations of the characters and
still achieve a highly satisfactory improvement
in the spacing. However, the technique broke
down when very small fonts were used, since
the amount of adjustment was large relative to
the width of the characters.

We explored various methods for kerning two
characters which would otherwise leave gaps
and holes in the spacing. We found that sector
kerning provides excellent results in the general
case, with little storage overhead and human
interaction. However, more sophisticated tech-
niques are needed to take into consideration all
of the characters in a word when determining
how much a pair of characters should be
kerned.

2)

3)

Graphics Interface '84

References

BIGES3

CATM79

CATMS0

CORNT70

CROW78

FREEG61

KAJI81

KAWAS0

KIND76

KIND79

- 108 -

Bigelow, C., and D. Day, “Digital Typog-
raphy,” Scientific American, v. 249, 2, pp.
106-119.

Catmull, E., “A Tutorial on Compensa-
tion Tables,” SIGGRAPXH 1979 Proceed-
ings, published as Computer Graphics,
13(2), August 1979, pp. 1-7.

Catmull, E., and A. R. Smith, “3-D
Transformations of Images in Scanline
Order,” SIGGRAPH 1980 Proceedings,
nublished as Computer Graphics, 14(3),
July 1980, pp. 279-285.

Cornsweet, T. N., Visual Perception,
Academic Press, New York, 1970.

Crow, F. C., “The Use of Grayscale for
Improved Raster Display of Vectors and
Characters,” SIGGRAPH 1978 Proceed-
ings, published as Computer Graphics,
12(3), August, 1978, pp. 1-6.

Freeman, H., “On the Encoding of Arbi-
trary Geometric Configurations,” IRE
Transactions on Electronic Computers,
EC-10, 2, June 1961, pp. 260-268.

Kajiya, J. and M. Ullner, “Filtering High
Quality Text for Display on Raster Scan
Devices,” SIGGRAPH 1981 Proceedings,
published as Computer Graphics, 15(3),
Aupgust, 1981, pp. 7-15.

Kawaguchi, E. and T. Endo, “On a
Method of Binary-Picture Representation
and its Application to Data Compres-
sion,” IEEE Transactions on Pattern
Analysis and Machine Intelligence 5,
1(January 1980), pp. 27-35.

Kindersley, D., Optical Letter Spacing for
New Printing Systems, Sandstone Press,
New York, 1976.

Kindersley, D., and N. Wiseman, “Com-

puter Aided Letter Design,” Printing
World, October 31, 1979, pp. 12-17.

Graphics Interface 84

KNUT79

NEGRS80

PAVLS3

PLASS83

PRIN79

SCHMBS80

SCHMS3

SEYBG6Y

SEYB79

WARNSO0

WEIMS0

Knuth, D. E., TzX and Metafont: New
Directions in Typesetting, American
Mathematical Societv and Digital Press,
197¢.

Megroponte, N., “Soft Fonts,” Proceed-
ings, Society for Information Display,
1980.

Pavlidis, T., “Curve Fitting with Conic
Splines,” ACM Transactions on Graph-
ics, 2(1), January 1583, pp. 1-31.

Plass, M., and M. Stone, “Curve-Fitting
with Piecewise Parametric Cubics,” SIG-
GRAPH 1983 Proceedings, published as
Computer Graphics, 17(3), July 1983, pp.
229-239.

Pringle, A., P. Robinson, and N. Wise-
man, “Aspects of Quality in the Design
and Production of Text,” SIGGRAPH
1979 Proceedings, published as Computer
Graphics, 13(2), August 1979, pp. 63-70.
Schmandt, C., “Soft Typography,” Infor-
mation Processing 1980, Proceedings of
IFIPS, pp. 1027-1032.

Schmandt, C., “Fuzzy Fonts,” Proceed-
ings of the National Computer Graphics
Association, 1983.

Seybold, J. W., The Market for Computer-
ized Composition, Printing Industries of
America, Computer Section, Washing-
ton, D.C., 1989.

Seybold, J. W., Fundameatals of Modern
Photo-Composition, Seybold Publications,
Inc., Media, Pennsylvania, 1979.

Warnock, J. E., “The Display of Charac-
ters Using Gray Level Sample Arrays,”
SIGGRAPH 1980 Proceedings, published
as Computer Graphics, 14(3), July, 1980,
pp. 302-307.

Weiman, C. F. R., “Continuous Anti-
Aliased Rotation and Zoom of Raster
Images,” SIGGRAPH 1980 Proceedings,
published as Computer Graphics, 14(3),
July 1980, pp. 286-293.

