ALGORITHMS FOR EDUSIH LIOVEMENT IN PAINT SYSTEMS

Kenneth P. Fishkin

Brian A. Barsky

Berkeley Computer Graphics Laboratory
Computer Science Divisicn
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California 94720

US.A.

ABSTRACT

Paint systems are an increasingly popular application of modern frame buffer
technology. In such a program, an artist creates a brush that is moved across a
frame buffer, providing a simplified simulation of a physical brush moving across
an actual canvas. Movement of the brush often requires modification of a large
number of pixels in a small amount of time. Existing algorithms for brush move-
ment are discussed, and two new algorithms are presented that reduce the
amount of ifo needed to move a brush, but at the expense of increased computa-

tional complexity.

KEYWORDS: Paint systems, Algorithms.

1. Introduction

The fundamental feature of an interactive “paint” system
is the display of the brush on the frame buffer. Such a program
typically works by detecting lines of motion from the user, often
via a tablet and stylus. The brush then follows this line, "paint-
ing” over the existing pixels in the frame buffer.

The pixel i/o caused by this brush motion is often the cru-
cial bottleneck of the paint program.®7.% For example, consider
a request for 100 points/second, with a brush of radius 10 pixels;
even in this mild case, the program must "paint” over nearly 1
pixel per 30 nanoseconds. This computation can easily "choke”
the paint program with pixel i/o requests, especially in the case
of non-opague brushes, where each pixel is read and written.

This problem can be approached in hardware by improving
the speed of pixel ifo and host communication. This paper
addresses the problem from a software standpoint, attempting to
minimize the number of pixels altered, with no loss in image
quality. Of course, the time taken to alter each pixel should also

This work was supported in part by the Semiconductor Rescarch Corpora-
tion under grant number 82-11-008 and the National Science Foundation
under grant number EC5-8204381.

be minimized.

First, the formalism and notation for describing the brush
and its motion is introduced. Next, three different algorithms
are presented to address .he problem. The first algorithm, a
benchmark, performs no special action at all. The second algo-
rithm, created and implemented as part of a paint program in
1982 at the University of Wisconsin by Steve Biedermann,? is
presented for the first time. The third algorithm has been
created by the authors.

Graphics Interface '84

- 10

1.1. Terminology

Many different daia structures and formats for describing a
brush and its effects exisi; see Smith? for an excellent tutorial.
In this presentation, one of the most common®57 and
mathematically tractable structures is used:

A brush is described by a two-dimensional array, B, where
B[i][j] determines the opacity of the brush in the :'th row and
j'th column, 0<i<m,0<j<n. The opacity values range
between 0 and 1; 0 indicates perfect transparency and 1 indicates
perfect opacity. This array is a function in three-space, mapping
from the row-column plane into a height in the opacity dimen-
sion. The surface formed by this mapping will be termed the
opacity surface of the brush.

To demonstrate the notation, consider the following algo-
rithm (adapted from Smith”) to put the brush down with upper
left corner at point (x,y):

for row ;= 0to m-1do

for col := 0 to n-1do
0Old := pixel(y + row, x + column);
{ for a monitor with (0,0) in upper left }
new := brush_colour*B[row|[column)]
+ Old*(1 - B[row|[column]);
od;

od;

The brush shape is not constrained to be an m by n rec-
tangle; this rectangular shape simply contains the bounding box
of the brush shape. Two different brush shapes are discussed;
one bounded by an m by n rectangle, and one bounded by a cir-
cle of radius r pixels.

We are interested in the motion of these brushes across the
frame buffer, the shape "stamped” into the image by the motion
of the brush across some line. For example, the shapes left by
the circular and rectangular brushes are shown in Figure 1.1.

Figure 1.1.
Moving circular and rectangular brushes.

The brush is moved between the points (0,0) and (dx,dy),

assuming dx > dy. Any line can easily be transfc-med into this
form by trivial scaling and reflections. The len~". of the line,
Vidzi+ dy*, is referred to as d. The angle of the " : is denoted
as a. Since dz>dy, 0<a<45 degrees.

1.2, Evaluation criteria
Three different criteria will be used to evaluzte the brush

algorithms:

. Pizel ifo. The pizel ores is the number of pixels whose
colour is changed by the motion of the brush. When the
colour of a pixel is changed, we say that it has been visited.
The total number of visits within the pixel area is the sum
of the number of visits for each pixel in the pixel area. For
example, if one pixel is written eight times, then the pixel
area is one, but there have been a total of eight visits. For
a given pixel area, the total number of visits should be
minimized.

° Compulalional expense.

. Image degradation. In order to achieve gains in the first
two criteria, algorithm may make approximations to the
intensities of pixels, or even cover fewer pixels than are in
the true area.

It is difficult to rank the relative importance of these cri-
teria. The third, image degradation, may be the most important
visually, but the question of "acceptable” degradation is a sub-
jective one.

The total execution time of the algorithm is the product of
the number of visits with the work done at each visit, but the
two terms are not necessarily equal in importance. Pixel ifo is
often the limiting bottleneck; greater computational cost may be
acceptable in exchange for relatively minor decreases in the
number of pixel visits. Furthermore, the time required for a
pixel ifo operation varies greatly from system to system. The
slower the pixel i/o is, compared to the computational speed, the
more attractive any decrease becomes.

2. The Nalve algorithm

For benchmark purposes, the first algorithm we present
performs absolutely no special processing. This algorithm will be
referred to as the Naive algorithm.

The Naive algorithm uses a Bresenham?® -like algorithm to
find the pixels on the line of motion, the line from (0,0) to
(dx,dy). The brush is then put down centred at each such pixel,
as shown in Figure 2.1.

Algorithm symmetric_Naive:
for each pixel on the line do

put the brush down, centred at that pixel
od

The brush is put down dz+ 1 times if the Bresenham algo-
rithm is used, and each time 7r® pixels are altered for a circular
brush of radius r. Thus, the total number of visits is

nr¥(dz+ 1)

Since dz > dy, hence d </2dz, and therefore the number

Graphics Interface ‘84

______ 1 '
121
1144@21
..................... 1,235 K543 1
1:2i4i5:6%6%:5:4i1
1:3i5 5% % 5i4i2:1
1iof®Bisi4i2i1
1i2i3i3i2i1i i
1i1i1;

Figure 2.1.
Moving the brush with the Naive algorithm; the numbers
indicate the pizel visits in each pizel.

of visits is O(dr?), that is, quadratic in r and linear in d.

The path of brush motion is determined by use of a
Bresenham-like algorithm which is O(d) in computational
expense.

The Naive algorithm has two advantages: it works on all
brushes, and uses an existing, very fast algorithm to determine
which pixels to visit. Its singular disadvantage lies in the large
number of wasteful pixel visits performed; the number of visits
increases guadrafically with r, while the pixel area (when
2dr >>7r?) increases linearly with r.

The Naive algorithm is trivially extended for asymmetric
brushes. Since the algorithm makes no reference to the shape of
the brush with which it draws, the change is a vacuous one:

Algorithm asymmetric_Naive:
for each pixel on the line do
put the brush down (mn pixels in size),
centred at that pixel
od

Using the performance evaluation for the Bresenham algo-
rithm found in Field,* the Naive algorithm (as written in Foley
% Van Dam®) is evaluated in Table 2.1, for a line from (0,0) to
{dx,dy); this shows the visits to be O(mnd), and the computa-
.ional expense to be O(d).

3. Bledermann'’s algorithm

The first work in minimizing pixel ifo known fo the
authors was done by Steve Biedermann at the University of
Wisconsin in 1982.2 His algorithm makes two strong assumptions
about the brush being drawn, and with the power gained by
those assumptions makes striking reductions in pixel ifo. The
assumptions are:

11

Table 2.1: cost of the Naive Algorithm
for the asymmetric [symmetric] case

for a brush with m rows by n columns [radius 1]
Operation Times executed

== 5+ dx
increment dx + dy
shift left 2

“+ dx

- 2

visits mo(dx + 1) [7r® (dx + 1)]

1) The brush must be opaque. The algorithm was imple-
mented on a colour-mapped paint system, whose brushes
generally possess this constraint? !.? since interpolation and
creation of new colour is very difficult for a colour-mapped
picture.

2) The set of opaque pixels in the brush must form a solid,
convex shape. The rationale for this assumption is
explained below.

3.1. The symmetric case

In the easier case of a radially symmetric brush, the Bieder-
mann algorithm slices” the centre row (or column) of the brush,
and paints with that one pixel-wide brush. This "centre slice™ is,
essentially, a bit vector describing the opacity of the path of the
brush. When the brush is convex, solid, and symmetric, this
slice describes the motion of the brush as a whole.

Algorithm symmetric Biedermann_Pul

Put B at (0,0)

Put B at (dx,dy)

Let Center be the brush formed by the centre slice of B

Perform the Naive Algorithm between (0,0) and (dx,dy)

with Center as B

This algorithm is easy to implement. The existing Naive
algorithm is still called, with a different brush, as shown in Fig-
ure 3.1.

1ol (7

a|n|s|n]e
-
.

i

I [| |

s eioje o e e|eeojeaseaioejese
-o]-.oooo-otool-to-o---
0!'................'..0;
BOOO00000000000onan ados

N0 0000R00000A0O00N UL

| |
Figure 3.1.

An ezample of the symmetric Biedermann algorithm.

The need for the convexity requirement is demonstrated by

Graphics Interface '84

the brush in Figure 3.2. While the two slices quite properly
mimic the behaviour of the brush over a diztance for a non-
convex brush, if the brush is only moved a short distance, an
incorrect path is laid (Figure 3.2).

slslslsis|s| s
s|ls|slsis|nls
.

L]
S|l |slnis s

Figure 3.2.
A situation where Biedermann fails.

3.2. Visits by the symmetrlc Bledermann algorithm

The symmetric Biedermann algorithm makes an order of
magnitude improvement over the Naive algorithm in pixel visits.
The brush is laid down the same number of times (ignoring the
endpoints), yet the brush size is now proportional to the radius,
rather than the ares of the brush. Since the endpoints are (for
ease of implementation) used as the endpoints for the Center
brush, slight overlap occurs, 27r% + 2dz r pixels being visited.
While the number of visits asymptotically approaches the
number performed by the Naive algorithm as dz approaches 0,
when dz>nr it becomes O(dr).

3.3. Image degradation of the Bledermann algorithm

The least desirable feature of the Biedermann algorithm is
the slight but perceptible image degradation produced. The cen-
tre slice that is used to connect the two endpoints has, by con-
struction, length equal to the diameter of the circular brush.
Due to the tilt of the line of motion, the vertical cross-section of
the brush path is actually slighter greater, as shown in Figure
3.3.

The percentage of degradation can be computed by finding
the value of the variable z in Figure 3.3. Simple trigonometry
shows that z = rseca. The centre slice has a length of 2r, as
opposed to the correct length of 2z = 2rseca, causing image

degradation.

Figure 3.3.
Image degradation caused by Biedermann brushing.

The centre slice cannot be extended in length up to the
correct length of 2rseca for two reasons. First, the correct
length is always non-integral (unless @ = 0), and the Naive algo-
rithm (and brush algorithms in general) are defined only for
brushes of integer dimension. Second, the stub must be com-
puted for each «, and therefore on every line drawn.

Ignoring the endpoints, degradation is independent of the
size of the brush. Degradation is a function solely of the tilt of
the line, which varies from 0 to 45 degrees. The percentage of

degradation at angle a is
2r

2rseca
In the best case, a horizontal line, cosa=1, and no degra-
dation is observed. In the worst case, a line at a 45 degree angle,
cosa = 1 / V2, the degradation in the centre of the drawn line is
.2929, over 29 percent. Assuming uniform distribution of a, the
average degradation can be easily computed as

= 1 - cosa

4
ij(l-i:cus.:::] da = 09968
ﬂ.t:|n=|12‘

In conclusion, the symmetric Biedermann method causes
slight but perceptible image degradation. This degradation
ranges from 0% to 29% across the centre of the brush line, and
averages 10%.

3.4. The Biedermann algorithm for asymmetric brushes

For asymmetric brushes, two "slice arrays” are used instead
of one. The first, the horizontal slice, represents the "trail” left
by the brush when it moves horizontally. Each of the m entries
represents the Boolean or of the opacity entries in that row.
Similarly, the vertical slice represents the “trail” left by the
brush when it moves vertically, each of the n entries represent-
ing the Boolean or of the opacity entries in that column.

The Bresenham line-drawing algorithm (used to determine
the centre of the brush as it moves) makes a decision at every
pixel; it either moves horizontally, or vertically. When the algo-
rithm decides to move horizontally, the horizontal slice is put
down. When the algorithm decides to move vertically, the verti-
cal slice is put down (see Figure 3.4). The algerithm therefore
makes 2772 + mdz + ndy visits.

In conclusion, the Biedermann algorithms, both asymmetric
and symmetric, are not perfect. Both contain cases where the
brush shape displayed is incorrect. Both also make assumptions

Graphics Interface '84

v

vhv

|I\’

Figure 3.4.
An example of the asymmetric Biedermann clgorithm.

about the convexity of the brush shape, and are only defined for
opaque brushes. However, both reduce the pixel visits by an
order of magnitude (compared to the Naive algorithm), with
negligible increase in computational effort.

4. The Sweep algorithm

This section presents a new algorithm to render brush
motion termed the Sweep algorithm. This algorithm maintains
the order of magnitude reduction in pixel visits over the Naive
algorithm, removes the degradation of the Biedermann algo-
rithm, and makes no assumptions about the opacity of the brush.
However, the algorithm requires much more computation than
either the Naive or Biedermann algorithms.

As in the preceding sections, we now discuss two cases of
increasing complexity. In the first case, exactly one assumption
is made about the shape of the brush:

Assumption: the opacity surface formed by the brush
is radially symmetric.

Section (4.4) discusses implementation of the algorithm
without this assumption.

The algorithm is based on the creation of two arrays,
termed SweepLeft and SweepRight. For a brush of size m by n,
these arrays, both m by n in size, store the "rolling opacity” of
the brush as it moves across the frame buffer. The j'th column
of SweepLeft represents the cumulative effect of being visited by

13

columns j, then j-1, ... then 0 of the brush B, as it moves from
left to right. Similarly, the j'th column of SweepRight represents
the cumulative effect of being visited by columns n-1, n - 2 ...
then j of B.

The arrays are defined formally and recursively as follows:

SweepLeft[j][0] := B[j][0];
SweepLeft|i][j] := 1 - (1 - SweepLeft[i][j-1])*(1 - Bli][i]);

SweepRight[j|[n-1] := B[j][n-1];
SweepRight[i][j] := 1- (1 - SweepRight[i][j+ 1])
* (1 - Bi]i])

The Sweep arrays "sweep over” the brush perpendicular to
the direction of motion (see Figure 4.1). Due to the assumption
of radial symmetry, a horizontal direction can always be used for
the present case.

Original

Brush |

rotated perpendicular to
direction of motion

left sweep right sweep
1].1].1 (G s R O
2 | .36 .42 | 42 42| .42] 28] a
1|.37|.69].75|.77 77| 75| 64].28] 2
6 | .76 .81 .81 81]81].52)] .2
2 28 | .28 | .28 o8l 28] a
Figure 4.1.

An ezample of the two Sweep arrays.

For a radially symmetric brush, SweepLeftli][j] equals
SweepRight|n-1-i][j], by construction. The two arrays will still
be maintained for clarity, and to ease the transition to the asym-
metric case; the m by n notation is also retained for both cases
to describe the bounding box of the brush shape. In the present,
symmetric case, this bounding box is also assumed to bound a
circular brush of r pixels in radius, m = n = 2r.

For a radially symmetric brush, the sweep arrays are

Graphics Interface '84

independent of the angle of the line, and therefore cap be com-
puted exactly once when the brush is instantiated.

4.1. The rendering

The Sweep algorithm works on a different, more expensive
rendering basis than the previous two algorithms. Both the
Naive and Biedermann algorithms used a Bresenham-like algo-
rithm to compute the pixels hit by the centre of the brush. The
brush was laid down centred at each such pixel, approzimating
the actual geometric path. The actual geometric path is slightly
different; each row of the brush is being moved from the start of
the line to the end of the line, where each row is one pixel away
from the other perpendicular to the direction of motion. The
Sweep algorithm uses this approach for the rendering. A simple
preliminary version of the algorithm can be written as

Algorithm Sweep_First_Try
for each row in the brush do
move from the lower left to the upper right, visiting
pixels
od
This pseudo-code introduces three questions: Where does
each row start and end? Which pixels are visited during each
row traversal? How is the opacity of a visited pixel determined?

These questions are all answered by considering the path
traversed by each row as a rectangle of one pixel width, oriented
at a given angle. Rendering the rectangle is simply a special
case of the well-known polygon scan conversion process (Figure
4.2).

Figure 4.2,
Brush drawing by parallel rectangles.

The pixel opacity is determined by reference to the dis-
tance traversed along the path, a quantity generally known to
polygon rendering algorithms. The two Sweep arrays are
indexed by the distance the brush has been moved. For exam-
ple, at the beginning, the columns from the SweepLeft array will
be referenced, and at the end, those from the SweepRight. In
the middle, it is irrelevant whether the last row of the SweepLeft
array or the first row of the SweepRight array is referenced.

Since each rectangle is one pixel in width perpendicular to
the line of motion, its vertical width will be (in general) non-
integer, as will the starting and ending coordinates. For this rea-
son, the path cannot be determined by a Bresenham-like algo-
rithm.

14 -

right
sweep
ooty Tkt e =t S S-S TN (R W SR !'_'T_'T_C.g’l?#..’ e e R
bdedod b L b b U L
bl L L L Lot
L
|
[
l.d

5]

brush outline

sweep rows
sweep columns

Figure 4.3.
Adding Sweep references to Figure 4.2.

4.2. Implementation

The rendering algorithm can be implemented in any
number of ways. The pseudo-code for a very simple-minded
implementation, designed to draw each row independently, is
given at the end of this paper. This implementation incurs a
significant speed disadvantage, making no use of rectangle coher-
ence, but was chosen for readability and simple parallel imple-
mentation.

4.3. Properties of the symmetric Sweep algorithm

In theory, the Sweep algorithm visits every pixel needed
exactly once. In practice, slight waste is incurred; the bounding
box of the circle is visited for ease of implementation. Therefore,
the number of pixel visits is

4r® + 2dr

Again ignoring endpoints (the 4r* term), the number of
visits is O(dr). Due to the rendering of 2r rectangles, the com-
putational expense is now O(dr). This demonstrates the key tra-
deoff between the Naive and the Sweep algorithm; an order of
magnitude reduction in visits for an order of magnitude increase
in computation. The relative characteristics are summarized in
Table 4.1.

Table 4.1: A summary of the algorithms' characlerialics.
Algorithm Total Visita | Computation | Degradation?
Naive 0(dr?) 0o(d) No
Biedermann O(dr) 0l(d) Yes
Sweep 0(dr) 0(dr) No

4.4. The Sweep algorithm for asymmetric brushes

The Sweep algorithm presented to this point is only defined
for radially symmetric brushes. While this is a significant
assumption, it has been the experience of the authors and oth-
ers? 9811 that this assumption generally holds. Extending the
algorithm for the asymmetric case is straightforward, but

Graphics Interface '84

significant image degradation results. Note that the symmetric
algorithmms are simply special cases of the asymmetric algo-
rithms, for the case when m = n = 2r.

4.4.1. Rendering

Rendering is exactly the same for asymmetric brushes, once
the Sweep arrays have been created. The implementation given
in section 4 retained the m by n notation, and this notation can
now be trivially applied to this case.

4.4.2. Computatlon of the Sweep arrays

Computation of the Sweep arrays for asymmetric brushes is
difficult. The Sweeps are constructed by "sweeping” over the
brush in a direction perpendicular to the line of motion. In the
symmetric case, the arrays could be computed assuming the line
was drawn horizontally; this allowed direct integer reference to
the coordinates of the brush. In the asymmetric case, this
assumption can no longer be made. The "sweep” now hits non-
integer coordinates, making the computation of correct Sweep
values very difficult (see Figure 4.4). This problem can be par-
tially solved by rotating the brush and performing horizontal
sweeping on it, as shown in Figure 4.5.

’_J ’/’o ’;
f— i -
“/ ,"o ’r
- -
o o o’_b’ -
-1 lel -|® G
- -
— 1 -
= o:—°° et
— = i ’/’
P g E¥ny
/” ,”
P
Figure 4.4.

Sweeping an asymmelric brush.

This solution has two disadvantages. First, the Sweep
arrays must be recomputed each time a line is drawn. This
expense alone could make the algorithm impractical. Second,
the rotation procedure can introduce significant discretization

errors for all but very special cases (rotations by multiples of 90
degrees).

5. Summary

Three algorithms have been presented for simulating the
motion of a brush across a frame buffer. The first algorithm, the
Naive algorithm, worked for all brushes, and performed 0(dr?
(symmetric) and O(dmn) (asymmetric) pixel visits, with o(d)
computational expense.

The second algorithm, the Biedermann algorithm, assumed
an opaque, solid, convex brush. Within those limitations, it

reduced the pixel visits to O(dr) (symmetric) and O(d(m+ n))
(asymmetric), and maintained the O(d) computational expense,

o ~s et

i e o i

_-—_o ° _____
9 o
[+]

i o =
Figure 4.5.

Strobing a rotated copy; note the discretization problem.

However, some image degradation was incurred.

The third algorithm, the Sweep algorithm, made no
assumptions about the shape of the brush, although the algo-
rithm suffered severely in computational requirements and image
quality if the opacity surface was not radially symmetric. The
reduced number of pixel visits made by the Biedermann algo-
rithm (O(dr) (symmetric) and O(m(d+ n)) (asymmetric)) was
maintained, while the computational expense increased to O(dr)
(symmetric) and O(dm) (asymmetric).

For each algorithm, pixel visit numbers are given in Table
5.1 for nine example cases. These cases represent the gamut of

brush movements: a small, medium, and large brush is moved
across a small, medium, and large distance.

Table 5.1: Sample total visits for the three algorithms
Algorithm Naive Biedermann Sweep
r dz dy (dz+ 1)7r® 2nr%+ 2dzr 4r®4 2dr
3 2 1 85 69 49
12 3 368 129 110
300 200 8,511 1,857 2,199
8 2 1 603 434 292
12 3 2614 594 314
300 200 60,520 5,202 6,025
15 2 1 2,121 1,474 967
12 3 9,189 1,774 1,271
300 200 212,765 10,414 11,717
Table 5.1.

Several results are indicated by Table 5.1. The Naive algo-
rithm is clearly and markedly inferior to the Biedermann algo-
rithm when the assumptions of section 3 hold. The Sweep algo-
rithm, while it makes roughly 2r(d — dz) more visits than the
Biedermann, is still far better than the Naive algorithm.

As mentioned at the beginning of the paper, the number of
pixel visits is not the sole criterion; the relative importance of
visits, computational expense, and power of the algorithm is a
subjective factor and makes a clear choice impossible.

Graphics Interface '84

6. Other algorithms

Two papers dealing with brush movement have been
recently presented.

Tanner, Cowan, and Wein® have developed a brush-
drawing algorithm termed swath brushing. This algorithm,
developed independently of the Sweep algorithm mentioned
above, contains the same basic principle: the brush is painted by
the construction of a number of vectors parallel to the line. The
swath algorithm implementation is incomplete,!? making a more
detailed comparison impossible at this time.

Whitted!! has recently developed a related application of
brush movement, a method for using brushes to draw multi-
coloured anti-aliased lines. This method is tangential to the
problem of brush sweeping, and so will only be referred to here
in terms of the relevance to that problem:

1) As in the Sweep algorithm, endpoints are considered as a
special case.

2) The problem of brush symmetry is also discussed briefly.
The conclusion is reached that symmetric brushes are both
common in practice and more tractable in computation.

3) The Naive algorithm is used to draw the line. The problem
of re-drawing pixels is mentioned, with the conclusion that
"for a software implementation this is wasteful, but it lends
itself to fast execution in simple hardware”.

Acknowledgements

The authors wish to thank Steve Biedermann for allowing
them to present and evaluate his algorithms, and for his com-
ments regarding the structure of the paper.

References

Aurora Systems, The Aurora Paint System. 1981.

2. Steve Biedermann, The Superpaint Paint Program, Univer-
sity of Wisconsin-Madison Graphics and Image Processing
Laboratory, Madison, Wisconsin (1982).

3. J. E. Bresenham, ""Algorithm for Computer Control of a
Digital Plotter," IBM Systeme Journal, Vol. 4, No. 1, 1965,
pp. 25-30.

4. Daniel E. Field, Algorithms for Drawing Simple Geometric
Objects on Raster Devices, Ph.D. Thesis, Princeton Univer-
sity, Princeton, New Jersey (June, 1983).

5. Ken Fishkin, Blot Users Manual, University of California,
Berkeley, California (1983). Berkeley Computer Graphics
Laboratory internal document.

6. James D. Foley and Andries van Dam, Fundsmentals of
Interactive Computer Graphice, Addison-Wesley Publishing
Company (1982).

7. Alvy Ray Smith, Painting Tutorial Notes, Report No. 38,
LucasFilm (1982).

8. Peter P. Tanner, William Cowan, and Marceli Wein,
“Colour Selection, Swath Brushes and Memory Architec-
tures for Paint Systems,” pp. 171-180 in Proceedings of
Graphics Interface '8, Edmonton(3-13 May 1983).

9. Via Video, The Via Video Paint System. 1982.

10. Marceli Wein, private c>mimunication. November 9, 1083

11. J. Turner Whitted, ““nti-Aliased Line Drawing Using
Brush Extrusion,” pp. 151-156 in Proceedings of SIG-
GRAPH 83, (July, 1983).

Appendix: A pseudo-code mplementation of the Sweep
algorithm
/t
| procedure : SweepLine
| description : draw a swept line from (0,0) to (dx,dy)
*®
/
proc SweepLine(in dx,dy : Integer);
begin
find (x,y) of lower left, upper left,
lower right, and upper right edges of brush path;
for each row of sweeps do
DrawSweepLineFrag(LowerLeftPoint, UpperRightPoint,
SweepLeft[row] SweepRight[row]);
compute endpoints of next row
od:
end procedure;
_{:
| procedure : DrawSweepLineFrag
| description : draw a fragment of a sweep line, from (x0,y0)
| : to (x1,y1), when both are real number pairs.
*
proc DrawSweepLineFrag(In x0, y0, x1, y1, : real;
in LeftPtr,RightPtr : array of real);
begin
walk over to first integer x coordinate;
compute distances from left, right edges;
for each x value between (x0) and (x1) do
visit point (x, floor(y));
{ the opacities are determined by referencing the left and
right distances, according to function FIND below }
if (floor(y - vertical width) < floor(y)) then
visit point (x, floor(y)- 1);
fi;
update distances from left and right
od;
end procedure;
function FIND takes a distance (fl) from the left edge and
a distance (fr) from the right edge returning the visiting opacity:
if (dr <= r) then
opacity = RightSweep| max - fr |;
else if (l <=r + r) then
opacity = LeftSweep [fl |;
elseif (fr <=r+ r)then
/* can’t combine with first clause, for short motions */
opacity = RightSweep [max - fr |;
else
opacity = RightSweep [0];
fi;

Graphics Interface '84

