- 131 -

INTERACTIVE GRAPHICS SIMULATION SYSTEM (IGSS)
FOR THE ASSEMBLY OF MECHANICAL PARTS

Hema A.Murthy and R.G.S.Asthana
Department of Electrical and Computer Engineering
Mcliaster University, Hamilton, Canada

ABSTRACT

In mechanical assembly process, the precise positioning of parts is of utmost

importance.

IGSS, Interactive Graphics Simulation System, provides the user with a

set of tools for the creation, modification and display of mechanical assemblies. The
system defines a phrase structured grammar for the creation and assemblv of mechani-
cal parts. The grammar defines a set of rules(productions) for the assembly of parts.
Assemblies defined by the user which do not conform to the constraints of the lang-
uage generated by this grammar are declared as illegal and hence not created.
KEYWORDS: parts, partinstances, assembly, assembly sentence, grammar, productions.

INTRODUCTION: The set of tools available
in IGSS for the assembly of mechanical
parts are: a graphics package, an object
library, a grammar, and an editor. The
graphics package is a general purpose
three-dimensional graphics package(l)

The object library provides a set of
parts which can be used to create an ass-
embly. In its present form the object
library consists of four parts, namely,

a nut, a bolt, a bracket and a plate.

The user can also create his own parts
which will be included in the library.

A part can be defined by (i) ins-
tances of parts stored in the object
library, (ii) polygonal description(2) or
(iii) its orthogonal views(plan, ele-
vation, sideview) (3). The system is
capable of creating a perspective view
from a user defined location or a para-
llel view in a user defined viewing sys-
tem. Correct positioning of parts is
important in the creation of an assembly.
IGSS uses (i) a set of rules(legal steps)
which defines the position of the parts
with respect to each other and (ii) the
alignment axis associated with each part
at the time of its creation to perform
the assembly.

A phrase- structured grammar has
been developed and implemented for des-
cribing the parts and to assemble them
one by one into a final product. A
set of legal steps(productions) for the
assembly of a set of given parts is
defined. These legal steps are defined
in terms of an assembly instruction

which forms part of the language gener-
ated by this grammar.

The editor basically decodes the
commands given by the user. It processes
the assembly instructions as per the
requirements of the grammar. If the
assembly is valid the instructions are
translated into instructions in the gra-
phics package.

IGSS also provides the facility
(i) add(delete) parts to(from) the lib-
rary, (ii) add(delete) partinstances to
(from) an assembly, (iii) add(delete)
steps (productions) to (from) an assembly,
(iv) scale, rotate, shear assemblies.
Figure 1 shows the block diagram of the
system developed.

GRAPHICS

DISPLAY | €—| pACKAGE

KEYBOARD EDITOR | ¢&—> GRAMMAR

OBJECT
LIBRARY

Fig.l: Blockdiagram of the system.

Graphics Interface ‘84

- 13

The following discussion defines
the grammar and explains a few of the
commands in the editor. The grammar used
is a tree grammar defined by a four tuple

(4) :
G={Vt, A s} .

V= {assembly , part , plan , elev ,
sview , polygons , arcs , vertices ,
radii , angles§} ,

where

v = {hut, bolt, plate, bracket, V,i,....
T Ik
Vs Ryreo- Ry Al"""“‘m} £
where
Vll""'vMN: the vertices of all polvgons
(,...,M), (the vertices are
defined in a clockwise or
anticlockwise direction),
R ,...,R} : the radii of all arcs (1,.M)
1 1
Al,...,AM : the angles of all arcs(l,.H)

The productions P are as follows:
assembly =-- <parts>

part - ¢plany , elev>, Gvievw)
plan -= (polygon)y ,Larc>
elev - Lpolygory , @Qrcy
sview - polygon> , @rcy
part --> (polygorn» , LQrcy
part - plate

part -- nut

part -2 bolt

part --» bracket
polygon M -- VMl #E s VMH
arc M - RM 7 AM

Figure 2 shows the derivation tree for
the above defined set of productions.
Each part is associated with a name when
it is created. The starting symbol S is
the root of the tree in Figure 2.

(b)
Non-terminal Terminal
Svmbols Symbols
O--assem.bly ? -bolt
@-—-partn, nstands 3 —-nut
for name
= -plan E -bracket

f -elevation c——-plate

E ~-sideview & _yertex
O -polygon Vv -radius

@ =arc

Fig.2: (a) The derivation tree for an
assembly
(b) Conventions.

X —-angle

Syntax of an assembly: The basic voca-
bularv defining a complete assembly
consists of four different letters of the
alphabet and a few special characters as
shown in TableI.

Table I
Sr. no. Special letters of the
characters alphabet
1 = A(above)
2 ' B(below)
3 : L(left)
4 = R(right)
Lcr>
(carriage return)

An assembly is defined by an ass-
embly sentence and an assembly instruc-
tion as shown in the syntax diagram of
Figure 3. Starting at the diagram named
assembly, a path through the diagram
defines a syntactically correct assembly.
Figure 3 is analogous to the syntax
diagram used to define Pascal statements
in Ref.6. The assembly sentence defines
the number of instances of a part that
will be required in an assembly. For
example 1:2, 2:3.This implies that two
instances of part 1 will be required
and three instances of part 2 will be
required in the assembly. The assembly
instruction defines the position of a
partinstance in an assembly with respect
to its closest neighbours. Letters of
the alphabet in Table 1 are used to def-
ine the positions. For example
la-2aRB is a syntactically correct step

Graphics Interface ‘84

- 133 -

in an assemblv instruction. Here 'R'
implies that 2a will be rotated about its
centre by 180°. The 'B' implies that 2a
is below partinstance la. The part-
instances are aligned along the vertical
line of the axis of partinstance la.

The position of the partinstance to the
right of the '-' is defined with respect

to the partinstance on the left of the
L)]

g

Semantics of an assembly: (1) No more
than three partinstances can exist at
an axis of a partinstance.

(2) A partinstance cannot be defined
both above and below another partinstance.
(3) A partinstance cannot be defined
both to the left and right of another
partinstance.

(4) A bolt cannot be defined between a
plate and bracket.

(5) A nut cannot be defined in between
a plate and a bracket.

(6) A nut cannot have a partinstance
exactly below it.

(7) A bolt cannot have a partinstance
exactly above it.

C__oiv)+identifier

lnstructio sentence
; identifierz]—.@@ntifieﬁt]

G)
j>

(a)

gentence

On

(b)

Assembly
instructio

identifier 1 - assembly name, must be
alpha-numeric, can be a maximum of

four characters.

identifier 2 - partinstance- or part-
names, must be alphanumeric, maximum four
characters long, should not contain any
of the symbols used in the vocabulary.

identifier 3 - must be an integer. This
defines the number of instances of a

part in an assembly.

Figure 3: (a) Syntax of an assembly,
(b) syntax of an assembly sentence,
(c) syntax of an assembly instruction.

The following example illustra-
tes the salient features of the editor.
Command : CREATE (cry
part/assembly : assembly{cry
partnumber, number of parts :1:2,2:2,3:2,
4:1 cx
In the above command 'l:2' implies that
two numbers of part 1 will be used in
the assembly. Hence, they are renamed
as 'la' and 'lb'. The relational graph
shown in Figure 4 describes the legal
productions for the parts chosen.

4
laL/RB 1bL/RB
(laL/RA) (1bL/RA)

3ah/2ahA 3bA/2bA

(3aB/2aB) (3bB/2bB)
2aB/3aB 2bB/3bB
(2an/3ah) (2bA/3bB)
3bA/2bA 1bL/RB laL/RB 3aA/2ahA
(3bB/2bB) (1bL/RA) (laL/RA) (3aB/2aB)

l

2bB/3bB 2aB/3aB

(2bA/3bA) (2aA/3ald)
Convention :
A = above the part of the prev-
ious node.
B = below the part of the prev-
ious node.
L/R = left or right of the part
of the previous node.
a,b -+ suffixes to differentiate
parts of same type.
1;2,3,4 » partnames as defined in
Figure 2.

Fig.4 : Relational graph for assemblies
using two brackets, two bolts, two

nuts and one plate.

The following set of productions(legal
steps) create an assembly.

Graphics Interface '84

-134 -

Productions : Step 1 : 4-laRB<cr)
Step 2 : 4-=2alh cr)
Step 3 : 4-1bLBdcr>
Step 4 : 4-2bA<cr>
Step 5 : la-3aBdcr»
Step 6 : lb-3bBecw
Step 7 : &

Note :<rpwithout an arguement will
terminate the set of productions.

Step 1 : implies that the plate goes
above the bracket la and the longside of
the bracket is to the right of the first
hole in the plate.

Step 2 implies that the bolt goes
above the plate.

Step 3 : implies that the plate is also
above the bracket 1lb and the longside of
the bracket is to the left of the second
hole in the plate.

Step 4 : implies that the bolt 2b is
above the second hole in the plate.

Step 5 : implies that the nut 2a is
below the bracket la.

Step 6 implies that the nut 2b is below
the bracket 1b.

Command : DISPLAY {c1r)>

This command displays the figure as shown
in Figure 5(a).Different views of the
object can be obtained using the VIEW
command. The following command reper-
toire will create the assembly shown in
figure 5(b).

Command : VIEW <¢rp

Perspective/parallel : perspective cr
eyepos : X Y Z cr

Partinstances can be added or deleted to
an assembly using the following commands:
Command : ADDPART <r)

partnumber :

Command : DELPART {cr)

partnumber :

Figure 5(c) shows the deletion of a
partinstance. Productions can be del-
eted or added using the following
commands :

Command : ADDPROD <15)

step N :

Command : DELPROD &r)

step N :

Commands are also available to scale,
rotate, shear assemblies. See Figs.5(d),
5(e), 5(f).

The quad tree visibility algorithm is
used to remove hidden lines(5).

IGSS can be used to create new
3-dimensional parts or assemblies and
view them from any desirable angle to
achieve a final product. With an enhan-

ced library and a knowledge of all poss-
ible legal assemblies the system can
be utilized for practical applications.

] nmm B 1/4Efrﬁ_*5§a:7
— B '}—7/
2=y
(a) (b)
- ﬁ
{ 1
(c) (d)
{ | ™ T
| i L— 7
EEEN| Ll]

(e) (£)

Fig.5 : (a) Orthogonal view of picture
created in the example, (b) perspective
view of the same, (c) deletion of a
partinstance, (d) rotation of an assembly
(e) scaling of an assembly and (f) she-
aring of an assembly.

REFERENCES :

(1) R.R.Joshi and Hema A. "GRASP- A 3D
graphics system for Pascal users", (to
appear in Computers and Graphics).

(2) K.Sugihara, "Picture language for
skeletal polyhedra", Computer Graphics
and Image Processing,8,1978.

(3) R.M.Haralick and Queeney D. "Under-
standing engineering drawings", Computer
Graphics and Image Processing, 20,1982,
(4) K.S.Fu, Syntactic pattern Recognition
and Applications, Prentice Hall, Inc,
New Jersey, 1982.

(5) T.pPavlidis, Algorithms for graphics
and image processing, Computer Science
Press, 1982.

Graphics Interface '84

- 135 -

(6) K.Jenson and Wirth N. Pascal User
Manual and Report, Springer Verlag,
New York, Heidelberg, Berlin, 1978.

Graphics Interface '84

