- 137 =

ABSTRACTIONS: A CONCEPTUAL APPROACH FOR STRUCTURING
INTERACTION WITH INTEGRATED CAD SYSTEMS

by Charles M. Eastman
Formative Technologies, Inc.
Pittsburgh, PA 15213, USA

ABSTRACT:

This paper develops the concept of Design
Abstractions as a building block for con-
figuring CAD applications. Design
Abstractions are developed as a unit of
intuitive design declsionmaking and alsn

a unit in the physical implementation of
CAD systems. Criteria for the definition
and implemantation of Cesigns Abstracticns
are presented, along with an example.

KEYWORDS: computer-alded design, design
process, abstractions, CAD
applications

I. INTRODUCTION

A major benefit of computer-alded design
(CAD) is its integration of design
information. By entering a geometric
description once, It can be used to
produce all drawings using that
geometry. By entering design speclf-
ications once, all drawings can reflect
these design specifications. In plant
design, the information to be
integrated includes geometry, desig:n
specifications, process flow inform-
ation, control systems information and
others. This information can then be
used to produce P&IDs, orthographic
drawings or 3-D models, isometrics,
equipment data sheets, electrical and
control drauings and final specific-
ations, for example.

In architecture or civil engineering,
the informaticn to be integrated is
similarly varied and the documents
produced similar mixtures of the
input. The integration of such varied
information is usually associated
with the notion of an englineering
database. Effective management of
such Information inevitably requires
regular ways to organize and access
fit. The logical consistency of this
data along with its ability to
satisfy the performance requirements

of the project are among the most
critical requirements of any
engineering project.

Given the need to produce a variety
of documents from different inputs
and the interdependency of the
data, a majJor issue is the sequence
in which design information Is
entered. Traditionally, manual
design resolves this Issue by a
well-established development
process that produces a sequence of
documents, each adding new classes
of information or neud levels of
detalil to the previous documents,
with backward changes being made

as necessary. However, speclal
projJects with unique goals or
constraints, retro-fits and other
special cases still lead to wide
variety Iin the design development
process.

Solid Modeling brings attention to

the issue of design development
sequence because |t offers desligners
a new representation to integrate

into the development process. AS
currently used, solid modeling
requires full definition of 3-D
geometry to be defined In one design
stage, whereas in most traditional
design flelds, geometry Is defined
incrementally, for example in plans
followed by sections. In many cases,
solid modeling requires extra inform-
ation when compared to manual design;
many detalls of layout are not
resolved by designers in certain
fields, but left to fileld fabricators.
Thus solid modeling forces reconsider-
ation of the design development
process. As a result, solid modeling
systems have recently been rejected by
several major AEC CAD users and are
being accepted only slowly in others.

Given any single design development
process, it is possible to develop a

Graphics Interface ‘84

set of CAD tools and ona or more
databases to support it. Given,
however, the task of supporting ANY
logically meaningful design develop-
ment process seems hardly possible
and it becomes difficult to even
conceive where to start. Current
systems have been developed by
considering a phase of the devel-
opment process and the set of
documents assocliated with that
phase and development of a set of
capabilities to support the product-
fon of those documents. The
integration achieved to date has
been accomplished by dolng this
several times and somehow tying the
various parts together.

This paper presents a way of abstract-
ing the design development phases and
decision processes into units that can
be directly implemented as computat-
fonal units. The requirements
associated with the interface betueen
these units Is defined so that they
can be integrated in a variety of
ways, supporting a variety of design
development -sequences. Thus it offers
a means of studying design processes
and translating these to computational
units in a systematic manner. It

of fers a conceptual approach to
defining user interfaces to solid
model ing and other new technologles

in CAD. It presents one example of
this approach that was implemented
several years ago at Carnegie-Mellon
University.

I1. MODEL OF THE DESIGN PROCESS

There are many definitions of englineer-
ing design, each focusing on different
aspects of the task. For example, see
(Alexander, 1964; Powers and Rudd,
1974; Simon, 1869). For the concerns
here, a definition from an earller
study (Eastman, 1982) is appropriate.
It defines design as "the specification
of an artifact in sufficient detall so
as to guarantee that it is both
constructable and can reallze pre-
defined performance criteria®. Such

a definition emphasizes both the
decisionmaking and prediction aspects.
The Issue of Interest {s the modeling
process supporting both these aspects
of design.

In any design process several differ-

- 138:=

ent representational schemes are used.
A representational scheme is a way of
organizing design data (iInformaticn
describing the proposed artifact)

and rules that are elther maintained
within the data or can be easily
evaluated with {t. In process design,
the representations include: process
flow diagrams (PFDs), piping and 3-D
fnstrumentation diagrams (F&IDs),
models and isometrics, for example.

In manual design, the representational
scheme for solving design issues and
the documentation for reporting those
decislions are the same. However, in
CAD the representation of information
inside the machine and the drauwing

and report organizations are differ-
ent . In this sense, CAD involves a
model of the artifact (in a database)
from which reports are generated. In
manual design, the reports are the
database.

If we consider at an abstract level
the relations represented in current
design representations and the set of
evaluations and analyses each allouws,
then one begins to see each represent-
ation as a means to support decislon-
making about a particular set of
issues. The sequence of represent-
ations reflects the priorities of
concern within a design or engineer-
ing project for the set of issues
each representation supports.

In a general way, design can be
characterized as developing the
artifact in one representation, using
its rules to make declisions about
some of the varlables determining
the design, then translating the
design to a new representation that
allows further considerations and
decisions on new variables, uhile
holding fixed the variables deter-
mined by previous decisions. Within
any representation, a tentative set
of decisions may prove to be incon-
sistent for some wider set of
objectives and require multiple,
iterated decisions. Less frequently
but still a common occurance, the
decisions evaluated in some
representational scheme show that
the decisions in an earlier one can
be Improved upon and iteration
crosses the boundary of the repres-
entation. It seems that these
representational schemes, then,
serve as an aggregated unit of

Graphics Interface '84

design decisionmaking. I propose
to call these units Design
Abstractions, or Just Abstractions,
because of their general function

in design.

I11. STRUCTURE OF A DESIGN ABSTRACTION
In design terms, an Abstractlon
consists of: (1) design data; (2) a
set of operations or other tools to
manipulate the data; (3) a set of
relations that is always maintained

in the data; and (4) a set of tests
and performance conditions that can

be evaluated from the data.

As another example, consider an
architectural floor plan:

(1) the floor plan, or the information
required to generate a computer
display of the floor plan, is the
data

the operations are those needed
to create and change the floor
plan, such as create. move,
define, delete operations for
walls, doors, uwindous, spaces elc.
the tests and evaluations

might include:

(a) square footage
calculations, by

spacetype for cost
estimation and to compare
with space needs
circulation distance
calculations between all
palrs of spaces for
evaluation according to
fire and handicap persons
requirements

accessability relations
between spaces and to the
outside, in response to
communication and

material flow

requirements and
environmental zoning e.g.
noise, access for the
handicapped, zoning to
control access for the
handicapped, zoning to
control access for the
handicapped, zoning to
control access among
different types of
occupants, etc.

energy analysis, based on
standard celling height
the set of design relations
include:

(2)

(3)

(b)

(c)

(d)

(4)

- 139 -

(a) the consistency of all
space and walls lying
disjoint on a plane
(assume single level
floor plans)

wall definitions
consistent with space
definitions regarding the
geometric definition of
walls to enclose spaces
(Without overlaps or
cracks)

walls, windows and doors
defined consistentl!y so
that doors and windows
are inside walls and
areas are computed
consistently with the
placement of doors and
windouws

all spaces are accessible
and the building Is
enclosed

(b)

(c)

(d)

The above list is representative,
not exhaustive.

In addition, it must be
recognized that other
Abstractions may exist prior to
the current one. The previous
Abstraction Is used to generate
the current one in a manner that
is consistent with the previous
one. An example Design
Abstraction that could be created
previous to a floor plan might be
a single line drawing of space
allocation. Such an Abstraction
is useful to define the placement
of rooms and for specifying the
topology of walls that enclose
them. Once defined in the single
line Abstraction, the floor plan
Abstraction would maintain these
relations. Another
representation that imposes
consistency conditions with this
one is wall sections. The
thickness of the walls in a floor
plan must be consistent with the
construction method shown in wall
sections.

As decisions are explored,
frequently encounters
difficulties or opportunities
based on the recognition that an
improvement would result {f a
decision in the previous
Abstraction was made differently.

one

Graphics Interface '84

Iteration can be done in two
ways, one more attractive than
the other. The more preferred is
to break the constraint derived
from the earlier Abstraction,
make the desired change and
*backchange® the earlier
representation. This change may
force backchanges in a more
previous Abstraction, possibly
back to the initial one. The
less preferred means of {iteration
ls to make the revisions directly
to the previous Abstraction, then
update that change into the
current one.

At a computer implementation
level , the two Abstractlions may
be based on completely different
data structures, with mapping
between them. Alternatively,
they may both rely on a single
data structure but with different
sets of operators. An example Is
drawing a building in plan vieuw
only and then making polyhedral
shapes corresponding to each wall
polygon in the plan. The
alternative method would be to
develop the floor plan initially
as a 3-D structure but with zero
height. The considerations in
selecting either method are the
efficiency of each represenation
alone and their ease of use and
the ease of mapping (in one or
both directions) betuween the
Abstractions.

IV. DESIGN ABSTRACTIONS AS ABSTRACT

DATA TYPES

The definition of an Abstraction,
as defined above, is consistent
Wwith the notions of abstract data
types as developed in computer
languages such as ADA (SIGPLAN,
1982), CLU (Liskov, 1877) and
MODULA-2 (Wirth, 1882). The
implementation of an Abstraction
corresponds to a module in these
languages, with the module
including both data and
procedures. In abstract data
types, the data structure defines
a representaiton In terms of
implementation in the host
computer language. The
procedures are the operations
that manipulate, create and

- 140 -

delete the data structure (that
is, the representation) and allou
evaluation of the model encoded
uwithin it. The means for
defining relations managed within
an abstract data type have been
specified in several different
ways (Guttag, 1880). Regardless
of how they are specified, they
serve as formal assertions
regarding the conditions that
must be satisfied by operations
(acting upon the data structure).
An abstract data type provides an
fdeal formal structure needed to
implement a Design Abstraction.

Abstract data types corresponding
to Abstractions may be nested.
For example, an Abstraction for
designing floor plans may have a
sub-Abstraction for designing
stalruways.

In order to satisfy the
requirements of an Abstraction,
the designer of an abstract data
type must deal with several
|ssues: the selection cf a data
structure that supports the
representation requirements;
definition of a set of operators
sufficient for all design actions
and capable of generating all
possible designs of Interest;
embedding the relations {nto the
data structure and operations in
a manner that they are maintained
(elither constantly, at the
transaction level, or as needed
by checking or correction
operators); the mapping of
information from the previous
Abstractions in a consistent
manner .,

Some guide!ines and structures
can ald in resolving these
fssues. The data structure for a
Design Abstraction usually
depicts a collection of entities
corresponding to units of
composition; for example, walls,
doors and windous. It is these
entities that have relatlions
between them that are managed by
the Abstraction. The first step
In defining an Abstraction is to
define its component entities.
The component entities are
identifiable by any of the
following criteria:

Graphics Interface '84

(1) they are individually created
or manipulated

(2) they have relations with
other entities that must be
maintained

Another step is to identify the

Abstraction's operations. These

operations must respond to a

variety of Iissues:

(1) they should include mappings
from any previous Abstraction

(2) they must allow definition of
any meaningful deslign
alternative

(3) they should support a wide
range of editing, allowing a
user (step by step) to
transform any design
alternative into any other
alternative

The operators and component
entities make an Abstraction
equivalent to a design (sub-)
language. It must be complete,
parsimoneous and reflect the
transformation of interest of
users. The operators for mapping
from other Abstractions should be
based on the mapping of some
semantic unit of the previous
Abstraction {nto the current one.
Ideally, each operation has a
complimentary one allowing the
previous Abstraction to be
maintained {f the current one {s
changed in an inconsistent
manner. These mapping operations
may copy the previous Abstraction
into the current one.
Alternatively, the mapping may be
fmplicit and consist of providing
a wider set of operators to the
previous data structure.

An important issue is the
assoclating of semantic relations
with the operators. In the
simplest case, all relations are
maintained by each operation in
the Abstraction and no operation
is applied to any legal state of
the data (where all relations are
satisfied) to create one in which
some relations are not satisfied.
It is common in design, houwever,
to encounter situations where it
is not practical to maintain all
relations in all operations.
Consider the situation of wall
location editing. Earlier work

- 141 -

by the author's group at
Carnegie-Mellon University showed
how it was possible to maintain
wall topology during wall editing
(Yasky, 1881). It Is also
possible to maintain the
volummetric definitions of spaces
to be consistent with wall
definitions. But because of the
costs in time of these operation,
it is more desirable to allow
users to move several walls and
when satisfied with their
appropriateness to derive the
resulting wall abutments and the
shapes of spaces.

In the case where relations are
maintained by scme operations and
not by others, the relations both
required for an operation and
those provided in its output
should be defined as part of the
specification for the operator.
The compatibility of these
specifications between operators
must be guaranteed. This is more
easily evaluated if the relations
are assoclated with states of the
Abstraction. A state defines a
set of relations satisfied within
the Abstraction. Operators
transform the Abstraction from

O create uwall OB
check support

overlaps
enter door
r window
move door

attach check compute

walls E enclosures Epace areas
e@ delete : 0

chk .overlaps

move wall

chnge.
attchmnt

FIGURE ONE: State transition diagrams are
useful in organizing operations having
precedence relations. Wall Definition may
be done anytime, but requires application
of Wall System operations and checks after

completicn of Wall Definition.

Graphics Interface '84

one state to another and are
shown as edges in the state
diagram. An example 1Is shown for
the floor plan design in Figure
One. It is important to
recognize that after a sequence
of operations that progress the
state of the Abstraction,
applying an early action forces
iteration of the sequence.

The design of operators and
states greatly Impacts the
effectiveness of the design
process. The operators must show
that all relations are satisfied
in the end state of the
Abstraction. Operators with
pre-and post-states have been
developed elsewhere as design
transactions (Kutay, 1S83).

Rules for their specification and
management have been defined.

V. SEQUENCING OF DESIGN ABSTRACTIONS

It Is desirable to sequence
Abstractions tn different orders.
This is a natural outgrowth of
the problemsolving aspect of
design. Abstractions early in
any sequence constralin later
ones. Thus, any design iIssue
that must achieve high
performance or that will be hard
to solve |Is best treated early.
In architecture the most critical
i ssue may be structure, internal
spatial organization, external
visual appearance or others.

Sequencing of Abstractions is
dependent upon the mapplings
available between them. If there
are N-1 mappings for N
Abstractions, then there is only
one sequence In which
Abstractions can be used.

Clearly a rich set of mappings Is
preferred.

The completion of an Abstraction
results Iin a state in which all
relations between its entities
are satisfied. Then the mapping
betueen entities is possible in
any case that the beginning state
of an Abstraction Is not
logically conflicting with the
end state of another. The
boundary betueen transactions Is
defined by a

representation/operator set
combination. Uesign Abstractions
can then be vieued as a higher
level continuum of design
transactions.

In some other discusslons,
Abstractions have been discussed
as If they are organlized
hierarchically (Eastman, 1978).
That |Is, there Is a strict
dependency order that can be
pre-specified. This Is an
over-simplificaton. Consider a
wall. In the context of
enclosling spaces, the spaces come
first, followed by wall
enclosures, followed by the wall
sections needed to provide the
desired barriers between spaces.
This hierarchy 1Is characterized
in Figure Tuwo(a). Each level in
the hierarchy seems to be adding
detail to the previous level.
this Is especially true betueen
walls and wall sections. Now
consider walls from a structural
vieuwpoint. If we lay out a
building as a bearing wall
structure, then some componants
of a wall section may be defined
very early, prior to spaces, as
part of the structural system.
Spaces and walls are configured
around the wall sections, uwith
some wall sections being defined
earlier in the structural system.
See Figure Tuwol(b).

define wall define wall

deflne space
() P ()EHUIDsurESC)EEC\‘.ion O

define define spaces define wall
structure enclosures

FIGURE TWO: There is no one precedence
ordering for defining wall sectieons in
building design. Each technology has an
assoclated dependency structure. The
sequence for non-structural walls (a)
is different frzm that for structural
walls (b).

Graphics Interface '84

The example shows that different The larger view proposed here is

technologies have different that CAD systems should be

dependencles. This |Is true for planned as a set of Design

structural systems as described Abstractions, with careful

above and for heating systems, consideration of the mappings

where solar systems place between them. Such a system

dependencies on building mass and allows a variety of development

roof angles and other heating sequences and corresponds closely

technologies do not. There are to the way that creative

many other examples. The designers work intuitively.

implication is that Abstractions

are not hierarchical, but VI. EXAMPLE

organized as a complex network.

Most englineering systems, IF This example was developed in the

defined In this way, finvolve 1979 - 1980 timeframe as part of

circular dependencies a research and development

corresponding to simultaneous contract with the Construction

equations. There are many Engineering Research Laboratory

possible decision sequences. of the U. S. Army Corps of

Most sequences involved Engineers. It was on this

estimating some values In one research project that the

Abstraction then mapping these to conception for an

others, iterating In some obstraction-like organization of

sequence until all Abstractlons a CAD system first evolved. The

are conslistent. project involved developing a
schematic facility design CAD

The impllications of Design system (Eastman, 1880). The

Abstractions on solid modeling system incorporated three

are that most solid modelers have Abstractions, constructed to be

been developed as Abstractlions used Iin a linear sequence. No

poorly Integrated into a sequence back updating was supported.

supporting complete design.

Solid modeling usually supports Single Line Floorplan

one or tuwo Abstractions only and

mapping into and out of solld The first level Abstraction

modelers is only now being supported the generatjon of

single line drawings of floor

1 to translate

| Enter Hall | Enter Door | Enter Wind | DB uppdate

Enter Wall Enter Door Enter Wind DE uppdate

=ELF carzlate | Mo Elem. | Delete Elem
FIGURE THREE: A Design Abstraction for FIGURE FOUR: Khen walls are moved, the
single llne floorplan layout. elements within the wall are moved auto-
matically. If necessary, wal's are

extended or shortened to malntaln
connectivity.

Graphics Interface ‘84

plans (see Figure Three). It
allowed the entry and editing of
walls and the naming of the
spaces enclosed. Because
circulation considerations were
of interest, doors were roughly
located at this time. Because
visual relations to the site also
were of Interest, windouws were
located also.

The relations managed included:

o all doors and windows were
placed only within walls and
were updated to remain in the
walls if the walls were moved
(see Figure Four). Deleting a
wall deleted iIts embedded doors
and windows.

o wall connectivity and room
boundaries were maintained
during editing; that is, walls
were attached to other walls.
Later, if a wall was moved,
other walls grew or shrank to
Join them.

The evaluations supported were:

o room areas and total space uwere
computed and compared to a
pre-entered program, with
differences listed

o circulation from any space to
any door could be computed, to
check fire exit distances

o wall lengths and spaces could
be used to compute a rough cost
estimate

Double Wall Floorplan

After this stage of design was
complete, a second Abstraction
was entered. It used the same
internal data representation but
provided different operators and
modes of interaction. It
incorporated a number of menus
uith alternative construction
rethods and allowed assignments
to the earlier locations of
elements. Wall sections, doors
and Wwindows were selected (see
Figure Five). Floor/ceilings
were defined by entering
floor/celling sections to
polygons drawn over the floor
plan. The status of assignments
could be reviewed at any time by
selecling a construction method;
the areas It was assigned to were
then displayed by an arrow

- 144 -

pointer (see Figure Six).

The floor/celling and wall
constructions were defined In
this scheme apriori and assigned
to walls after they had been
created as a construction
section. In a later section, the
shortcomings of this approach
were noted.

The last step of this Abstraction
was to draw isometrics of the
floor plan oriented along section
lines defined by the user,
allowing entry of floor/celling
secticns heights to the already
entered polygons (see Figure
Seven). Openings in floor
levels, eaves and overhangs were
allowed.

The relations managed were:

o all pre-existing relations are
maintained

o assignment of wall elements
only to locations defined in
the first Abstraction

o all wall element heights were
checked to see they fit within
the wall section

o all walls were supported by and
capped by a real or virtual
floor/ceiling, so as to
guarantee that its heifght was
finite

o only one type of construction
may be assigned to any element

The evaluations supported within

this Abstraction were:

o interface to BLAST, an energy
usage simulation program

o computation of all space areas,
with comparison against the
original program

o computation of wall areas and
floor/ceiling areas, to
determine amounts of
construction

o calculation of bills of
materials

3-Dimensional Buillding Model

The third level Abstraction
projected the various deslign
information into a 3-D solids
model of the projJect. The
transformation consisted of
projecting all walls vertically
to the floor/ceiling planes above

Graphics Interface '84

and below them. The
floor/ceiling elements uwere
defined earlier by their section
definition. Given these 3-D
shapes, the user could generate
different 3-D images of the
display. The shapes were sent to
an Evans and Sutherland Picture
System and viewed dynamically
(see Figure Eight).

The Abstraction scheme described
above had many serlious
shortcomings:

FIGURE FIVE: A Design Abstraction for
developing double line floorplans from
single line. Liall sections with
properties are assigned to previously

defined wall locations.

FIGURE SEVEN: Floor/ceiling sections are
assigned by first entering polygons
defining the planar extent of a floor/-
celling construction system. Each polygon
describes a single construction method
with one louer and one upper plane
surface.

145

1. It assumed a singled
development sequence, instead
of the range possible from a
decisionmaking viewpoint.
For example, facades were
determined by decisions in
floor plans and could not be
used to evaluate the design
directly then alter the floor
plan. Sections were also

constralined to be consistent
with plans and not vise
versa.

FIGURE SIX: Windows and doors
assigned.

are also

FICURE EIGHT: Floor/ceiling construction
sections are then assigned to the polygons.
For all steps in the double line flcorplan
Abstraction, assignments can be revieued

by selecting a construction method and

fts allocation will be shown with an
assignment line.

Graphics Interface '84

2. There was no means to
override the constralints of
earlier decisions and modify
an earlier Abstraction from
the information provided In a
later one.

3. Assigning only one type of
construction to a wall
greatly restricted design
alternatives. Most walls
incorporate several wall
finishes along both sides and
may involve meny different
construction methods.

4. Some decision sequences uwere
unrealistic. For example,
wall sections were deflined
prior to assignment. In
reality, wall sectlons are
typically defined as a
secondary product of the
desired finishes deslired for
different spaces. It Is the
two spaces on each side of a
wall that determines wall
construction, especially
finishes, not the other way
around.

S. Doors and uWindows were
pre-defined entities and new
types could not be defined by
the user.

FIGURE NINE: To define the height

floor/ceilling sections, an axiomet
view |s defined automatically, wit
dimension grid and marks shouwing t
extent of floor/cefling polygons.

enters the height of each plane by
entering tuo polnts.

of
ric
h a
he
A user

VII. REVIEW OF THE ABSTRACTIONS

There are many ways to organize a
Deslign Abstraction for supporting
some aspect of design. Some
organizations will be better than
others. Two Abstractlions may be
compared In terms of:

the operators provided for
creating and mani{pulating
design entities; some
operator sets may be more
powerful, requiring feuwer
steps to generate any
alternative. Some operator
sets may be more general,
allowing alternatives another
sel does not allow. The
pouer and generality of
operators are often
conflicting goals.

2. the relations maintained and
guaranteed by the
Abstraction. Some
Abstractions guarantee a
uider set of relatlons.

3. the performance evaluations
incorporated in an
Abstraction and the linking
of these to operations. Some
Abstractions will provide a

33

[o

FIGURE TEN: Given the definition of wall,
window, door and flcor/ceiling shapes,

the

building can be displayed In dynamic mode,

allowing *"walking through*
projection.
uitterent design Abstractions.

Graphics Interface '84

a wire frame

These may be integrated iIn

useful ways to operations,

for example, to dynamically
display areas of spaces as

walls are being moved.

4., the interfaces between this
Abstraction and others. A
wider set of interfaces
allouws a uwider range of
Abstraction sequences for
users.

VIII. CONCLUSION

Design Abstractions seem to be a
useful means to organize CAD
systems in a manner that holds
promise to be as flexible as
manual design methods, but with
the power of automation. It
closely corresponds to the manner
that design is practiced today,
especially In more Intuitive
fields such as architecture and
industrial design.

Within a common CAD environment,
it is likely that Design
Abstractions will be
interchangeable. One Abstraction
or a set of them will be
substitutes for another set. A
design transacltlion iIs a packaging
of semantic knowledge about an
area of design that can
incorporate checks and rules.
Expert knowledge and advice
givers can be Incorporated within
them. Then a major R&D activity
will be the definition of new,
more powerful Abstractions. With
the development of modern
computer languages such as ADA,
MODULA-2 and others incorporating
abstract data types, It is quite
possible that future CAD users
will be able to configure systems
by selecting and Integrating
different design Abstractions.

ACKNOWLEDGEMENT :

The series of Abstractions presented in
the example were developed and
implemented by members of the
CAD-Graphics Laboratory, including:
Gregg Glass, All Kutay, Clive Liu and
Warren Wake.

- 147 -

REFERENCES:

Alexander, C. NOTES ON THE
SYNTHESIS OF FORM, Harvard
University Press, 1964.

Eastman, C. *Recent developments
in representation in the science of
design", DESIGN STUDIES, 3:1, Jar:uary
1982.

Eastman, C. "Representation of
design problems and maintenance of
their structure”, ARTIFICIAL
INTELL IGENCE AND PATTERN
RECOGNITION IN COMPUTER AIDED
DESIGN, J. C. Latombe (ed.),
North-Hol land, NY, 1978.

Eastman, C. M. “"Prototype Building
Description System®, PROC CAD 8@ CONF.,
IPC Press, London, 1880.

Guttag, J."Notes on Type Abstraction®,
IEEE TRANS. ON SOFTWARE ENGINEERING,
1980.

Kutay, A. and C. Eastman,
*Transaction management in engineering
databases®", SIGMOD PROC. IN
ENGINEERING DESIGN APPLICATIONS, 1883.

Liskov, B., A. Snyder, R. Atkinson
and C. Schaffert, "Abstraction
Mechanisms in CLU®*, COMM. ACM, 1877.

Powers, G. and D. Rudd, "A theory
for chemical engineering design®", BASIC
QUESTIONS OF DESIGN THEORY, HW.

Spillers ed, North-Holland Press, 1974.

SIGPLAN Notices "Preliminary ADA
Reference Manual®", SIGPLAN NOTICES,
14:6, ACM, June 1979,

Simon, H. A. THE SCIENCES OF THE
ARTIFICIAL, MIT Press, Cambridge, 1969.

Wirth, N. PROGRAMMING IN MODULA-2,
Springer-Verlag, NY, 1882.

Yasky, Y. *Transforming a set of
building drawings into a consistent
database®, PROC. CADB® CONF., *
IPC Press, London, 1S80.

Graphics Interface '84

