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ABSTRACT

We have implemented interactive systems for defining, manipulating and rendering curves and surfaces based
on a variety of mathematical techniques including B-spline and Beta-spline representations. The talk will address the
underlying mathematics, numerical properties, efficient techniques for rendering, shading and texturing methods, and
ergonomic issues regarding the interactive manipulation of the curves and surfaces through their representations.
This work was performed in the Computer Graphics Laboratory during the past two and one half years under

NSERC Strategic Grant funding.
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1. Computer Modelling of Curves and Surfaces

One of the earliest success stories in computer graphics was
the modelling of mathematical surfaces based on the pioneering
efforts of Coons, Bézier and others. That work was performed in
the automative and aerospace industries about twenty years ago.
The costs associated with the hardware in those systems kept them
from widespread application in areas where computers were not
already in use. The general availability of computer graphics
equipment at a price affordable by smaller companies has led to
new interest in surface modelling within recent years. The likely
success stories this time will concern systems that integrate
mathematical theory with sophisticated display hardware in a user-
friendly environment. A three-part research program is underway
within the Computer Graphics Laboratory at the University of
Waterloo exploring the application of freeform surface techniques
to Computer Aided Engineering.

The first phase of the project has concentrated on the under-
lying theory used to represent smooth curves and surfaces. Our
goal was to reformulate the “classical” mathematical results con-
cerning B-splines in terms more familiar to computer scientists, and
to extend those results to the newer theory of Beta-splines, which
have greater flexibility because of additional shape parameters.
Section 2 summarizes our work in this area and provides a brief
introduction for the terminology used later.

Proceeding in parallel with the theoretical work, the second
phase of the project has been the design and implementation of
interactive software for manipulating curves and surfaces. The pri-
mary aim is to explore practical applications of the theory. A fairly
primitive prototype was implemented using a raster display, after
which a second version was implemented using line-drawing
hardware to provide real-time interaction. The software was
designed as a teaching aid and to supply hands-on experience com-

paring the various control parameters available with B-splines and
Beta-splines. An easy-to-use interface was a major goal of the
design. Section 3 provides a description of the 2-D system
currently in operation and of the 3-D extensions being planned.

The final phase of the project, also pursued in parallel, has
been the rendering of freeform surfaces and scenes created from
them. This work has been performed on our raster display system
to take full advantage of colour and shading. Much of this work
has involved appropriate division of labour between the host proces-
sor (a VAX) and the bit-slice microprocessor attached to the graph-
ics bus. Section 4 provides an overview of the rendering techniques
that have been implemented for viewing objects produced using the
modelling systems. Plans for further work are outlined in Section
3.

2. The Mathematics of Splines

Curves and surfaces used in Computer Aided Engineering
usually do not have simple, closed form descriptions. Modelling
systems based entirely on polygons or conic sections have been
used, but for representing freeform surfaces such as an automobile
body, the hull of an airplane, or a soft drink bottle a different
representation is usually desirable. A common technique is to use
piecewise polynomial functions. For curves these are a sequence of
polynomial segments meeting at joints where one segment ends and
the next begins. Surfaces are constructed using patches formed
from the Cartesian product of piecewise polynomial curves.

The cubic B-splines are one set of basis functions for the vec-
tor space of piecewise polynomials defined on a knot sequence (the
parametric values corresponding to joints, the places at which the
segments or patches change from one polynomial to the next).
Here we will only sketch the main ideas behind B-splines in suffi-
cient detail for the sections that follow. A comprehensive review
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of our work on splines is available as a technical report
[Bartels83b].
B-Splines

Continuity and full differentiability is automatic for piecewise
polynomials, everywhere except at the knots, because the functions
are polynomials everywhere except at the knots. Care must be
taken to select the individual pieces to insure continuity across
knots. Depending upon the application, the curves will usually be
required to have zero, first and second degree continuity, although
sometimes only first degree or zero degree continuity will be
needed.

The class of splines that we are interested in are defined by a
sequence of control vertices forming a control polygon. Each
control vertex is associated with a knot in parameter space. For
surfaces the control vertices form a control grid corresponding to
the Cartesian product of two knot sequences. In general, knots can
be any non-decreasing sequence of parameter values, but frequently
the special case of uniform knot spacing is used. Distinct knots
and control vertices always define curves with at least second
degree continuity. Allowing the same knot value to correspond to
more than one control vertex (knot multiplicity) reduces the degree
of continuity at that point on the curve.

Various end conditions can be forced. Common conditions
are that the curve pass through two specified points (interpolation),
that it start and end at two specified points (position), or that it
have particular tangents at its ends (derivative). It is also possible
to control end conditions by repeating the first and last control ver-
tex one or two times (double and triple endpoints).

Each of these modifications produces a different family of
curves. The key aspect of B-splines that separates them from some
other techniques is their local control. Changing control vertices or
knots affects the curve only in a small neighborhood of the change.
This can be very important for modelling applications. It means
that minor changes to the headlight housing will not effect the rear
trunk of an automobile body. The property of local control follows
from the mathematical definition of the B-splines, but it is equally
important to have an intuitive understanding of this fact. The
latter is best learned from experience with an interactive system
such as the one we have implemented.

Beta-Splines

The Beta-splines form a different set of functions. They are
one way of relaxing the continuity constraints on B-splines, less gen-
eral than using multiple knots. The change in Beta-splines from B-
splines is the addition of two shape parameters that control bias
and tension. Tension has an easy intuitive definition. As the ten-
sion parameter is increased the curve (surface) converges to the
control polygon (grid). Bias is less intuitive (one reason we have
implemented an interactive system that shows the effect of chang-
ing bias). It is a weighting of tangent vectors between two adjoin-
ing segments (patches) of the curve (surface). Mathematically the
difference can be described as substituting a notion of geometric
continuity (unit tangent vector and unit curvature vector) for the
algebraic continuity (in terms of the parameterization) required in
B-splines.

Although Beta-splines define a subspace of curves and sur-
faces achievable by B-splines with multiple knots, they are prefer-
able to B-splines for many applications because of the shape param-
eters. With B-splines the only method available is the placing of
control vertices and the manipulation of multiplicities. The two
shape parameters are a more natural way of achieving most (but
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not all) of this control.

Again, the properties of Beta-splines have been studied
mathematically, but some of the results are best understood by
experimenting with the shape parameters. Large values of the bias
parameter, for example, lead to kinks in the curve, where it
nvershoots a control vertex and has to “double back™ This 1s

predicted by the equations, but a picture on the screen is often
easier to believe than a formal proof.

New Results

Two generalizations of the Beta-splines have been explored to
date. The continuous Beta-splines allow the shape parameters to
vary at each control vertex, allowing even more local control [Bar-
sky82], [Barsky83a], [Barsky83b]. In this case the shape parame-
ters can either be set globally with the same value for every control
vertex (the normal Beta-spline definition) or locally with a different
value for each control vertex. There is at least one other way to
generalize Beta-splines to have local shape, called the discrete
Beta-splines [Bartels83a). It also has different bias and tension
parameters for each control vertex, but the class of curves is dif-
ferent from those obtained with the continuous Beta-splines.

Recurrence relations for the B-splines and Beta-splines can be
derived from divided difference formulas. These lead naturally to
subdivision algorithms for rendering based on the Oslo algorithm.
Refinements on these techniques are being developed using sym-
bolic computation tools to handle the often tedious formal calcula-
11ons.

This aspect of our research is being pursued both for its
potential use in Computer Aided Engineering and for its intrinsic
mathematical interest. Similar ideas have also been applied to a
different class of splines used in computer animation [Kochanek83],
[Kochanek84].

3. Interactive Exploration of Modelling Parameters

An interactive system that illustrates most of the issues dis-
cussed in the previous section has been implemented on an Evans &
Sutherland Multi Picture System (MPS). The system provides
real-time feedback showing the effect of changes to control vertices,
knots, shape parameters and end conditions. 2-D curves con-
structed from B-splines or Beta-splines can be constructed and
manipulated. A full 3-D surface version is being built. The 2-D
system was implemented in two stages.

Implementation on the MPS had to await the installation of
basic device drivers to accommodate the MPS under the Unix
operating system. A driver for the Evans & Sutherland PS-2
obtained from the University of California at San Francisco was
modified for this purpose [Hayes83]. While this conversion was in
progress, a prototype for the spline package was implemented using
software already available on our Adage/lkonas frame buffer. The
second version of the system carried over many of the ideas from
the prototype, but incorporated significant improvements to the user
interface that were difficult to achieve on the raster system.

The Raster Prototype

The interactive spline package divides the frame buffer into
two logical pieces, a segmented display list processor and a static
frame buffer that supports interactive menus through colour lookup
table techniques. Multiple bit planes were used with some bit
planes reserved for scan conversion of segmented display lists and
other bit planes reserved for menus.
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The segmented display list processor was an earlier project
used to provide basic graphics support on the frame buffer [Bres-
1in82]. It provides a low-level capability not unlike the hardware
features present in calligraphic displays such as the MPS. User
programs define segments (sequences of display primitives such as
move, draw and include subsegment) which are down-loaded to a
resident bit-slice microprocessor. During each refresh cycle (the
normal 30 hz video readout) the auto-clear feature of the frame
buffer zeros the bit planes containing the scan-converted dynamic
segments. Synchronized with vertical retrace, the bit-slice
microprocessor traverses its display list (stored in local static RAM)
and regenerates the display, updating any segments that have
changed.

The package is limited in the number of vectors it can draw
between vertical retrace and the time the video readout accesses the
frame buffer during the next display cycle. Written directly in
microassembler, it achieves fairly efficient drawing times. The
overhead maintaining the segmented display list is kept low by lim-
iting the operations to basic primitives. 2-D translations are sup-
ported, but full transformations are not and no clipping is per-
formed. The segmented display list maintains static segments for
the curve, its control polygon, and the individual control vertices.
It also maintains a dynamic segment for the screen tracker associ-
ated with the graphics tablet and puck (the primary input device).

Because regeneration time is critical, the static segments are
only updated when necessary. Whenever a control vertex is added,
deleted or moved the appropriate segment is modified and
redisplayed. The curve itself is only updated under user command
because the package is not capable of maintaining a flicker-free
display for the number of vectors necessary to render a smooth
curve.

The dynamic tracker segment is constantly updated to insure
prompt lexical feedback to the user. The tracker is used to imple-
ment a locator for positioning control vertices, a pick for selecting
control vertices for deletion, and as a button (or choice) for control-
ling mode and command selection. The latter is a menu-based
scheme in which only those menu items currently selectable appear
on the screen. The item selected by the tracker is highlighted
(additional lexical feedback) and changes colour when it is con-
firmed by a button push on the tablet’s puck (providing closure for
the selection task).

The menu package was originally implemented as part of an
interactive editor for Benesh dance notation [Singh82], [Singh83].
It was built on top of the segmented display list processor and basic
system routines for communicating with the lkonas frame buffer.
The menus are drawn once, during the initialization phase of the
program, and colour lookup table techniques are used to “pop up"
menu items as they are needed.

Each menu item is assigned a distinct colour number. Menu
items not in use have their lookup table entries loaded with the
background colour. As they become selectable the entries are
changed to a visible colour. When the tracker points to a menu
item its lookup table entry is changed again to perform the
highlighting, and when confirmed it changes a third time to indi-
cate that a selection has been made. An advantage of this
approach is that there is a complete traceback of the user’s choices
visible on the screen. Inactive menu items are returned to the
background colour.

After its development for the dance editor the menu package
was used to build a prototype VLSI layout system (later moved to
Orcatech 3000 workstations) and the spline editor. Similar tech-

niques have been used in other systems implemented within the
Computer Graphics Laboratory and constitute a major area of our
research into effective interaction techniques.

The raster prototype allows the user to construct interpolating
B-splines through the addition, deletion and modification of control
vertices. Its primary drawback is that the really interesting
changes, those that result from moving control vertices, require too
much recomputation to be performed within a single vertical
retrace. Elaborate boxing tests could be used to reduce the amount
of computation, but self-intersecting curves and other pathological
cases would still be difficult to handle efficiently with a general
algorithm. Our plan from the start had been to use a line-drawing
system capable of real-time transformations to provide a view of the
curve changing in response to control vertices being dragged to new
positions.

The Calligraphic Version

The Evans & Sutherland Multi Picture System contains a
very powerful display processor capable of transforming a seg-
mented display list at close to real-time rates. A double buffering
scheme whereby the previously transformed display list is used to
refresh the screen during the next transformation cycle guarantees a
flicker-free display even when the transformations cannot be per-
formed in a single refresh cycle. The system uses a high perfor-
mance monochrome display (4096 addressability) that provides very
fast line and character drawing.

The prototype package written for the Ikonas frame buffer
was used as a model for the MPS package, but most of the pro-
gram was written from scratch because the system was re-designed
to take advantage of the unique capabilities of the MPS. The
scope of the package was also broadened to include Beta-splines
with user specification of control vertices, their multiplicities, global
and local shape parameters, and a variety of endpoint conditions.

The MPS package employs a static menu system. In the ITko-
nas package many of the menu items trigger updates to the display.
This is performed automatically in the MPS version so those menu
items are no longer needed. Many new menu items have been
added that set modes. These are more natural to display per-
manently, so the user sees the state of the system.

The screen is divided into a number of separate windows.
Some contain menus, grouped according to function. One window
contains the primary display showing the control vertices, the con-
trol polygon and the curve defined by the control vertices. Two
auxiliary windows show the x and y coordinates of the control ver-
tices to facilitate independent control over the two axes (implicitly
giving the knot parametrization). A fourth window displays the

basis functions and a fifth window is used to set shape parameters.

All of this occupies too much area to be effectively displayed.
The solution we chose was to allocate the majority of the screen
area to one of the windows (the default large window is the primary
display showing the curve), relegating the other windows to much
smaller areas. These provide a quick overview of the information,
but sometimes not enough detail for fine-tuning. The user can
“swap” any two windows simply by selecting the appropriate menu
item and then pointing at the windows to be swapped. If the large
format is still not enough, any window can be zoomed using another
menu item followed by a center and scaling selection.

Display parameters selecting the control vertices, the control
polygon and the curve itsell are implemented as menu items that
toggle. This allows the user to tailor the display to his needs.
Parameters such as endpoint conditions and global vs. local shape
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parameters are also implemented as toggles. Their status is always
available in the menu area because the current setting is
highlighted using the brightness control available on the MPS.

Single, double, and triple end conditions may be selected
which implicitly change the multiplicity of the first and last control
vertices. Multiplicities of one, two or three can be set explicitly for
any control vertex. The curves can be either open (distinct end-
points) or closed (the curve wraps onto itself).

Shape is controlled globally using two sliders for the bias and
tension parameters, or locally by first picking a control vertex and
then the two parameter values using the sliders. The sliders are
implemented using the graphics tablet as a valuators. As the bias
and tension parameters are changed, the curve changes automati-
cally. Effects such as kinks are readily visible using these controls.

One aspect of the MPS implementation that is not very satis-
factory is the lexical feedback. The primary input device is the
tablet and stylus attached to the MPS. One bottleneck is communi-
cation with the host. To provide effective tracking the host must
interrogate the MPS. This is multiplexed with display updates
using the same I/O facilities. A bit embarrassingly, the MPS pack-
age sometimes is more sluggish than the Ikonas version.

Some of this is no doubt remediable with better software,
especially the use of multitask programs that isolate the input and
output functions into more natural modules. This organization has
worked well on other systems, most notably an interactive Paint sys-
tem [Beach82], [Booth84], [Plebon82]. The Evans & Sutherland
PS-300 system takes a step in this direction by providing a 68000
microprocessor to ofchestrate the input devices, although the initial
versions offered little opportunity for application programs to con-
trol critical aspects of the user interface. This is an area that we
feel needs the most attention in our present implementation. Our
current driver does not take advantage of all of the features avail-
able on the MPS because it was originally programmed for a PS-2.

Additional Features

The extension to 3-D is the next obvious step. The present
version of the system handles only 2-D curves. Curves in 3-D
would be easy to add to the display, although the specification of
control vertices in 3-D presents some interesting problems for the
user interface. Full 3-D surfaces are the ultimate goal. Some prob-
lems are anticipated for elaborate surfaces, both because the
number of vectors is large (a potential flicker and update problem)
and because the image becomes “busy” and difficult to understand,
especially if the control grid is superimposed on the surface.

Our current efforts are directed toward tuning the user inter-
face and providing a complete set of examples to illustrate the
mathematical theory. The system has been used in a graduate sem-
inar as an aid to understanding the properties of B-spline and Beta-
spline curves and surfaces.

4. Rendering Algorithms

The images produced by our modelling system are restricted
to 2-D curves. Other work within the Computer Graphics Labora-
tory has concentrated on rendering algorithms for 3-D surfaces.
One early project was a system for defining surfaces of rotation and
extrusion that were rendered using realistic shading models [Sher-
wood83]. Our latest work in this area uses ray-tracing algorithms
employing subdivision of the knot sequence [Sweeney83].

The rendering algorithms accept structured scene files com-
posed of polygons, spheres, cylinders and freeform surfaces. Multi-
ple light sources may be specified and each object may receive a

texture map from an existing image. Optional properties include
Cook-Torrance shading and reflection-refraction calculation.

5. Future Plans

We see the primary purpose of the current system as an aid
to research and teaching. The balance between theoretical con-
siderations (properties of B-splines and Beta-splines) and the practi-
cal considerations (user interface design and rendering algorithms)
provides a number of challenges for the system designer.

On the theoretical side, we have yet to implement non-
uniform knot spacing, the discrete version of the varying shape
parameters, and some of the end conditions such as position, deriva-
tive and interpolation. For the user interface we need to make
better use of the refresh and device controller in the MPS to
improve interaction times. Many tasks now performed by the host
could be handled by the MPS.

The 3-D implementation is likely to be quite different from
the 2-D package. The issues involved with surfaces are somewhat
different from those for curves, even though the mathematics is
very similar. The issue of local control becomes a bit more difficult
because the Cartesian product construction for patches means that
introducing multiple control vertices or multiple knots has the
undesired side effect of increasing the number of patches in a more
global sense than for the simple case of curves. We are investigat-
ing subdivision techniques that work locally within the control grid
to overcome this. We anticipate that these issues will overshadow
considerations such as end conditions, which do not have nearly as
interesting properties for surfaces as for curves.

The effective use of colour is something we have not fully
explored in this context, although we are pursuing a number of

projects based on the use of colour in computer graphics [Goetz82]
[Schwarz84]. Work is also being done on more efficient rendering
algorithms for raster displays. We are attaching a special purpose
geometry processor (a custom microprocessor designed and imple-
mented at Tektronix Laboratories [Bates82]) to our Ikonas frame
buffer to provide a real-time transformation capability for raster
images.

All of this work uses the frame buffer. Many of the critical
inner loops run in microcode using a compiler for a subset of the
“C" programming language written for the bitslice processor on the
lkonas [Gurd83].

Qur current implementations have taken into account the
display technology (raster or calligraphic) available. Newer systems
such as the Silicon Graphics Iris workstations or workstations
developed by Orcatech offer an attractive marriage of raster and
calligraphic capabilities. We plan to explore this in greater detail
as such systems become available.

Real-time display of full shaded surfaces is still in the future,
but simple z-buffer visible surface calculation with faceted shading
from a single light source is possible now. Incorporating the full
flexibility of general spline techniques into this environment
requires a complete understanding of the issues we are addressing.
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