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ABSTRACT

Soft filling algorithms change the colour of an anti-aliased region, while maintain-
ing the anti-aliasing of the region. The two published algorithms for soft filling
work only if the foreground region is anti-aliased against a black background.
This paper presents three new algorithms. The first fills against an arbitrary
single-coloured background and is faster than the published algorithms on a
pixel-by-pixel basis for an RGB frame buffer; the second fills against a back-
ground composed of two arbitrary colours; and the third fills against a back-
ground composed of three arbitrary colours. As the power of the algorithms
increases, so do the number of assumptions they make, and the computational

cost.
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1. Introduction

A region is a group of connected pixels in a frame buffer.
This region possesses a certain colour, which may have been
created by direct user "painting”, or as the result of a rendering
algorithm. The problem of changing the displayed colour of this
rendered region is known as filling. The filling algorithm has no
"world knowledge™ of the characteristics of the region; it is given
only the old colour of the region, the new colour desired for it,
and one “seed point” known to be inside. Given this informa-
tion, the algorithm traverses the region, changing the old region
colour to the new,

If the region is anti-aliased, or was painted with a non-
opaque brush, the process is known as soft filling, and the region
is termed soft-edged. If the region is defined by a boundary, its
colour is changed by boundary-filling algorithms; if the region is
defined by its interior values, its colour is changed by flood-filling

Y i . "
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algorithms. In this paper we focus cn flood filling, although our
algorithms work equally well for boundary filling.

We refer to the region whose colour is to be changed as the
foreground, and the colour of that region as the foreground
colour. The set of underlying colours that surround the fore-
ground are the background colours. For a soft-edged region, the
foreground is considered to include those pixels that are partial
blends of the foreground and background colour(s). Conceptu-
ally, each pixel only partially contains the region colour; only this
part of the pixel's colour should be changed.
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A filling algorithm can be decomposed into four com-

ponents:

. The START procedure: processing done to initialize the
algorithm.

. The propagation method: how the algorithm decides where
to search for the borders of the region.

@ The INSIDE procedure: the processing done when a pixel is
read to decide whether it is to be filled. (Smith's® GET
procedure is contained in this).

. The SET procedure: the processing done to change the
colour of a given pixel.

The two published algoritkms for soft filling® ® work orly if
the foreground region is rendered against a black background. In
this paper, a family of new algorithms is presented. The pub-
lished algorithms are shown to be computationally less efficient
special cases of the first new algorithm, which fills against an
arbitrary single-coloured background. The second fills against a
background composed of {wo different colours, and the third
against a background composed of three different colours. As the
power of the algorithms increases, so does the cost of computa-
tion.

2. Existing Algorithms

2.1. Interior Fill

When the region is not anti-aliased, a simple, quick algo-
rithm known as interior fill® can be used. This algorithm suc-
cessfully fills against an arbitrary number of arbitrary back-
ground colours. However, it assumes hard-edged, non-anti-
aliased regions.

2.2. Tint Fill

When the region is soft-edged, the problem is much more
difficult. The edge of the region (or even the interior, if the
region is shadowed or has specular reflection) gradually blurs into
the other colours. Deciding when a pixel is INSIDE, and if so to
what degree it is composed of which background colours, is a
more difficult matter.

The most popular algorithm for soft filling is Smith's tint
fill® In a later paper,® Smith presented an improvement on the
propagation algorithm; more substantial modifications of the pro-
pagation algorithm are discussed by Levoy.?

Tint fill is a significant improvement over interior fll for
many soft-edged regions. However, it has two significant disad-
vantages:

1)  The intensity at the old pixel is retained. This is only
appropriate when the intensity of the new foreground is the
same as that of the old foreground. For most renderings,
this is not the case.

2)  The algorithm only works against a black background.!

We wish to stress that these disadvantages apply only for
RGB frame buffers; tint fill is "tuned” for a colour-mapped
environment, and within that environment works for any region.
Advances in technology have made full RGB frame buffers more
viable, prompting our attempt to further expand the power of

filling algorithms in the RGB environment.

At the end of his initial article, Smith® brieBy sresents a
number of speculations about his algorithm wkich, as we under-
stand them, could mitigate both of these disadvantages by using
a number of special cases. Smith has since stated” that these
speculations were not implemented; therefore, we will not con-
sider these alternatives. Smith later solved the problem of filling
against a single-coloured background,® but has not publiched or
discussed the algorithm and therefore it cannot be evaluated
here.

3. The Family of New Algorithms

We present a family of three new filling algorithms, each of
which makes three assumptions:

(1) The background colour(s), whatever they may be, are
known. While this is much less restrictive than assuming a
black background, it may not hold for all applications.
Furthermore, we stress that a "background colour” is any
colour that contributes to the colour of the pixels within
the region. It may be the case that no pixel purely consists
of a background colour, and a background colour may not
even correspond to a physicel background region. For
example, if the region is partially in shadow, black will be
one of the background colours, even though there may be
no black pixel, and no black "region” per se. Regions
painted with fuzzy brushes and regions with specular
highlights are similar examples.

(2) The anti-aliasing process operates on the linear space
between colours; in other words, an anti-aliased pixel lying
between 3 colours will possess a colour that is a convex
combination of those colours in colour space. This assump-
tion is the key to all the algorithms; it holds for all additive
colour spaces (XYZ, RGB, YIQ, etc.) due to the additive
nature of light.

(3) No pixel is considered INSIDE twice. While this assump-
tion is mot true in Smith’s original propagation algorithm,®
it holds in his later algorithm ® and also holds for Levoy's.3
If this assumption does not hold, it can be enforced by
reserving one bit plane of the frame buffer to manually
keep track of which pixels have been read,

The new algorithms are independent of propagation
method; they can be implemented using either Smith's®® or
Levoy's® propagation methods.

Fundamentally, the three new algorithms presented solve a
system of three equations in one, two, and three unknowns,
respectively. As the number of unknowns increases, so does the
power of the algorithm, as well as the computational expense.
The algorithms approach the problem uniformly, and differ only
in their generality and speed.

A note on notation: a colour will be represented as the vec-
tor triple C. The components will be referred to as €% ¢!V and
CPl. In the case of a colour in the RGB system, ¢ ¢!l and
CH refer to the red, green, and blue components, respectively.
In general, we use the notation of Table 3.1.
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Table 8.1: Notation and Symbois
Symbol Meaning
B colour of the background
BV j'th component of the background colour
B, i'th background colour
B, old foreground colour ( =F)
B V! j'th component, i'th background colour
g number of background colours
d denominator/determinant
F old foreground colour ( = By)
G new foreground colour
n number of bits in each colour component
N number of values for each colour component
P colour of an arbitrary pixel
t an interpolation factor
T a vector of interpolation factors
vy value of the colour X

3.1. Linear Fill

This section presents a simple, fast algorithm to soft fill
against any single-coloured background, termed linear fill.

Given the assumptions of the previous section, the algo-
rithm is almost embarrassingly simple. Let the colour of the old
foreground be F (known by user specification), the background
be B (known by assumption (1)), and the present pixel be P.
Then, by assumption (2), P is a linear interpolation between F
and B:

P=1tF + (1-1)B, (3.1)

where 0<t<1 is the proportion of foreground colour in the
present pixel colour.

The value of t is the same across all components of the
vector, and can be found from any component i in which
Flz£ B! If more than one such component exists, the one with
the largest value of | F'LBI'| is chosen to reduce discretiza-
tion.! If there does not exist such an 1, the 2lgorithm will fail.
This is a pathological case, in which the foreground and back-
ground are of the same colour. This case can be trivially
detected in advance, and it is usually assumed that it will not
occur.

The START procedure can be written as

find the dimension i in which | FI'LBU| is largest.

d = FiLpll
The INSIDE procedure is

set { to (P'-Bl)/d

if t > 0, pixel is inside the foreground with percentage ¢
And the SET procedure is

P =1tG + (1-¢)B,
where G is the new foreground colour.

3.1.1. Advantages of Linear Flll

Linear fill can be shown! to possess three significant advan-
tages:

1) Linear fill is a proper generalization of tint fill

2)  For an RGB frame buffer, lizear fill is faster thz= tint fill,
due to the expense of color syctem conversion.

3)  Linear fill works for any single-coloured backgrou:.:.

3.1.2. Limitations of Linear Fill

The linear fill algorithm fails in the pathological case when
the foreground and background possess the same colour. Linear
fill has a more significant limitation; even though it can fill
against an arbitrary single-coloured background, it is not applica-
ble if the background is composed of more than one colour, as is
often the case in a complex shaded scene.

Formally, let the foreground colour be referred to as F, as
before, and the unique background colours as the set
{ B;By, - - By }. Linear fill works if and only if 8= 1.
The most general filling algorithm should work for arbitrary g.

3.1.3. Increasing §

Writing the components of equation (3.1) yields
PP= tFPly (1-t)BY,
Pl= ¢ Fitly (1-t)B"Y,
P¥= (FF4+ (1-t)BW,
where 0<t<1
This is a system of three equations in one unknown. The
next two algorithms, triangle fill and tetrahedron fill will replace
this system of equations by similar systems in two and three unk-
nowns. A fill algorithm in # unknowns works for a set of back-
ground colours { B;,By, - - - By }. Unlike earlier algorithms for
multi-coloured background filling,2 we allow a pixel to have any
or all § background colours present in its composition. This is
often the case for pixels at the intersection of regions, in shadow,
in areas of specular reflection, ete.

3.2. Triangle Flll

Linear fill assumed a background composed of exactly one
underlying colour, not equal to the foreground colour. Every
pixel found lay on the line in colour space between the two
colours. Triangle fill solves a slightly more difficult case, a back-
ground composed of exactly two underlying colours. In colour
space, the background and foreground colours now form the ver-
tices of a triangle; by assumption (2) of section (3), all pixels
found will lie inside this triangle.

Let the colour of the foreground be F, and the colour of an
arbitrary pixel be P, as before. Let the colours of the background
be B, and B,. Let By=F for notational convenience. Extending
assumption (2) of linear fill to this problem, it follows that

P = T'B,+ T"'B, + T?B,.
This planar equation in three variables can be written as an
equation in two variables, since T® 4+ T 4 T8 = 1,

P = TPB,+ TUB, + (1-T°LTM)B,
In terms of the unknowns,

P-B, = TY%ByB,) + T"(B,-B,)
Writing in component form,

PUI _ 32D] — TM[BOL']—BzU’) + Tl'll{Bibl_ B,

for j =0,1,2

This is an over-constrained system of three equations in

two raknowns, and can by solved by using Cramer’'s rule on
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some two of the three eguations:

pirI_thri. BtLB,"
PUL Ul B ULB DI

TP = 7 (3.2

BOII;_Bg[‘i P['L-Bgr'!
B,tLpB,U! pulLp,Ul

TH = 5
where i£j € {0,1,2} ,

B,"LB,I" p,bLp,ll
and 4= 51 gl g ulpg,b

3.2.1. Implementation
For triangle fill, the START procedure is:
i#je{012}

find 1,7 such that d is maximized®,

The INSIDE procedure becomes:
Compute T T by equation (3.2).
If T>0, the pixel is inside the foreground with percen-
tage T
(7" known in [0...1] by assumption (2) of section (3))

The SET procedure replaces the percentage of the old foreground
with an equal percentage of the new, as in linear fill:
P=TYG + T"B,+(1-TPLTM)B,

3.2.2. Limitations of Triangle Fill

The START procedure of triangle fill must find the denom-
inator of equation (3.2). Triangle fill will fail when the denomi-
nator is equal to zero for all choices of i and j, i7j. Under
what conditions will this hold? Assume the denominator is zero.

Then

0 = (BVLB,)(B,"-B,")
- (Bo"-B,")(B,"-B,") ,
\/ij€e{012},i#;)
This set of scalar equations is exactly equivalent to the vec-
tor equation

0 =(By-B;)X(B,-B,),

This equation holds if and only if {By-B,) and (B,-B,) are
linear multiples of each other. This condition is true if and only
if By, B,, and B, are collinear. If one of the colours is black, this
condition arises if and only if the remaining two colours possess
the same chromaticity (hue and saturation).

K] e . ’ - . —
Az in linear 6ll, choosing the maximum denominator minimiges discretization
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3.2.3. Trlangle flll summary

To reiterate, triangle fill fills a regicn surrounded by two
background colours. It is more expensive computationally than
linear fill. The start-up cost of computing a 2-by-2 determinant
is added, and the per-pixel processing is also increased. Unlike
linear fill, which works whenever the foraground and background
colours are not coincident, triangle fill requires a slightly stronger
condition, that the background colours are non-collinear.

3.3. Tetrahedron fill

Tetrahedron fill uses the full power of the mathematics
available, solving a system of three equations in three unknowns
to fill against three background colours (the case §=3).

We wish to find TP, 7%, 7P T® such that

P= TVB,+ T'B,+ T¥B,+ TPB, (3.3)

By fundamental linear algebra, three linearly independent
three-dimensional colour vectors span the three-dimensional vec-
tor space. Both linear fill and triangle fill found a unique combi-
nation of fewer spanning vectors in smaller subspaces.

It may appear surprising that tetrahedron fill can find a
solution, trying to find a unique linear combination of four vec-
tors in a three-dimensional space. One extra degree of informa-
tion, the knowledge that the sum of the weights is unity, allows
this. Using this observation to set TPl 4+ Tl 4+ 7@ 4
TP = 1, equation (3.3) becomes an equation in three variables,

P =TPB,+ TM'B,+ TPB,+ (1-TPLTML-TH)B,

In terms of the unknowns T, T, and T®:

P - By = TF(ByB;) + T"(B,;-Bs) + TP(B,B,).

Let the row vector T be [T'Ol, T Tm]. Then this can be rewrit-

ten as
o-Ba
P-B; = T#B,-B;
By

This is one vector-valued equation in one vector-valued
unknown (T):

[P—Ba] = Tﬁ, where

_ 0-Bs
M = IB,-B, (3.4)
7By

The unknown T can be found by matrix inversion or Gaus-
sian reduction.

3.3.1. Tetrahedron flll procedures

__ The START procedure for tetrahedron fill inverts/reduces
M. We denote the inverted M by M, the reduced M by U.

Tt~ INSIDE procedure for tetrahedron fill is

T = [P-ByM™ for inversion
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TG = [P-By| for reduction
If T”'>0, the pixel is inside with percentage 77

The SET procedure becomes a trilinear interpolation:
P=TPG + T!B, + TVB; + (1-TOLTM-TF)B,

3.3.2. Summary of tetrahedron fill

To reiterate, tetrahedron fill will fill a regior surrounded by
three background colours. It is more expensive computationally
than triangle fill; a start-up cost of computing a matrix inverse is
added, and the per-pixel processing is also increased.
Tetrahedron fill is also not perfectly robust, requiring that the
colours are not coplanar.

3.4. Power comparison

Each of the fill algorithms faiis under certain conditions.
We now pose two questions. First, if a fill against 5 background
colours fails, could the fill succeed by adding a dummy 5+ 1)'st
background colour, and -using a different algorithm? Second, if a
fill against 4 background colours succeeds, is it guaranteed that
filling against any or all 3-1 of the same background colours will
succeed? We answer the first question in the negative with
theorems 1 and 2, and the second in the positive with theorems 3
and 4. The proofs of the theorems can be found elsewhere.!

Theorem 1: Linear failure implies triangle fatlure.
Theorem 2: Triangle failure implies tetrahedron failure.
Theorem 3: Triangle success implies linear success.
Theorem 4: Tetrahedron success implies triangle success.

3.5. Summary of the three fills

A brief summary of the algorithms’ characteristics is shown

by Table 3.2.

Table 8.2: Summary of fill algorithm ezpense
Procedure Algorithm
linear triangle tetrahedron’
START minimal find 2-by-2 | invert 3-by-3
determinant matrix
INSIDE multiply compute 2- | multiply row
by-2 deter- | vector by 3-
minant by-3 matrix
SET linear interpola- | bilinear in- | trilinear in-
tion terpolation terpolation
fails when || By,B, coincident | B,B;,B, B, B, B, B,
collinear coplanar

* using the inversion approach for tetrahedron fill.

An exact performance count has also been performed for
the INSIDE and SET procedures in Table 3.3; the START
One minor optimization has
been employed for the INSIDE procedures of triangle and
tetrahedron fill; if T = 0, the procedure will not compute the
other elements of T.

expense is considered negligible.

Assuming that addition and subtraction, and multiplication

Table 3.8: Performance comparison
for a region with i interior and b boundary pizels.
Operation Algorithm
Linear  Triangle Tetrahedron’
tests i+b i+b i+b
= 4+ b 5i+ b 6i+ b
+ 3i 6i 15i+ 2b
- 4i+ b | 16i+ 5b 12i+ 3b
= 6i 13i+ 2b 21i+ 3b
/ i+ b 2i+ b 0
reads i+b i+b i+b
writes i i i

using the inversion approach for tetrahedron fill.

and division are each approximately equivalent in time, the com-
putational expense monotonically increases among algorithms.

4. Conclusion

This paper has presented a family of new algorithms for
soft filling. The computational expense and power increase
monotonically between the algorithms. The specific algorithm
that is “best” is determined solely by the particular rendering:
linear fill when only one background colour exists, triangle fill for
two background colours, and tetrahedron fill for three.

There remain two significant problems in the field: finding

the background colours without user help, and filling a region
with more than three background colours.
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