- 227 -

Strategies for Creating an Easy to Use Window
Manager with Icons

Brad A. Myers
PERQ Systems Corporation author's current address:
2600 Liberty Avenue Department of Computer Science
P.0. Box 2600 University of Toronto
Pittsburgh, PA 15230 Torontoe, Ontario, M5S 1A4
USA Canada
ABSTRACT

Sapphire is a powerful window manager for the PERQ personal work station. It was designed to
facilitate the single user's ability to monitor and control many different processes operating in
parallel and running in different windows. Sapphire contains a full implementation of the covered
window paradigm (where the rectangular windows can overlap like pieces of paper on a desk). In
order to make it easier to control processes Sapphire provides icons that display six pieces of
dynamically changing state information about the process running in the associated window. In
order to make it easier to control the windows, Sapphire provides a powerful set of operations
including: top, bottom, move, grow, reshape, full-screen, back-from-full-screen, off-screen, back-
on-screen, and many others. These commands are presented in a way that is easy to use and self-
explanatory for novices, without penalizing the expert. Almost all commands can be given either
by using the peinting device or the keyboard. Unlike other window managers, Sapphire also allows
all commands to be given using only the keyboard for users that do not wish to use the pointing
device. This paper describes the user interface to the Sapphire window manager.

RESUME

Sapphire est un puissant systéme de gestion de fenétres pour le poste de travail individuel PERQ.
Il a éLé congu pour permettre & un utilisateur unique de surveiller et contrdler plusieurs pro-
cessus actifs en paralléle dans plusieurs fenétres. Sapphire inclue la réalisation complete du con-
cept des "fenétres couvertes” (ol des fenélres rectangulaires peuvent se couvrir mutuellement
comme des feuilles de papier sur un bureau). Pour faciliter le contrdle des processus, Sapphire
fournit des icones qui affichent chacune dynamiquement six informations sur 1'état du processus
correspondant & une fenétre. Pour faciliter le contrdle des fenétres, Sapphire offre un ensemble
puissant de commandes, comme: haut, bas, déplace, croit, change-forme, plein-écran, retour-de-
plein-écran, hors-écran, retour-a-1'-écran, et beaucoup d'autres. Ces commandes sont offertes de
fagon & €lre facile & uliliser el evidentes pour les novices, sans handicapper les experts. Presque
toutes les commandes peuvent étre données soit par I'intermédiaire d'une souris ou d'un clavier.
A l'encontre de la plupart des systémes de gestion de fenétres, Sapphire permet aussi de donner
toutes les commandes en ulilisant uniquement le clavier pour les utilisateurs qui ne désirent pas
utiliser la souris. Nous présentons ici I'interface de 'utilisateur au systéme de gestion de fenétres
Sapphire.

Key Words and Phrases: Windows, Covered Windows, Window Manager, Personal Work Station, Point-
ing device, Icons, User Interface, Interaction Techniques.

Graphics Interface ‘84

1. Extended Summary.

Sapphire (the Screen Allocation Package
Providing Helpful Icons and Rectangular
FEnvironments) is a very powerful window
manager running on the PERQ personal work
station [Rosen 80]. The PERQ has a high reso-
lution screen and special hardware that can
display graphics quickly. Sapphire is now in
use by a fairly large community at PERQ Sys-
tems Corporation, Carnegie Mellon University,
and elsewhere. It supports a full implementa-
tion of the covered window paradigm (where
the rectangular windows can overlap like
pieces of paper on a desk) which is described
in a separate paper [Myers 84]. The covered
window paradigm was first introduced in
Smalltalk [Tesler 81] and DLisp [Teitelman
77]. In Sapphire, windows can cover each
other and can extend off the screen in any
direction (and may be entirely off screen).

All window managers can be logically
divided into three parts: the implementation
of the low level graphics primitives (such as
how the window manager prevents pictures in
covered portions of windows from showing),
the graphics the window manager presents to
the user (such as window title lines and
icons), and the operations that the window
manager allows the user to perform to mani-
pulate windows. The latter two parts of a win-
dow manager are collected under the heading
User Interface. This paper is a summary of
the user interface of Sapphire. It presents
some aspects of the design of Sapphire and
explains why they are interesting and novel.
The implementation of Sapphire is covered in
[Myers 84]. The reader is assumed to be fami-
liar with window managers in general and how
icons have been used in them.

Presentation of Windows. Windows in Sapphire
typically have title lines and borders (see fig-
ure 1). Applications may create windows
without either, but the title line is useful for
displaying state information, and the border
is useful for showing where the windows are.
One window is the one that the user is Lyping
to. In Sapphire, this is called the listener
window (since it is "listening” to the key-
board). The entire border of the Listener is
highlighted in grey so the Listener is easily
visible (figure 1).

- D93 =

Icons. The icons in Sapphire are very different
from the icons in the Star [Smith 82] or Lisa
[Williams 83]. In Sapphire, they were
designed to enhance the user’'s productivity
when he is doing multiple tasks concurrently.
To accomplish this, the icons present 6 pieces
of information about the process being run
(see figure 1). First, there is the process
name. Next, there are two "percent-done pro-
gress bars" [Myers P2]. Progress bars func-
tion like the giant thermometers used to
mark progress in charity drives. They give
the user enough information at a quick glance
to estimate how much of the task is com-
pleted. These are kept up to date by the
application program (or by the system for
certain operations), so the user can always
know how far along the process is. For exam-
ple, the compiler reports how far it is through
the file. The first progress bar is used by the
application and is repeated in the title line of
the window underneath the text. The second
progress bar, which appears only in the icon,
is used for aggregates, such as command
files, to tell how much of the entire job is left.
Most applications can calculate or estimate
what percentage of the work is complete, but
for those that cannot, Sapphire provides "ran-
dom progress' that shows that work is pro-
gressing by continually XORing vertical lines
at random places along the progress bar.

The last three pieces of process informa-
tion are shown as pictures in the icon. One
picture shows when the process is waiting for
user input, another tells whether there has
been an error in the last activity, and the
third is reserved for specific application-
defined attention signals. For example, this
signal might be used by a mail program to
report that new mail has arrived. The pic-
tures are presenl when the condition is true
and absent when it is false. The actual pic-
tures used are a keyboard, a bug, and an exc-
lamation point (figure 1), but these can be
easily changed by the user or application.

Icons also contain two pieces of informa-
tion about the state of the window. First, the
border of the icon for the Listener is
highlighted in the same manner as the win-
dow itself. Second, the icon displays a small
picture if the window has been moved entirely
off the screen.

Graphics Interface '84

= 279 -

's)spice’solarwin>nenw>shomshell.SEG 4
'srspicersolarwin>new>showshell. QMAP
'szspice)sularuin)neu)shoushell .SYM
n

=) J)Sysl)spice’solaruin’nen’shoushel’

n
Not found ==

ting for CR:

:ig83>1 ib>pascal showshell
RNttt >S5 >Brad 25nomShel kifss
wsdspicedsol|File written {OSysispic

is >Sysluser >I:r ad)

ursors>

indows>
nc/

ther>

earch
cmework\
eudemu\rapm
enos> errain>

iys>Solar>1it|Ki 11{>Sys>Salar>1 |b>sap

M |brad
e rom ersonal ernita
Impnrts PascalInlt fr
[>Sys>sigh: . ide>

iys>sigB3>lit var iconVP, picVP: Vi hd>
ETICON W, h: Integer:
‘syspice’sole) olar>
's;spice;so%z begin mas>
‘s’spicer’sole
n " InitSapbh; peech>
=) >Sysdspic| |InitViewPt: mas83>
n : imer >
ting for CR: IconAutoUpdate(UserWi
n GetIconViewport (Userk i |y S—————TIEW>
ting for CR: serlib
n picVP := LoadVPPictur
ting for CR: if picVP = NULLViewpc

else ViewRopliconVP, [Commands : B, C. H-(Help), Q, R, U

Jurite('Waiting for CR

§ wSprcaab%kib-Boat - ACCRRINISCRE
i »
b
E bpath :test
New path = >Sys>test)
% Paccpr intscreen
b

Type Help if you need it

P:spicedsolaruindnew>accpr intscreen
P:spicedsolarwin’newraccpr intscreen

]
DirTre
I=—

Figure 1. Sample Sapphire screen.

This is an actual picture taken from a PERQ running Sapphire. (The title line text in this figure may be difficult to read
due to properties of the printer.) The covered window at the upper left, which is running the Pascal compiler, is par-
tially off the screen to the left, and the window with the directory tree is partially off the screen to the right. Other
windows are running the editor, a clock program and the screen print program. This latter window has a grey border
to show that it is the Listener. The icon window at the bottom contains icons for all these windows and some that are
off the screen. The first, for the Mail program, has the attention signal displayed te tell us that there is mail, and the
three dots show that the window is off-screen. The next icon has an application-defined picture. Sapphire allows
applicalions to define arbitrary pictures for icons, although the standard information will, in general, be more useful.
The next icon is for the editor window and shows some of the name of the file being edited (editing "Show..."). The edi-
tor is waiting for the user to type something (shown by the keyboard). DirTre is also waiting for input. It is about 80%
done displaying the tree (top progress bar, which is repeated in the window title line) and it is part of a command file
that is about 20% done (bottom progress bar). The next icon corresponds to the Listener window. The next Icon shows
that the Tester program has run into an error (the bug), it is waiting for the user to do something, it is 60% done and
the window is off-screen. The next icon is for the clock and shows random progress. This progress is repeated in the
clock’s title line. Note that the icon window can be covered like any other window.

Graphics Interface '84

Although the icons are small (64 by 64
pixels each) they are easy to interpret, and all
of the state information is displayed in a con-
venient manner so the user can simply scan
the icons to deduce the state of his entire
computer system and easily decide which
processes require attention. Of course, if this
default icon information is not appropriate
for some processes, they can simply define
their own pictures to be displayed in the icon.
In this way, the icons of the Star or Lisa can
be easily simulated by Sapphire.

[n almost all other window managers with
icons, an icon appears when a window is
removed from the screen. Thus the window is
either displayed o7 it has been shrunk down
so that only the icon shows. In Sapphire, how-
ever, it seems clear that we want to see icons
for all windows since they provide so much
useful information. There is no logical differ-
ence between a window that is totally covered
by other windows and one that is off screen--
they are both invisible to the user. Therefore,
icons in Sapphire are visible for all windows.
A window may still be removed from the
screen in Sapphire by simply moving it so
that it is totally off screen (see below). The
icons are therefore associated with a window
rather than being an alternalive representa-
tion for it.

Another important difference between
icons in Sapphire and in other systems is that
Sapphire's icons are all grouped together in
one window. This allows the icons as a group
to be moved around or removed altogether if
the user does not like icons. The icon window
can be covered by other windows and its size
and position can be changed in the same way
as any other window.

The icons in the icon window are not rear-
ranged except on user command. Thus, when
a window is deleted, its icon is deleted but the
hole is not filled until another window is
created. Users will probably remember which
window goes with which icon by position*, so
it is important not to rearrange the icons
without the user's permission.

*Of course, there are also commands to identify
the icon for a window and the window for the icon
if the user forgets.

- 230 -

User Interface. Sapphire, unlike most other
window managers, does not reserve any of Lthe
buttons on the pointing device exclusively for
use by Sapphire. Any button pressed or
released inside the Listener window is sent to
the application running in that window. Thus
application programs, such as editors, are
free to use all the buttons to make their user
interfaces more powerful. To give window
manager commands for a window, the user
must press a button in the title line of the
window or in the icon for that window. To
change the Listener in Sapphire, the user
must make an explicit action by pressing with
a button in a window; just moving the track-
ing symbol is not enough.

Sapphire provides all window manager
commands from pop-up menus (which appear
when requested and disappear when a com-
mand is issued), but these are too slow for
frequent use by experts. Therefore, a single
button press is sufficient to give the most
common commands. These include top, bot-
tom, moving a window, and changing its size.
Another operation provided is making a win-
dow full-screen. This might be used, for
example, when more contextual information
is desired during an editing session. The user
can define whether "full-screen” leaves the
icons visible or not. When a window is made
full-screen, its old position and size are saved
so the window can be returned to its original
place. Similarly, there is a command to move
the window entirely off the screen. This can
be used to prevent the screen from getting
cluttered with windows that are not in use. A
command using the associated icon brings
the window back to its original place on the
screen.

The title line of a window is divided hor-
izontally into three sections: left, middle and
right. The left and right parts have the same
functions since windows are often covered on
one side or the other. The most common
pointing device for Sapphire has three but-
tons, so we have 3 (buttons) x 2 (areas) = 6
(functions) available on the title line. On the
ends of the title line are: (1) top, (2) bottom,
and (3) pop-up menu. The pop-up menu pro-
vides all the commands that can be given
directly from the title line so that a novice
can always find commands easily. The pop-up

Graphics Interface '84

menu also includes the command "help”
which generates a window in the cenler of the
screen explaining all the commands.

[n the cenler of the title line, the more
esoteric functions are provided: (4)
move/grow, (8) full-screen or back from full
screen, and (6) off secreen. When the user
selects move/grow, he then selects a position
on the window to move/grow from. The
corners are "'grow’ points, and the sides have
both "move” and “grow" points. Since win-
dows in Sapphire may be moved partially off-
screen in any direction, it is necessary to be
able to move them from any side. It is also
useful to be able to grow a window from dif-
ferent points if the user is trying to align one
window with other windows. During the move
and grow operations, and also during window
crealion, hair lines are displayed to show the
outline for the window so the user can place it
accurately.

The icons are too small to have three
areas so we are limited to three functions
total (one for each button). One button per-
forms "top"” and 'listener” and "back from
off-screen” all at once. Another button pro-
vides a pop-up menu with all of the com-
mands, and the third button identifies the
window that corresponds to the icon. This
operation is accomplished by blinking the
window and the icon, and drawing lines from
the corners of the icon to the corners of the
window. If the window is covered, the lines
show where it is so the user can send the
appropriate windows to the bottom for it to
be visible*.

With all these different functions, it
seems clear that the user will not always
remember which button will get which action.
In Sapphire, we provide a simple method for
showing the operation that will occur that
does penalize experts. When a button is
pressed, the tracking symbol changes to a
picture that shows the operation that will be
performed (see figure 2). If this is the
desired operation, then the button is simply
released. If this is not the desired operation,

*Of course, the user can sirnply bring the window
to the Lop using the first icon command.

= 231 -

then the user can move the tracking symbol
around to the correct place (if in the title
line) or move it away to abort before releas-
ing. Thus the expert can simply press and
release without waiting for the picture, and
the novice can check all operations before
execuling them. While performing multi-step
tasks like growing a window or choosing from
a pop-up menu, Sapphire also displays an
appropriate tracking symbol picture. This
can be used, for example, to verily whether a
“"move’” or a "grow"” will be performed. Also,
the user can always abort these operations by
hitting a keyboard key, so he is never stuck in
a mode that he does not know how Lo leave.

For some reason, there are a number of
people who prefer not Lo use a pointing dev-
ice. Therefore, all commands are also avail-
able from the keyboard in Sapphire. Since
there are a number of commands, we use a
special prefix key (that does not have a stan-
dard ASCIl interpretation). This avoids the
problem of taking many characters away
from application programs. The keyboard
commands are also useful if the pointing dev-
ice is broken, or if some process has reserved
it or changed the tracking in arbitrary ways.
The prefix key returns the tracking to the
standard default so that users can always give
commands using either the keyboard or the
pointing device.

All of the operations available from the
pointing device or pop-up menu have
corresponding keyboard commands. In addi-
tion, one keyboard command changes the
Listener to the next window in a certain
order, and the other keyboard commands Lyp-
ically operate on the Listener. One of the keys
on the PERQ keyboard is labeled "HELP" and
this provides help for Sapphire if typed alter
the prefix key. Finally, there is a special key-
board command to find the icon window if it
has been moved off screen or covered.

2. Conclusions

Sapphire incorporates a number of dif-
ferent innovations in window management
and user interface design. Icons in Sapphire
are used in a novel way to enhance user

Graphics Interface ‘84

- 232 -

o

8. oy 9. Ie.h Ll
7 " I

15.lg|_ 15.£ 1?__]@ 1a.|9

i (_)l 23. Q?F Z2%.
N

12.

18. | ZO.T 21.

Figure 2. Tracking Symbols used in Sapphire.

When the user presses down on the pointing device, the tracking symbol picture changes to show what operation will
be performed. If the operation requires multiple actions (for example, when growing a window), the picture changes at
each step to show what is expected next. The pictures above represent:

[94]

© ® X @

10.
11.
12.
13.
14.

The system default cursor.

The default Sapphire cursor (a star Sapphire ring).
Make this window be the Listener.

Bring this window to the top.

Send this window to the bottom.

Top and Listener (used in the icon).

Get a pop-up menu of commands.

Return the window from full screen to original position.
Make the window full-screen.

ldentify the icon for this window.

Change size or position of window from any side or corner.
Change the window's size.

Change the window's position.

User-specified abort of any operation.

15-22. Specify corner or side of the window.

23.

24.

Identify the window for this icon.

Get a pop-up menu from icon.

Graphics Interface

'84

productivity when multi-tasking. They allow
the user Lo more easily monitor and control
multiple processes and windows since Lhey
conltain eight differenl pieces ol process and
window stule information. The user interface
of Sapphire is easy for the novice while pro-
viding simple and powerful operations for
experts. The user interface promotes experi-
menlation since there is always appropriate
feedback in the tracking symbol to tell which
operations will be performed, and it is always
possible to abort an operation once it has
been started.

Sapphire is currently in use by a growing
community of people in different fields. It is
conlinually being modified based on user
feedback as we discover how to make il even
easier to use.

ACKNOWLEDGEMENTS

The design of Sapphire grew out of discussions
with Gene Ball, Fred Hansen, Dave Golub and many oth-
ers at CMU and PERQ Systems Corporation. Dave Golub
and Amy Butler have been largely responsible for
maintaining Sapphire. For help and supporl with this
paper, I would like Lo thank my wife, Bernita Myers, and
Alain Fournier, William Buxton, and Brian Rosen,

- 233 -

References

[Myers 84] Brad A. Myers. “A Complete
Implementation of Covcred Win-
dows for a Helerogenecus
Environment,” Dynamic Graphics
Project Technical Memo. Univer-
sity of Toronto Computer Science
Department, 1984.

[Myers P2] Brad A. Myers. "The Iniportance
of Percent-Done Progress Bars
for Computer-User Interfaces'.
In preparation.

[Rosen BO] Brian Rosen. "PERQ. A Commer-
cially Available Personal Scien-
tific Computer.” [EEE CompCon
Digest, Spring, 1980.

[Smith 82] David Canfield Smithk, Charles
Irby, Ralph Kimball, Bill Verplank,
and Erik Harslem. "Designing the
Star User Interface." Byte Maga-
zine, April 1982, pp. 242-282.

[Teitelman 77| Warren Teitelman. A Display
Oriented Programmer's Assis-
tant. Palo Alto: Xerox PARC CSL-
77-3. March 8, 1977. 30 pages.

[Tesler 81] Larry Tesler. "The Smalltalk
Environment,” Byte Magazine,
August 1981, pp. 90-147.

|Williams 83] Gregg Williams. "The lLisa Com-
puter System," Byte MWagazine,
February 1983, pp. 33-50.

Graphics Interface '84

