- 249 -

MOTION-PICTURE DNERUGGING IN A DATAFLOW LANGUAGE

Stanislaw Matwin
University of Ottawa
Nttawa, Ontario

Tomasz Pietrzykowski
Acadia University
Wolfville, MNova Scotia

ABRSTRACT

The paper describes how graphics are used in an experimentral programming language PROGRAPH. Par-
ticular emphasis is on application of simple graphics for debugging of highly concurrent and distributed
programs. The system described in the paper has been implemented.

Le mémoire décrit comment les graphiques sont utilisés dans un langage expérimental, PROGRAPH. 0n
présente ici des applications de graphiques simples pour le debugging des programmes hautement concur-
rents et distribués. Le systéme présenté dans le mémoire a été réalisé sur 1'ordinateur.

Summary

Programming languages for non-von leumann
computers are gaining more and more interest
among researchers in Computer Science. MNeverthe-
less, in order to be recognized as being useful
in non-academic environment, two problems related
to their use will have to be solved. First
problem is notation.

Two approaches exist here,

On one hand, the natural text representation
of the program is being used [VAL]. However,
because of the Tlinear character of the text,
there is a danger that the programmer may uncon-
sciously eliminate certain concepts, like paral-
lelism, from his solution. Therefore, an alter-
native notation, based on dataflow programs, has
been advocated by the group from the University
of Utah [GPL]. Our proposal for the dataflow
programning language [PROGRAPH] goes along their
ideas. Although PROGRAPH and GPL have a number
of features in common, PROGRAPH introduces a
number of concepts which are, to our knowledge,
novel in functional languages (e.g. database
apparatus, and tools for explicit synchronization
of parallelism).

On the other hand, in order to become prac-
tical tools, dataflow programming languages re-
quire an effective programming environemnt. Two
important components of such an environment are:
a graphics editor to create and modify program
graphs ("prographs"), and an adequate debugger.

In this paper we identify some problems stemming
from the design of such a debugger and present
our solution of these problems.

Our discussion of these features will be il-
lustrated on an example of a simple prograph
definition, which reverses a list submitted as
its only argument. This definition, as given
below, contains a bug. The reader should be able
to identify it easily without being fluent in
PROGRAPH, since PROGRAPH notation is highly in-
tuitive and clear to anyone with basic training
in programming:

(NONEMPTY) |[FIRST REST |
REVERSE

| APPEND I

Graphics Interface ’'84

When execution of this user-defined opera-
tion starts, the user wants to follow the flow of
data through the ‘“compartments" of IF-THEN
complex. The next request from the user is
to be able to see the actual values flowing
through the wires. Moreover, the user wants to
see in what order the boxes are "armed". Arming
a box means satisfying all its input; a box is
then fired, its output flow through the wires to
other boxes, which in turn become armed, etc.

Finally, the user wants to follow the recur-
sion and be able to do it in a stop-and-go mode.
This gives him a chance to compare the events
taking place in his prograph with his original
intentions.

The debugging mechanism of PROGRAPH meets all
the demands described above. First of all, when
the IF-THEN complex 1is entered and the logical
compartment with IF at its top is executed, the
top bar starts flashing, identifying the cur-
rently executing compartment. The fact that the
data flows through the wire 1is represented by
tokens, moving on the screen along the wire (this
explains the "motion-picture" name coined for our
approach). Furthermore, the user has the option
of seeing the actual values flowing through the
wires (this is possible only for atomic values,
i.e. numbers and characters). If, during the
prograph execution process, a user-definition is
called, then the prograph of this definition is
displayed. Execution of this prograph is then
visually traced using the methods described
above. This mechanism obviously allows for
tracing of recursive calls.

Returning to our example of REVERSE, suppose
that it is tested on the following Tlist:
(15 24 3)

<

APPEND

- 250 -

The user will have a chance to observe three
recursive calls. As a matter of fact, he will be
able to spot the error with the first call, when
FIRST REST will send 1 as the first argument of
APPEND, which means that the result of REVERSE
will be a list starting with value 1. If not
spotted at this level, the error will persist in
the next recursive call, etc. This should allow
the user to understand that the problem is in the
ordering of arqguments of APPEND. A quick fix
with the editor gives the preceding, correct
prograph.

In conclusion, it may be noted that the
proposed method, besides being feasible (it has
been implemented on a PER0) is also aesthetically
attractive. [Moreover, it seems to have the po-
tential to be used as a tool to debug distributed
programs [Basili].

References
[Basili] Basili, V., Private communication, 1983

[GPL] GPL Programming Manual, Research Report,
Department of Computer Science, University
of Utah, July, 1981.

[PROGRAPH] Pietrzykowski, T., Matwin, S.,
Muldner, T., Programming Language PROGRAPH -
Yet Another Application of Graphics, Procs,
of Graphics Interface' 83, Edmonton, Alta,
pp. 143-145,

[VAL] McGraw, J., The VAL Language: DNescription
and Analysis, ACM TOPLAS, Jan. 1982, pp. 44-
82.

Graphics Interface '84

