- 2587 -

THE DESIGN OF A TRACKBALL CONTROLLER

David Martindale

Computer Graphics Laboratory
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1

ABSTRACT

This paper describes the design and operation of a general-purpose graphics input device that provides a trackball,
three knobs, and twenty-five lighted function buttons. The controller contained within the device is considerably
more “intelligent” than those found in most commercially-available graphics input devices. It transmits updates to
the host only when necessary, and there is considerable flexibility in defining what “necessary’ means.

KEYWORDS: trackball, intelligent controller, microprocessor

1. Background

At the time this project was begun, the University of
Waterloo’s Computer Graphics Laboratory had only a tablet for
graphics input. It was felt that a variety of other input devices
should be available to allow more flexibility in the styles of input
available to graphics programs. Thus a project to construct a track-
ball, a set of control knobs, and a set of lighted function buttons and
to interface them to the lab’s principal computer was undertaken.

The original inspiration for this project came from a
trackball/knob/button unit that was constructed at the National
Research Council of Canada in 1979 and 1980. This consisted of a
trackball with lighted buttons in one housing, and sixteen lighted
buttons, eight knobs, and eight lamps in another. The NRC track-
ball is rather unique in that it has three distinct data axes. It can
be rolled in two directions to provide X and Y information, just like
any other trackball. However, it is also possible to grasp the ball
firmly and rotate it about its vertical axis to provide Z information.

We wished to provide a similar facility at Waterloo while
keeping the cost of construction as low as possible. Since the CGL
trackball was to be built virtually from scratch, it seemed
worthwhile to reconsider NRC’s design, rather than simply copying
it.

The final design is in fact quite different, partially because of
changes in available technology and partially because of a desire to
make the final result “better” in some sense than the NRC design
and other commercial input devices. Although the design changed a
number of times before construction of the hardware began (and
once after it was finished), only the current design will be discussed
here.

2. Other Devices

First we will examine a number of other graphics input dev-
ices, looking at the manner in which they are interfaced to the host
processor and how they operate. This will provide a background for
understanding the choices made in the design of our trackball.

2.1, NRC Trackball

This set of hardware is connected to its host (a PDP11/55) via
a DEC (Digital Equipment Corp.) DR11-C parallel interface. One
board of additional circuitry provides interfacing between the
DR11-C and the outside world.

The lamp in each lighted button is controlled by a bit in one
of two 16-bit output registers. Changing the state of one lamp
requires rewriting an entire 16-bit register, and these registers can-
not be read back to determine what was last written to them.

Whenever any of the input devices (trackball, knob, or switch)
changes state, the state of all of the input devices is latched (saved)
in three 16-bit registers and an interrupt request is made to the host
via the DR11-C. The host’s interrupt routine must then obtain these
three 16-bit values by performing three successive reads of the
DR11-C, and decide what has changed by examining the bit pat-
terns in these words. Of course, this means that a specially-written
device driver must be added to the host’s operating system to handle
these interrupts.

Decoding movement of the trackball and knobs is very simple.
Both of these types of input transducers generate electrical signals
in the form of quadrature square waves. These signals are decoded
to generate pulses indicating that a particular input is “increasing”
or “decreasing”.

Whenever one of these devices moves one unit of distance or
angle in either direction, the pulse that results sets a bit in a register
indicating either “up” or “down” motion. This starts the sequence
that interrupts the host. Thus the host is interrupted for every unit
of movement of the trackball or knobs, and the interrupt handler
simply increments or decrements a variable recording the position of
the appropriate device at each interrupt.

Since the circuitry indicates only that movement has taken
place in a particular direction, not how many pulses have occurred
since the host last read the interface's status, this scheme depends
on the host servicing the interrupt request generated by any one
pulse before the trackball or knob has moved another unit of dis-
tance and generated another pulse. If the host CPU does not handle

Graphics Interface '84

- 258 —

the interrupt soon enough, any pulses that followed the first are
effectively lost; the host will record at most one unit of movement
for each interrupt. The result is that a portion of the distance that
the transducer has moved is simply lost. Also, when movement is
rapid a substantial portion of the available CPU time can be spent
servicing these interrupts.

On the other hand, with a properly-designed driver, it would
often be possible to design the applications program so that it is nor-
mally asleep, waking up only when an input event occurs. Thus, no
CPU time would be consumed when the user is doing nothing.

When a button is pressed, the contacts in its mechanical
switch may open and close several times within a few milliseconds;
this is referred to as ‘‘contact bounce”. To produce reliable opera-
tion of software using the buttons, these bounces must be filtered
out so that the button press is presented as a single event to the
host. In this controller, the circuitry is constructed so that the state
of the switches are latched and an interrupt requested from the host
only when a switch has been closed continuously for about 35ms.

There is only one copy of this debouncing circuitry, triggered
by any one switch being closed, and as long as at least one switch
remains closed the circuitry is insensitive to further switch closures.
Thus each button must be released before another may be pressed.
Also, the circuitry makes no attempt to notify the host when a but-
ton has been released. Together, these two properties mean that the
only actions that can be controlled by the buttons are single events
that take place when a button is first pressed. There is no way that
a button can cause an action to be performed as long as the button
is held down, or for several buttons to be used at once indepen-
dently.

The custom-built interface circuitry was constructed on a
wire-wrap board that was intended to plug into a UNIBUSt back-
plane next to a DR11-C or quad wide QBUS backplane next to a
DRV11. This means that the device as constructed can be used
only on processors that possess a UNIBUS or QBUS (currently, this
means members of the PDP-11 and VAX families only). With a bit
more effort, this circuitry could be housed in its own box with its
own power supply, allowing it to be connected to any host computer
equipped with a 16-bit parallel interface similar to the DR11-C.
However, this parallel interface would likely cost about $1000 per
host and even with such an interface installed on each host it would
still be moderately difficult to move the trackball from one host to
another.

To be fair to the people at NRC, I should point out that their
trackball was deliberately designed to do as little as possible in
hardware, leaving more work to be performed in the host’s driver
software. This was done to minimize the amount of hardware
debugging needed to get the system working in the first place, as
well as to minimize the number of decisions about how the system
should operate that are wired into the hardware. (Design changes
are easier to make if they require no hardware changes.) Given the
goal of minimal hardware, this is actually quite a good design.

2.2. Summagraphics Tablet

The Summagraphics Bit Pad One tablet is available with three
types of host interface: RS232 serial, IEEE 488 bus, and eight-bit
parallel binary. Of these, the RS232 serial interface is the best
choice for use in the lab. It allows the tablet to be immediately con-
nected to any available computer, since extra serial communication
ports are usually available on a multi-user computer system. No
additional interface hardware need be purchased, nor need any new
software be added to the operating system to handle 1/O to the dev-

ice. Also, the tablet can easily be switched from one host to another
by a simple RS232 switchbox.

The controller for this tablet contains a microprocessor (an
Intel 8035, a member of the “8048 family™) supported by a small
amount of random logic circuitry. Summagraphics has done a fairly
good job of exploiting the flexibility that becomes available when a
microprocessor is performing most functions. The user can choose
from three operating modes, two output data formats, and eight
sampling rates. All these selections can be controlled by the host,
simply by sending a one-byte command to the tablet via its RS232
interface.

The position data transmitted to the host is always the abso-
lute position of the puck on the tablet.

In one of the available output modes, position information is
sent to the host as ordinary decimal ASCII numbers separated by
commas. This format should be readable by almost any language’s
1/0 library, and since the only ASCII characters used are the print-
able characters plus carriage return and line feed, there should be
no problem getting them past almost any conceivable front end pro-
cessor or network that may be between the tablet and the applica-
tion program. There is also a “binary” output format that transmits
the same amount of information in less than half the number of
bytes. This is a more efficient format to use if the hardware,
operating system, and programming language being used allow it.

The controller provides three operating modes for the tablet: a
single coordinate pair may be transmitted whenever a button on the
puck is depressed, a stream of samples may be transmitted whenever
a button is depressed, or a stream of samples may be transmitted
whenever the puck is sufficiently close to the tablet for its location
to be determined. The last of these modes turns out to be the most
useful, since most programs want to maintain a tracker on the
screen that moves as the puck moves, regardless of whether or not a
button is depressed.

In a typical session involving the tablet, the user may spend
long periods of time thinking, or using input devices other than the
tablet, yet the applications program often wants to know immedi-
ately if the puck has been moved. Thus the host must examine
tablet coordinates continuously looking for any change, yet the effort
is mostly wasted because they usually have not changed. The appli-
cations program really does not want to see any data from the tablet
unless the position of the puck has changed. In one heavily-used
CGL application (the Paint program [Beach82]), a programmable
communications processor was set up to perform just this sort of
filtering on the data coming from the tablet, relieving the host pro-
cessor of this burden and improving the responsiveness of the pro-
gram to user input. However, the tablet controller itself contains a
microprocessor, and if the applications program wishes to be notified
only when something changes at the tablet, there is no reason the
controller should not be performing this filtering of the data on its
own and transmitting only changes to the host.

2.3. MPS Input Devices

The Evans and Sutherland Multi Picture System (MPS) has
several input devices available that provide the same kind of input
functions that we want the trackball to provide. There are different
styles of lighted function buttons and input knobs, as well as a joys-
tick and a tablet.

The knobs and joystick are constructed using analog poten-
tiometers to sense position. A voltage is applied across the

t UNIBUS, QBUS, PDP, and VAX are trademarks of Digital Equipment
Corporation.

Graphics Interface '84

- 259 -

potentiometer and its wiper presents an output voltage that depends
on the position of the potentiometer’s output shaft. This voltage is
then converted to numeric form by an analog-to-digital converter.
This method allows many inputs to be provided inexpensively, but
has several disadvantages. Analog circuitry can drift slowly with
time and may require periodic readjustment to keep it operating
accurately. Potentiometers are prone to producing noise in their
output when they are rotated due to dirt on the resistance element,
and a dirty potentiometer can produce an incorrect output even
when it is not moving. Because mechanical contact with the resis-
tance element is required, it is subject to wear (although its useful
life may be quite long).

The MPS contains a specialized device processor that can be
programmed via a command table to scan the input devices regu-
larly looking for changes. It can be asked to generate an interrupt
when particular bits of a register have changed state (corresponding
to a change in the position of a switch, for example) or when the
value of a number in a register has changed by more than a certain
threshold. It is quite general.

However, this processor appears to be fairly difficult for the
user to program since special tables must be built and transferred
into MPS memory. When the system is first powered on, it is com-
pletely passive - there is no default set of command tables that the
user can make use of immediately without having to understand how
to create them himself,

2.4. Optical Mouse

Next we will take a look at the Mouse Systems Corporation
M-1 mouse. Although this device was not available at the time our
trackball was designed and thus had no influence on its design, it is
nonetheless interesting to compare them.

Data is transmitted to the host over an ordinary RS232 serial
connection as packets of five asynchronous characters. The data
sent indicates which switches are down and the incremental change
in the position of the mouse since the previous update. The switches
are debounced by the mouse’s internal software. Position incre-
ments are sent as 2’s complement eight-bit bytes without parity.
There is no alternate output representation that uses only printable
characters or provides “decimal” output. Thus the host must pass
all bytes received to the program reading the data without stripping
the “parity” bit and without treating any characters specially. This
restriction will prevent the mouse from being used with some hosts.

All control of the mouse is done by physically setting internal
DIP switches, together with the external switches that affect some
of the diagnostics. The host has no programmable control over the
mouse whatsoever.

The mouse is “intelligent” enough to transmit updates to the
host only when there has been a change: that is, when a switch is
pressed, or released, or the mouse has moved. A complete packet of
five bytes is always sent when an update is transmitted. Addition-
ally, there is a “noiseless” mode that prevents an update from being
transmitted when the position has changed by positive one count.
This avoids the continuous stream of updates that could otherwise
take place when the mouse is not moving but is sitting directly over
a position boundary on the mouse pad. No further control of when
updates are sent is possible.

The mouse’s documentation says “Be aware that the counters
are NOT snap-shotted since the microprocessor doesn’t have a lot of
memory. Hence, only at the end of a motion will the coordinates be
strictly correct.” [MSC83] This seems to indicate that it simply
transmits instantaneous delta X and delta Y values alternately,

instead of sampling both X and Y changes simultaneously and then
transmitting the saved values. Thus, since any pair of X and Y
values transmitted are not samples from the same point in time, the
path that the mouse followed cannot easily be calculated. Also,
since every fifth byte transmitted indicates the positions of the
switches, the X and Y sampling intervals are not evenly spaced in
time, further complicating any attempt to calculate the mouse’s
actual path.

3. Design Issues and Decisions

Our trackball controller is designed to be interfaced to a time-
sharing host computer rather than a dedicated workstation. In order
to minimize the load on the host, an emphasis was placed on per-
forming as much processing of raw data as is feasible in the con-
troller. Also, flexibility in interfacing to several hosts was con-
sidered important. It should be noted that if the controller had been
intended for use in a different environment, the design criteria
would have changed and the resulting design would have been dif-
ferent.

This controller is intended to be a one-of-a-kind research pro-
ject, not a finished commercial product. Thus wherever it was possi-
ble to add a feature that might prove useful to someone, or to pro-
vide several overlapping methods of doing something, the more com-
plex and flexible route was usually chosen. This means that some
features that turn out not to be very useful in practice have been
included; such is the nature of experimentation.

Unfortunately, increased complexity means that the function-
ing of the final product will be more difficult to understand than if
its design had been kept simple. Since the anticipated users are all
researchers, this is expected to be less of a problem than if this were
a commercial product.

3.1. Handling of Position Information

It was decided that the controller would simply count pulses
received from the trackball and the knobs' shaft encoders and report
this count directly as the amount of motion. Any scaling necessary
to convert this into the actual physical distance moved by the track-
ball surface or angular displacement of the knobs would be done by
the host. It was felt that in most applications the host would be
scaling the data anyway by some constant chosen to give the ball or
knob an appropriate “feel”, and any host will have better facilities
for performing multiplication than the processor chosen for this con-
troller. Also, this means that different trackballs may be attached
to the controller without any changes to its firmware.

There are two reasonable ways to send position information to
the host: absolute position relative to some reference point, or incre-
mental change from the previously-reported position. Absolute posi-
tion is very appropriate for a device such as a tablet, whose fixed-
size digitizing surface provides a natural reference frame. However,
for a trackball or knob, an artificial reference frame would have to
be defined and maintained by the controller, since the motion of
these devices has no natural limit nor origin. This seemed unnatural
and too restrictive, so it was decided that the position updates sent
to the host would always indicate the incremental change in position.
If the application program wants to deal with an absolute position
within some sort of fixed reference frame, it can easily convert the
incremental data to this form itself.

Transmitting absolute position does have the advantage that
each update is independent of all others, so that the loss of an occa-
sional position update matters little to an applications program that
cares only about current position of the input device. With incre-

Graphics Interface '84

—~ 260 -

mental information, the loss of one update represents the permanent
loss of that movement, and so some sort of mechanism is needed to
prevent the host from losing information if it is too busy to read the
incoming data for a short period.

3.2. Host Interface

For the reasons summarized in the description of the Summa-
graphics tablet above, it was decided to make the physical connec-
tion to the host via a standard RS232 serial line.

To avoid loss of data when the host is busy, it was decided
that the controller should support XON/XOFF flow control. Later,
it was decided to allow the RS232 CTS (Clear to Send) signal to
provide hardware flow control as well.

3.3. Data Format

It was decided that the default input and output format used
by the controller should be usable in as wide a variety of situations
as possible. Data is transmitted using only 7-bit ASCII codes.
Thus the parity bit has no significance and can safely be discarded
by whatever hardware and software processes the characters. No
control characters are used, to avoid the possibility of hardware or
operating system software interpreting some characters specially.

A numeric datum appearing in the input or output is
represented as a decimal ASCII number. A leading minus sign
indicates a negative value. This ensures that the value can be read
by the widest possible variety of languages, as well as ensuring that
the command and data character streams can be read by humans
with a minimum of effort.

Also, upper and lower case letters are equivalent in input com-
mands, and only lower case letters are generated in the output data.
This ensures that the controller is still usable with systems that only
understand single-case letters.

A postfix notation is used for commands and their parameters.
The parameters appear first, followed by the single-letter command
code. All parameters are numeric, and the set of characters that
can appear in the parameter list is disjoint from the set of charac-
ters used for the command codes. Thus, each character is immedi-
ately identifiable as being part of a parameter list or a command,
and a command can be executed immediately when its command
code arrives since its parameters (if any) have already been received
at that point.

Given the very general data format described above, it was
felt that provision should be made to provide one or more additional
formats that made better use of the available communications
bandwidth to the host by transmitting the most common information
in fewer bytes, at the expense of generating codes that some hosts
may not be able to handle. However, such an output format has not
yet been implemented.

3.4. Intelligence

A significant problem with many graphics input devices is that
they require the host to expend a fair amount of CPU time looking
at data from the devices even when the user is doing nothing. On a
dedicated single-user system, this may waste CPU time that could
otherwise be spent performing some background activity, but at
least it doesn’t hurt any user’s response time. However, on a multi-
user time-sharing system, a resource that is consumed by one user is
something that could have been utilized by another user.

“Interactive” programs that connect to a user on a terminal
(editors, debuggers, etc.) typically require short bursts of CPU time

followed by much longer pauses waiting for the next input. If a
time-sharing system’s scheduler is set up to give high priority to pro-
grams exhibiting this behaviour, users will feel that the system is
fairly responsive; this is good. But if a graphics program that
spends a significant amount of time continuously handling data from
its input devices is run on such a system, it will eventually receive
quite low priority for use of the CPU because it is rarely suspended.
The user of this program may see quite poor response if anything
clse is going on in the system. If, instead, the host continues to give
high priority to the interactive program that is reading input from
these devices, other users on the system suffer.

What is needed is a graphics input device intelligent enough to
send data to the host when the user is actually doing something with
it, but which sends nothing at all when the user is just thinking or
eating his lunch, much as a terminal only sends information when
the user is actually typing on it. Unfortunately, with continuous-
motion devices such as a trackball or knob, it is not clear how often
changes in position should be reported while the device is in continu-
ous motion; each application program may have a different idea of
what is appropriate. The algorithm that decides when to report a
change to the host should be flexible enough to allow the application
program o receive just the data it wants just as often as it wants.

Finally, the controller should also support polled and
continuous-reporting modes of operation, in case the more sophisti-
cated algorithm is inadequate for some purpose and these very sim-
ple modes can be used to obtain the desired result with some addi-
tional work on the part of the host.

3.5. User-Friendliness

There are a number of features of any piece of software or
hardware that do not affect how well or poorly it performs its
intended purpose, but have a great effect on how much the user is
inconvenienced while working with it. Since this project was built
entirely from scratch, it was felt that there was no excuse for not
doing a reasonable job of providing a “friendly” interface to the out-
side world. With this in mind, the following decisions were made.

It should be possible to read back from the host any parame-
ter, mode, or state internal to the trackball that can be set on com-
mand of the host. When the data is read back, it should be in the
form of the command that the host would need to send to the con-
troller to set these parameters to their current values. Thus the user
need remember only one syntax for both commands and responses,
and one set of command codes.

Commands sent to the controller should be carefully checked,
so that errors on the user’s part are reported to him instead of being
ignored or causing strange behaviour.

When an error occurs, an error message in English explaining
what was wrong should be returned to the host for display to the
user. There is no reason the user should have to look up a funny-
numbered error code in a list somewhere. Also, the user should be
able to request that the controller re-send the last error message
sent, in case his software managed to throw it away without display-
ing it to him.

The controller should notify the host any time it has been
reset, so that the host can re-initialize any internal data structures
that contain information about the internal state of the controller.

3.6. Software Design.

Since this is a research project, it is not expected that the first
version of the software in the controller will be perfect, or even close

Graphics Interface '84

- 261 -

to it. The software must be designed so that it can be understood
and changed by someone other than its author. To make this possi-
ble, it was written in PL/M, a moderately high level language that
provides structured data and pointers. [Intel78a]

There must be enough comments in the code at appropriate
places for someone other than the author to have a reasonable
chance of understanding the code and making major modifications
to it without breaking the remaining code. In fact, about one third
of the source files are comments.

There is no assembly code whatsoever in the software. This
decision was reconsidered several times, when it seemed that assem-
bly code would make a large difference in the speed of some rou-
tines, but the temptation was eventually resisted in each case. It
was felt that the use of assembly code would make the software con-
siderably more difficult to modify or move to another processor, par-
ticularly for someone other than the author.

4. Central Algorithms

The heart of the trackball controller’s flexibility is in the algo-
rithms that determine when an update of the trackball or knob posi-
tions needs to be sent to the host, and in how these updates are
queued if they cannot be transmitted immediately. The operation of
this part of the controller needs to be well-defined and well-
documented, since the user needs to have control over the parame-
ters that control these functions. Here we will discuss the algo-
rithms that were eventually decided on, and their operation, from
the user’s point of view.

4.1. Update Control

The pulses produced by motion of the trackball or knobs are
first counted by 8-bit up/down counters implemented in hardware.
These counters are read periodically (normally every 10 ms) and
their change since the previous reading is calculated. These changes
are then added to 16-bit values in the controller’s memory that
represent the amount that a particular axis of motion has changed
since the host was last informed.

Each time these internal change values are updated, the con-
troller must decide whether the change is significant enough to
report to the host.

The controller divides its input into four distinct and indepen-
dent “sample channels™ for purposes of deciding whether an update
needs to be sent to the host. Each of the three knobs is handled as
its own channel; decisions as to when updates should be sent to the
host occur independently of the other knobs. The “amount of
change” value used by the update-checking algorithm is simply the
absolute value of the knob’s movement since the last update.

The three axes of trackball motion, on the other hand, form a
single sample channel. Whenever an update is sent, changes in all
three axes of motion are reported. The hardware counters for these
three axes are all read by the microprocessor as close together in
time as possible (normally within a 50-microsecond period), so each
trackball position update represents a new “snapshot” of the position
of the ball. The “amount of change” value used when checking the
necessity of an update is the maximum of the absolute value of the
changes in the three axes. A better measure would be the
Euclidean distance moved, but it was felt that computing this was
too expensive, since this computation would have to be performed
every 10 ms.

The actual decision of whether an update is due is controlled
by four parameters called absolute threshold, absolute delay, com-
bination threshold, and combination delay. The effect of these are:

« If the amount of change in this channel is greater than or equal
to the absolute threshold, then an update is due.

« If the elapsed time since an update was actually generated for
this channel is greater than or equal to the absolute delay, then
an update is due. (Time is measured in clock ticks, normally
10ms apart).

« If the amount of change in this channel is greater than or equal
to the combination threshold AND the elapsed time is greater
than or equal to the combination delay, then an update is due.

If any of these parameters is zero, the portion of the decision
controlled by it is skipped.

Note that this method is very flexible. The optical mouse’s
sampling algorithm is roughly equivalent to setting the absolute
threshold to 1 or 2 and all the other thresholds to zero to disable the
remaining conditions. Thus updates will occur at maximum rate as
long as there is movement. On the other hand, the tablet’s sampling
algorithm can be duplicated by setting the absolute delay to the
sample period desired and the other thresholds to zero, thus simply
generating an update every fixed period of time.

As a more complex example, consider setting the absolute
threshold to 50, the combination threshold to 1, and the combination
delay to 10. In this case, the controller would produce one update
every 100ms when the trackball or knob was moving slowly, but if
the input was changing faster than 50 counts every 100ms then the
updates would occur more rapidly. When nothing is changing, no
updates will occur.

4.2. Queuing

The algorithm described above which decides when an update
is *‘due” is capable of trying to send updates more often than the
serial line to the host is capable of handling them. Also, replies to
requests from the host, error messages, button activity, and activity
in other sample channels can all compete for the transmission
bandwidth needed by a channel. Thus it is necessary to decide what
should be done if a sample is due but it cannot be transmitted
immediately.

If the trackball or knobs are being used for some purpose
wherein the application program really cares only what their current
value is, the most desirable behaviour is for the controller to
remember that a sample is due on that channel and then, when it
becomes that channel’s turn to send something, the position
transmitted is the current one, rather than whatever it was when the
decision to send an update was first made. Thus, the data received
by the host is always as up-to-date as possible. For example, if the
trackball is being used to control a cursor, the cursor’s motion may
contain large jumps because updates could not be transmitted for a
while, but the cursor will never lag much behind the trackball.

On the other hand, someone may want to take samples at
fixed intervals and then compute velocity or acceleration of the
trackball or knob. Here, a delayed update would make the compu-
tations useless. Instead, the controller should take position informa-
tion at the moment the decision to send the update is made and save
it in a queue for later transmission. Whenever it is that channel’s
turn to send something, the update information at the head of the
queue is transmitted. Thus, as long as the queue doesn’t overflow,
no updates are lost and a complete history of the motion is eventu-
ally sent to the host.

Graphics Interface '84

- 262 -

After some deliberation, the following (somewhat complex)
method of handling samples was chosen. It has the virtue of provid-
ing both of the behaviours described above, at the user’s choice, as
well as handling queue overflow smoothly.

A queue is provided for each sample channel, and the user
may set the maximum length of this queue to any value from zero
to some large upper limit. When the decision that an update is
needed on a particular sample channel is made, either by the
update-controlling algorithm described in section 4.1 or by an expli-
cit request from the host, a flag indicating that this channel has an
update due is set. Then an attempt is made to insert a sample of
the current position data into the queue belonging to this channel.
If there is space in the queue, then the current position data and the
time since last update are both set to zero. If there was no space,
nothing further is done.

If the update due flag is set for a particular channel, it will
eventually be given a turn to send an update to the host. When this
occurs, an attempt is made to fetch a set of update information from
the head of that channel’s queue. If the queue is empty, the current
position information at that point in time is copied from the location
at which the timer interrupt routine maintains it, and the current
position and the time since last update are zeroed. In either case,
the update due flag is cleared if there is no more data in the queue.
Finally, the update information obtained is formatted for transmis-
sion to the host.

Now, note that with a queue length of zero (the default), the
controller’s behaviour is exactly as described in the first example
(second paragraph) of this section. There is never any space in the
queue, so there is no queueing. The update that is transmitted
(sometimes immediately, sometimes after a delay) represents the
position at the time of transmission. With a non-zero queue length,
the queuing behaviour described in the second example is obtained:
the position is sampled at the time of the update decision and
queued (if necessary) behind other samples.

Note that with this algorithm, the switch from queued to non-
queued operation occurs automatically when the queue is full. No
movement is ever lost, since the data maintained by the timer inter-
rupt is zeroed only when its previous value is assured eventual
transmission to the host.

5. Hardware Overview

A prototype controller has been constructed. This section pro-
vides a brief description of its implementation at the hardware level.

The trackball chosen was a used unit originally built by Atari,
and is quite large and heavy. The X and Y channel outputs are
pseudo-square waves at TTL levels. As yet, nothing has been done
to provide the additional shaft encoder and pickup wheel needed to
add a Z axis to the ball. (All other hardware and software neces-
sary to handle Z-axis information is in place.)

The “knobs™ were implemented using optical shaft encoders
that generate quadrature square waves similar to the trackball’s out-
puts. These allow continuous motion in either direction, and avoid
glitches that can result from dirt in potentiometers. Also, the circui-
try to handle them is virtually identical to that for the trackball.

The controller was built around a STD bus backplane and
card cage. [PL81] They were selected primarily because they were
already on hand in the MFCF (Math Faculty Computing Facility)
hardware lab.

The processor board used was a commercial 8085-based board

sold by Pro-Log. It contains sockets for 8Kb of EPROM and 4Kb
of RAM, which seemed more than adequate when the project was
begun. The 8085 was chosen over other processors for a number of
reasons: it is very common, and thus fairly inexpensive. A suitable
processor card was available and known to work. Most important,
the department’s microcomputer lab contained an Intel development
system that already had available a PL/M compiler plus an in-
circuit emulator for the 8085.

In addition to the commercially-built processor board, the con-
troller contains two circuit boards of additional circuitry, all wire-
wrapped by hand.

An Intel 8251A serial interface chip was used to handle the
serial port that connects to the host. (Descriptions of the Intel chips
mentioned here can be found in [Intel83].) The controller was wired
as a DTE (Data Terminal Equipment) with a female connector.
This is identical to the wiring of what was until recently the most
common type of CRT terminal in the lab, and so it matches the
cables that are already installed.

Generation of the 10ms clock interrupts is done by an Intel
8253 programmable timer chip.

One Intel 8255A parallel interface chip is used to connect the
processor to the switches and lights in the buttons. The switches in
the buttons are arranged in a matrix of 4 rows of 8 switches,
although the last row has only 1 switch in it. The matrix is
equipped with a full set of isolation diodes so current can flow in
only one direction through each switch. This means that the posi-
tion of each switch can be detected regardless of the positions of any
of the other switches. (Without the diodes, closing three switches at
the corners of a rectangle in the matrix would cause the switch at
the fourth corner to appear closed as well.) The switches are
scanned and debounced in software (rather than using a keyboard
encoder chip) so that all buttons are completely independent of each
other, and button-released as well as button-pressed information is
available. Thus the host can keep track of exactly which buttons
are being held down at any point in time, allowing chording.

There are six identical sets of up/down counters and associ-
ated circuitry that handle the quadrature input signals provided by
the trackball and knob shaft encoders. This circuitry determines in
which direction the encoder or trackball is moving and causes the
counters to increment or decrement appropriately. Two additional
8255A’s are used to allow these counters to be read by the
MiCroprocessor.

6. Software Overview

6.1. Introduction

For several reasons (elaborated below), the structure of the
software was kept as simple as possible. When the software was
begun, it was tempting to write a multi-process operating system
kernel simply because this provides a friendly environment for writ-
ing code such as this, but the temptation was resisted. It was felt
that this project was not complex enough to need such a kernel, so
simplicity prevailed. (See section 7 for more comments on this.)

The 8085 processor has no addressing modes suitable for
accessing variables that are located at an offset from the stack
pointer. Reference to such a variable requires the execution of
several instructions to compute its address, and there is only one
register suitable for doing the required 16-bit addition. The net
result of this is that the code generated by PL/M for reentrant pro-
cedures (where the local variables must be on a stack) is long and
slow.

Graphics Interface '84

- 263 -

The 8085 does have much better addressing modes for
referencing data at absolute locations in memory, and thus by
default PL/M generates non-reentrant code, with local variables
(and parameters) stored in fixed locations, to take advantage of its
greater speed. Because of this, it was decided to avoid using reen-
trant code whenever possible.

Another goal was to keep the number of critical sections in the
code to a minimum. An unprotected critical section is a latent bug
that may not show up until the device has been in use for some time
and the author is no longer available to support the software, and
these can be among the most difficult bugs to find. Also, the pres-
ence of many critical sections, even if they are properly protected,
makes the code difficult to modify later.

6.2. Control flow

There is a timer interrupt every 10ms. This causes the
hardware counters connected to the trackball and knobs to be read,
and the internal position data to be updated. Then each of the four
sampling channels is checked to see whether an update needs to be
transmitted to the host. Finally, the switches are scanned to see if
any of them have changed position.

This timer interrupt is the highest priority interrupt in the sys-
tem, and care is taken to disable it for as little time as possible to
produce the best possible uniformity in the timing of samples.

Serial input and output are also interrupt-driven. The receive
interrupt handler simply moves the received character into an input
queue (after checking for errors and XON/XOFF). The transmit
interrupt handler just moves a character from an output queue to
the device. By having serial 1/O driven by interrupts, the controller
should be able to accept substantial bursts of data from the host
without losing characters.

All other functions of the controller are performed by a simple
loop that runs continuously, looking for something to do. Each time
through the loop, any characters sitting in the input queue are pro-
cessed. Then, if the number of characters in the output queue is
below a “low water mark” threshold, the code tries to find some-
thing that is waiting to be sent to the host. If it finds and formats
one item of output, it returns to the top of the loop again to check
for input; thus no more than one “event” of some sort is put into the
output queue for each pass through the low-water-mark check. The
order in which the various possible items of queued output is
checked determines the priority with which they are transmitted to
the host if several are waiting at once. The highest priority goes to
button press/release, followed by replies to explicit requests from
the host for parameters such as queue lengths and thresholds.
Finally, the four sample channels are checked in rotation so that any
single one of them cannot consume all of the bandwidth available
for transmission to the host.

Error messages are produced by simply dumping them into the
output queue regardless of its current length. Since they are gen-
erated only within the non-interrupt code in well-controlled ways, it
is not possible for an error message to appear in the middle of a
piece of formatted output. A special hook in the routine that
queues characters for output to the host is used to save the last error
message so it can be resent to the host on demand.

The only reentrant routine in the entire system is one that
manipulate queues, since it is called from many different places.
All other code is executed either exclusively from the non-interrupt
level polling loop, or is called only from the timer interrupt or one of
the serial 1/O interrupt routines, which execute with further inter-
rupts from that source locked out. Thus the vast majority of the

code avoids needing to be reentrant.

7. Experience

A prototype has been constructed and has received some use.
This process has revealed a number of problems, in both design and
implementation, which are listed below. Some of these are major
problems, and some are just quibbles. However, they are all things
that we would do differently if constructing a new version from
scratch, and are thus worth documenting.

The software in the controller is not always performing the
task that is most urgent at any particular point in time. During the
initial design stage, it was felt that the controller would have CPU
time to spare, so this would not be a real problem, but of course this
assumption turned out to be wrong. It will require some more
thought and study to decide the best way to improve the software in
this respect.

One possibility, of course, is to write a very small multi-
process operating system kernel that can handle a few processes
each of which has a priority associated with it, and rewrite the
controller’s software as a set of processes. This would make the
scheduling of the CPU both cleaner and more efficient, but it is not
clear that performance would actually be better. The increased
number of execution contexts that could be active at one time would
mean that either more of the controller’s routines would have to be
made reentrant, slowing down their execution, or that there would
need to be multiple copies of the same routine. Also, we believe
that at least some of the code in the kernel would have to be written
in assembly language. It is quite possible that a bit more tuning of
the current implementation would be more effective.

The 8085 turned out to be a poor choice for the processor.
The controller simply does not do things rapidly enough, even after
a fair bit of effort went into tuning the code. For example, input
currently must be limited to 4800 baud because the controller sim-
ply cannot handle even short bursts of characters at 9600 baud.

The architecture of the processor itself is the main culprit.
The lack of facilities for performing 16-bit arithmetic turned out to
be a problem because many numeric quantities in the program must
be stored as 16 bits to avoid the likelihood of overflow. Thus the
code contains many calls to subroutines for performing 16-bit arith-
metic.

The lack of addressing modes capable of referencing data at a
fixed offset from a pointer register also causes a great waste of exe-
cution time and code space whenever a member of a structure or a
variable on the stack must be referenced. Reentrant code is particu-
larly bad in this respect, and worrying about keeping most of the
code non-reentrant restricted the form that the software took.

The solution to this, of course, is to use a better processor.
The Intel 8088 or Motorola 68008 would probably be good choices,
because they is are true 16-bit processors internally. A dialect of
PL/M is available for the 8088, so the existing source code could be
used with little modification. Using the 68008 would require rewrit-
ing the code in another language, but this would be a benefit in the
long run (see below). Another, cheaper, choice would be the
Motorola 6809. It is an 8-bit processor like the 8085, but much
better suited to use with a high-level language. Changing to any
processor with more effective computing power than the 8085 has in
this application would ease or eliminate the need for modifying the
software to make more efficient use of the processor.

PL/M initially looked like a good language to use for this pro-
ject: while its syntax is sometimes a bit awkward, it had structures,

Graphics Interface '84

- 264 -

arrays, pointers, modules, manifest constants, and other features that
made it look like a good language to write a moderate-sized piece of
software in. But as time went on, it became increasingly annoying
in many small ways. For example, PL/M has structures, but they
may not be nested. The compiler will not accept a constant expres-
sion in a place where a constant is needed at compile time. This
sometimes prevents using the clearest form of a constant; “1530™ is
much less clear than ““3*255*size(integer)”. The declaration rules
are sufficiently strict that it is not possible to create a single header
file that contains declarations of all routines that are declared in one
file and called in another and then have each source file include this
header file. Instead, each source file ends up having a long string of
declarations of external procedures at its head, which detracts from
the readability of the source code.

The solution to this would be to find a compiler for a better
language. C would be a very good choice if an appropriate compiler
could be found.

The circuitry that decodes the quadrature signals from the
trackball and knobs generates its count pulses at different physical
positions in the motion depending on which direction the transducer
is moving. Also, this circuitry takes a while to detect that a change
of direction has taken place. A result of this is that when the user
changes the direction of motion of the trackball or knob, the host
“sees” it moving in the original direction for as many as two extra
counts. If the user is controlling a cursor, this could be most discon-
certing. Also, the knobs cannot be used with position-indicating
scales, since moving a knob and then physically returning it to its
initial position will leave it a short distance away from its initial
position as far as the software is able to tell. To be fair, the NRC
trackball suffered from this effect to some extent as well, but the
error in their case is less because their circuitry provides only hall
the resolution of ours (one count per complete cycle of the inputs
rather than two).

The best way to correct this is to replace all of the quadrature
decoding circuitry with a different design that employs a very sim-
ple finite state machine. Without going into details, this would pro-
duce a circuit that counts up or down on every transition of either of
the quadrature inputs. The 8-bit counter would then be effectively
“locked” to the motion of the trackball or knob with no positioning
errors. As a side benefit, the resolution of this circuitry would be
double that of the current design, producing four counts per cycle of
the inputs. We believe that this can be done with about the same
number of 1C packages as the current design if a single copy of the
circuitry for the state machine is time multiplexed between the six
sets of inputs.

The physical packaging of the project is not ideal. Currently,
the trackball is mounted in one rectangular case while the knobs and
lighted buttons are mounted on a sloping cabinet that also contains
the microprocessor circuitry and the power supply. The power sup-
ply contains a switching regulator which makes audible noise, and
the power supply and microprocessor require a cooling fan. Having
these in the same cabinet as the buttons and knobs guarantees that
they must remain within reach, and thus within hearing distance, of
the user. It would have been better to put the noise-making com-
ponents in a separate cabinet that could be kept further away from
the user.

The shaft encoders that provide the knob inputs have very
good bearings and are too easily turned by the slightest touch.
Some material has been added to rub against their shafts and pro-
vide friction, but they are still excessively sensitive. There are dif-
ferent shaft encoders available that have a designed-in turning resis-

tance appropriate for panel-mounted knobs; these probably would
have been a better choice.

Some circuit board space could have been saved if the unused
sections of the programmable timer chip had been used to generate
the clock signals for the 8251A serial chip instead of the separate
baud rate generator chip and crystal that are currently used.

There should be programmable character strings that are
prepended and appended to each “message” from the controller to
the host, to handle a wider variety of host communications protocols.
For example, some operating systems might require a carriage
return and line feed to follow each message in order for it to be
passed on to the user program.

8. Conclusions

We are planning a second design iteration, based on the
experiences detailed above. The quadrature decoding circuitry will
be redesigned to use a finite-state machine as described above. The
performance of the controller will be improved by some combination
of software changes or a CPU change. The basic design principles
described in section 3 and the algorithms described in section 4 will
not be changed, as they appear to be sound. We believe that this
design is a significant improvement over existing systems.

9. Acknowledgements

The fabrication of the prototype controller, and the design of
the custom-built circuits used in it, was done by the MFCF
Hardware Lab under the direction of Kim Martin. Ian! Allen
designed the controller’s error messages. Prof. Farhad Mavaddat
and Art Hills provided access to and assistance with the Intel
development system on which the controller’s code was compiled
and debugged.

We would like to thank the people at the National Research
Council who designed the original trackball/button/knob unit that
provided the inspiration for this project. They provided details of
their implementation and comments that assisted in the early design
of this project. We would particularly like to thank Marceli Wein
for his comments on various facets of the NRC design and on
improvements to this one.

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada, the Provice of
Ontario through its BILD Program, the University of Waterloo, and
the Computer Graphics Laboratory.

References

[Beach82] R.J. Beach, J.C. Beatty, K.S. Booth, E.L. Fiume, and
D.A. Plebon, “The Message is the Medium: Mul-
tiprocess Structuring of an Interactive Paint Pro-
gram”, Computer Graphics, Vol 16, No 3, August
1982, pp. 277-287.

[Intel78a] Intel Corporation, PL/M-80 Programming Manual,
1978.

[Intel83] Intel Corporation, Microprocessor and Peripheral
Handbook, 1983.

[MSC83] Mouse Systems Corporation, M-I Mouse Technical
Reference Manual, 1983,

[PL81] Pro-Log Corporation, Series 7000 STD Bus Techni-

cal Manual and Product Catalog, 1981.

Graphics Interface '84

