- 265 -

MFE: A Syntax Directed Editor for Interaction Specification?
Summary Paper

Robert V. Rubin
Joseph N. Pato

Department of Computer Science
Brown University
Providence, RI 02912

ABSTRACT

In this paper we present MFE, an interface
interaction generator for event driven, menu based
programs. MI'IZ may be thought of as the analogue of
a wysiwyg (what you see is what you get) syntax
directed editor for MAPLE, a menu application
language developed at Brown University. MFE gen-
erates all the source code necessary for the
specification of the user interface. The prototype sys-
tem was built using many of the components of the
Brown Workstation Environment.

KEYWORDS: user interface management, graphical
programming, interaction techniques

1. Introduction

MFE is a prototype interactive system that gen-
erates the code necessary for the specification of a
program’s user interface. In its current implementa-
tion, MFE runs under and generates code for the
Brown Workstation Environment,! a UNIX{ based bit-
map screen oriented software environment. Much
recent research has been directed at the definition of
user interaction languages,®3 and it has been our
experience using one such language, MAPLE,? that
these languages are as yet unstable and are undergo-
ing many refinements. In MFE we have provided a

t This research was supported in part by National Science Foundation
grants MCS-7005002, MCS-8200670, SER-8004974 and MCS-8121806, by the
Office of Naval Research under contract nos. N00014-78-C-0396 and N00014-83-
K-0146 and by DARPA order n. 4786.

$UNIX i3 a trademark of Bell Laboratories.

system that insulates application programmers from
learning the syntax and explicit semantics of the
underlying interaction specification language.

MFE provides for the editing of menu interac-
tions by providing operations for inserting and delet-
ing menus, and their buttons. It also provides a syn-
tax directed facility for describing the characteristics
of the menus, as well as the actions that may occur
when a user interaction occurs.

We will briefly describe the capabilities provided
by the MAPLE package and its interpreter, and then
describe MFE.

2. MAPLE

MAPLE is a subroutine package that may be
thought of as a user interface specification language
and interpreter for providing menu-oriented finite-
state program control. The application program can
define a menu to consist of a set of buttons, to be
either pop-up or anchored within a part of a window,
and to be displayed in a variety of fonts. The
MAPLE interpreter automatically handles tracking
the locator device, highlights buttons when the cursor
is on top of them, and may invoke a programmer
specified action routine when the user selects a but-
ton. This action routine may use MAPLE
specifications to request additional input, i.e., a point
on the screen, a string of text, a box, or a choice from
a list of alternatives. After a button is depressed, the
MAPLE run-time support automatically generates the
following state of the interface, which may involve the
setting up of a different set of menus, an automatic
menu of sub-choices for that button, or leaving the
original state intact.

MAPLE uses a modified external control model.’
After initialization, the locus of control for an applica-
tion resides within the MAPLE interpreter. FEach
application module is viewed as a discrete functional
unit, available to be called by the MAPLE interpreter
when the appropriate input activity has occurred.

Graphics Interface '84

- 266 -

3. MFE -- The MAPLE Front End

The user-interface designer, be it the program-
mer, or the user, uses MFE to specify the menu inter-
face. At the end of a session, MFE will generate a file
containinge C code and declarations, as well as the
calls to MAPLE and ASH (the Brown University Win-
dow Manager).® This code need only be compiled to
be executed. Executing the code generated by a ses-
sion with MFE allows the user to walk through the
top level interface, all without the programmer having
written a line of code. The programmer may then
edit the code, using the action routines invoked by the
depression of a menu button as the entry points into
his modules.

3.1. Interactive Dialogue Specification

MFE is a syntax directed, template editor, which
allows a user unfamiliar with MAPLE syntax to
specify an interactive user interface. The user designs
his menus, and their interactions, in a what you see is
what you get environment. Menu layouts, button
location, typefaces, and window layout are modifiable
via editing commands.

MFE requires a user to specify only the interac-
tions. Because all code is automatically generated, a
knowledge of MAPLE, or of C, is not required to gen-
erate the source code for the user interface.

MFE is a non-preemptive editor, allowing the
user to incompletely specify the characteristics of
menus and buttons, and return at a later time to fill
them in.

The user interaction paradigm for MFE itsell is
menu oriented. All modifiable parameters, and com-
mands, are invoked as the result of a button depres-
sion.

3.2. Editing the User Interface with MFE

As illustrated by the figures in the appendix, the
MFE user is presented with three windows of editing
commands. One window is for menu creation, one is
for for old menu modification, and one is for button
manipulation.

The first set of editing commands are used for
setting up a menu in a window. The user selects the
layout attributes of the menu, specifies a name for the

The menu "Edit-Button” is popped on top of "new
button”. The user is then free to select from any of
the buttons on the menu. In this case, the user has
decided to name the button "Box”, and assign to its
input request type, a box request. Additional selec-
tions include the name of the routine to be invoked
when the button is depressed, and the prompt to be
displayed upon depression of the button.

The Appendix includes the source code generated
for this trivial example. Inspection of the code shows
that MFE has generated all the declarations and
parameters necessary, including those left incomplete,
so that after compilation, the user interface may be
succesfully executed and experimented with. The
action routines include the code necessary to obtain
any of the input requested as a result of a button
depression

4. Limitations and Futures

MFE has been used for prototyping user inter-
faces, both at the application program level, and at
the operating system command level. Within the lim-
its of a prototype system it has served us well; How-
ever as a production tool it has its limitations.

MFE does not allow a user to end a session, and
then modify the wuser interface generated. If
modifications are necessary, they must be made either
via a conventional editor operating on the generated
source code, or by reentering the data into MFE.

MFE provides no encapsulating facilities, that
might allow a designer to experiment with menu
interactions. All execution is done via the compiled
modules.

The grahical layout facilities in MFE are limited.
While they allow for window definitions, they do not
allow a user to completely layout the screen. This
deficiency is caused in part by the MFE editing menus
themselves. A window layout facility supporting pan
and zoom operations is highly desireable. The layout
facility should support menu design within a window,
as well as the necessary operation to do full screen
layout in a what you see is what you zet environment.

Graphics Interface '84

- 267 -

menu, and then specifies the location of the menu
within a window.

The first set of figures in the Appendix shows the
screen after we defining a menu named "SHAPES”.

The only button in the menu "SHAPES” is the
button "new button”. Depression of this button
results in a pop-up menu for editing the characteris-
tics of the button.

Their are two sets of editing commands for the
buttons in the menu being designed. The "Button
Layout” menu in the top part of the screen is used for
moving buttons between different user designed
menus. The "Edit Button” menu is a pop-up menu
which is invoked by the depression of any of the but-
tons on the menu being developed, including the "new
button”™ button. One depresses a button on the menu
being designed to specify the characteristics of that
button. The Edit Button menu allows for the nonpro-
cedural specification of the interactions involving a
user defined button for a menu. This is essentially a
MAPLE specification and may involve five seperate
components.

The five components of a button may be specified
as follows:

o The button may be assigned a name.

o Buttons are then assigned a type. Button
types indicate whether depression of the button will
result in a query for text, integers, a box, or any legal
type as defined by MAPLE.

o The user may choose to associate a prompt
with a button.

o A link to other programs is established by
assigning an action routine to be invoked upon
depression of the button.

o Transformations to the current menu may be
specified. The menu transformations specify whether
the current menu should be replaced by another
menu, and the manner in which it should be replaced.
Their is a stack paradigm in use here, i.e. menus may
be reordered via push or pop operations, or any com-
bination of stack operations.

In the example in the Appendix the user has
selected the "new button” in the menu "SHAPES”.

5. Conclusions

MFE represents a step in the development of a
truly interactive graphical programming environment.
While limited in the above mentioned respects, it does
achieve its primary goals.

MFE demonstrates that the specification of user
interfaces may be completely decoupled from the
specification of the application program. It does this
on two levels:

o MFE demonstrates that the programming of
user interfaces may be succesfully accomplished in an
environment that is natural to a user-interface team,
and not just to one familiar with the syntax of the
interaction language.

o MFE frees the programmer from learning the
syntax and semantics of yet another language, or sub-
routine package, for interactive menu specification.
The syntax of interaction languages is bound to
change as a result of further experimentation and
refinement. Interaction editors like MFE provide a
vehicle by which programmers may be insulated from
these changes.

6. Future Research

MFE was written before many of the subcom-
ponents of the Brown environment were complete.
We hope to extend the paradigms presented by MFE
with an eye towards providing true graphical pro-
gramming capabilities within the Brown Program
Development System.”

References

1. Joseph N. Pato, Steven P. Reiss, and Mare H.
Brown, ““The Brown Workstation Environment,”
Brown University TR84-03 (October 1983).

Mary Shaw, Ellen Borison, Michael Horowitz,
Tom Lane, David Nichols, and Randy Pausch,
“Descartes: A Programming-Language Approach
to Interactive Display Interfaces,”” SIGPLAN
Proceedings on Programming Language Issues in
Software Systems 18(6)(June 1983).

3. Dan R. Olsen Jr. and Elizabeth P. Dempsey,
“SYNGRAPH: A Graphical User Interface

(3]

Graphics Interface '84

Operator,” Computer Graphics 17(3)(July 1983).

4. Marc H. Brown and Steven P. Reiss, ‘MAPLE
Reference Manual,” Brown University (December
1982).

5. James J. Thomas, chairman, “Graphical Input

Interaction Technique (GIIT) Workshop Sum-
mary,”” ACM/SIGGRPAH (June 1982).

6. Steven P. Reiss, “A Screen Handler,” Brown
University (November 1982).

7. Steven P. Reiss, “PECAN: Program develop-
ment systems that support multiple views,”
Brown University (1983).

Tue Feb 28 14:21:59 1984 box.d Page 1

JEERAARRARARE AR AN AR AR AR AR R R R AR AR AR R R AR AR AR R R AR R R AR AR

/* include files "r'
nnunnnunnn.tnnnntiii:ua-'a-nunw«nn-xtwanan‘unnti:-:*a-t*nnran ey

#include *stdl.o h>
#include ‘pro/include /ash.h®
#include ®/pro/include /maple. n*

SRR AR AR AR AR AR AR AR AR AR AR AR AR AR R RN

definitions ™4
dilliiiiiiﬁ‘t!lxtll*ll!ll‘ !litlitl“iiiltiiltﬁiliil-}‘ltiiillf!ll!!‘!txﬂ

typedef char * Strin
4define SALLOC (str) ?[str) == NULL) ? WULL :
{(String) strcpy(mal o:(:\'.rlon(ﬂ:r]'l} utrj}]

IPAAEA LA R R AR L Ll Edl P R R SR R R R R R R R R R R R R s i’ltiiilitif
¥ e external routines *
|/t b g it b b ik b it bRk AR ERA R R ARk l‘i‘liii‘titt;

|

int box_action():

R R R e e R R R R s st ‘Q‘lll“lk‘ll.!!l!!!!!t!l};
* MENUS *)
J.r‘ AEAARRR AR AR R R R R R R RN R R R ltt.‘iiiiii};

menu_init {
f‘i!l'!ll.lﬂti-t‘illlttti RERARAARA A AR R AR R R AR R AR AR R l'!"f
i - *

SHAPE
:_J‘Q‘IQ‘lﬂ!!l"l*’!lRf‘!|'"’I"!l*’!ﬂf’!!Rl"RW‘Il'lll'."*’.i“‘.t‘*l‘lia}
MAPLEmenu_init ("SHAPES"):

MAPLEbtn ("BOX®, box_action, MAPLE_STATE_LOOP, "NULL®) ;
l;APLzhtanumw ("BOX®, "Click the two ends of the box", 12);

Figure 5: MFE generated declarations.
The definitions and menu declarations generated by MFE.

268 -

Tue Peb 28 14:21:59 1984 box.d Page 2

(R A AR R AR R AR R A AN R R AR R AR AR AR RN AR AR R A AR R IR AR ARG RN AR R R AR Rk Ak

il ACTION ROUTINES *y
CAARAR AR AR R AR AR R R AR R R A AR AR AR A AR R AR AR RN

-"tltt‘.'--iiﬂll!"‘tﬂllt*l‘itttlltl'ﬂlll‘tl‘il“ﬁiiil!!!!l.ttl“!‘l'ttll';
/ box_action w_,r
/* This routine invol ¥ epr of BOX in menu SHAPES

ARk AR R AR Rk A R !lkttlIl*i#ﬁlittl!‘l!’tl*ililtiili“iliilki“lif’
box_mction ()] {

int lx by, rx.ty!

I;.IPI.E ing btn_box (&lx, &by, &rx, &ty):

JEAmAR li*i‘illﬂ!!llttnllliil‘lt!l HRRARRA AR AR AR AR A RN SRS A AR

remrarsil, 1.4
| a R R AR AR AR AR AR AR RN R AR AR IR R AR TR AN AR R AR AR ARk

ASH_WINDOW top, temp:
T ASHing teop
:a = ASHcreate iL 150, 0,0,115 150) !
MAPLEbase_sticky (“SHAPES® WLIJNT_DHAULT 1,temp)
}
_.:'!Iilt‘i"iliiﬂlllliiﬂu LA AL L L] ‘..'l‘l’*ll‘t.‘iill‘t“**}’
| ‘::i:‘t!llluiD*illllt*!l!Iitinﬁﬁﬂtlﬂtill*‘tl!tl‘ﬂQitil‘!l‘!l‘!l!!!!'!!l!it;
for (..) {
u_init ();
mu-tup [}
WL!ncxt_mr[]
}
}

Figure 6: MFE generated procedures.
The action routines and mainline generated by MIFE.

Graphics Interface '84

MAPLE Olg Renus Button Layout |
|
new menu SHAPES Wove Button |
|
print code Delete Button
Insert Button
SHRFES
new btn
|
|
i e TR T
Figure 1: o 1

The menu SHAPES has been defined.

MAPLE 01d Menus Button Layout
new BEMU SHAPES Move Button
¥ print cooe beiete Button

Insert Button

SHAPES

pEw pin
Eoit Button

Type

Proapt

Action

State

Prav Menu

Figure 2:

Depression of the "new btn” button pops up the "Edit Button™

menu. Note the button options inside the button.

- 269 -

NAPLE 0la Menus Button Layout
niv aEny SHAPES mave Button
print code Delete Button

Insert Button

SHAPES

Eait Button

(LT
B Button Type
-
| text
- 118t
N |
- int

Figure 3:
The user has named the button being edited "BOX". The "But-
ton Type” menu allows use of the MAPLE input facilities for ob-
taining typed input.

l Proce s

1
WAPLE O1d Menus Button Layout
new meny SHAPES Move Button
print code Delete Button

Insert Button

SHRPES |

Digw ptn

Edit Button

Type

Rction
State

Prev Menu

| Enter the prompt for the button

Select the points of the box._

Figure 4:
The interface designer associates a prompt with the depression of
the button.

Graphics Interface '84

