Interactive Keyframe Animation of 3-D Articulated Modeis

David Sturman
Computer Graphics Laboratory, New York Institute of Technology, Old Westbury, NY 11568

Abstract

This paper discusses some of the issues concerned with keyframed computer animation of 3-D
articulated models and the problems in designing interactive systems for this type of anima-
tion. Examples are taken from the four years of keyframe animation of articulated models
done at the NYIT Computer Graphics Lab, and from our recent attempts to refine our original
keyframe animation system, BBOP. This paper also addresses the importance of the interac-
tion of animators with keyframe animation systems as an element in the design of such sys-
tems.

Résumé

Cet article aborde certains des aspects de l'animation par ordinateur traitée par images
intermédiaires de modeles 3-D articulés et des problemes de la conception de systemes interac-
tifs appliqués a ce genre d'animation. Des examples décrits sont extraits de nos quatre ans
d’expérience en animation par images intermédiaires de modeles articule§ au sein du NYIT
Computer Graphics Laboratory et de nos récentes tentatives d’'améliorer notre systeme
d’animation par images intermédiaires, BBOP. Cet article souligne aussi I'importance de
I'interaction des animateurs avec des systemes d'animation par images intermédiaires comme
un élement de la conception de tels systemes.

KEYWORDS: Animation, articulated model, keyframe, interactive, user-friendly.

Introduction

Animation for film and video has traditionally
been a long and tedious task, with many animators
drawing and painting each frame by hand. With the
advent of computers, animators turned toward these
machines to take the drudgery out of the animation
process. Early systems worked with two--dimensional
images, automating the tedious inbetweening task.
Animators specified the correspondence between lines
in successive key frames by tracing them in a fixed
order. The computer would generate the frames in
between by interpolating corresponding lines from the
keyframes [1,2]. This technique has been refined and
is still very popular in modern animation systems like
the TWEEN system produced by CGL, Inc. [3]

As three dimensional animation became possible
with faster machines and better display hardware,
keyframing was adapted to 3-D animation. Instead of

interpolating corresponding 2-D line segments, 3-D
animation systems interpolate transformations at
joints in a three-dimensionally represented model.
Key frames consist not of 2-D images, but of 3-D posi-
tions of a model.

Because the models were represented in 3-space and
projected on the image plane by the computer, these
systems tend to produce more realistic-looking images,
than those produced by an animator who approxi-
mates a 3-D representation with a 2-D drawing.

This paper discusses some of the techniques and
problems in the design of 3-D keyframe animation sys-
tems, stressing the importance of animator interac-
tion. It draws heavily on the NYIT Graphics Lab’s
keyframe animation system BBOP[4,5], and a more
recent NYIT animation system, EM([6].

Graphics Interface ‘84



= 36 =

Modiis

The information stored in a model is :n impor-
tant aspect of any animation system. One simple way
to define models is as a set of rigid objects jointed at
nodes, organized hierarchically into an articulated
body. At each node or joint, a 3-D transformation
matrix controls the position of the portion of the body
below that joint. Transformation matrices are nested
in accordance with the body structure. The position
of the model at any one instant is determined solely
by the transformation matrices. The only intelligence
contained in the model is the topology of the body
parts and the degrees of freedom at each joint. Alone,
the model is a static entity. To make the model
move, the animator uses the animation system to con-
trol the 3-D transformation values at each joint. The
“rigid object” stipulation allows scaling of the body
parts (using the joint matrices) but not flexing or
changing their basic geometries. These are the types
of models used by the animation systems BBOP and
GRAMPS|[7]. The particular model structure was
motivated by the Evans & Sutherland Multi-Picture
System (MPS), on which the systems are based. The
MPS manages nested transformations easily: perform-
ing real-time transformation, clipping, and display of
lines.

Like BBOP, EM uses models constructed of parts
connected at joint nodes. However, EM uses a
geometric modeling language which allows parametric
control over the transformations at each joint and
over the geometry of the individual body parts. The
set of parameters define the model's final position,
shape, and characteristics. Parameters can be con-
strained and coordinated with respect to constants or
other parameters in order to give the model intelli-
gence in the way it moves. For instance, the motion
of a ball can be dependent on the slope of the floor it
rolls across, or swinging arms can be made to swing
opposite to each other.

Scripted systems [8,9,10,11] use procedural
models [12], which embed the possible motions of the
model in the model description itself, leaving some
parameters for external control.

Regardless of the implementation of its models,
an animation system should allow animators to easily
modify model structure and movement. Interaction
and visual feedback are important. Systems like
BBOP, EM, and GRAMPS are significant in this
regard because the animator can immediately view his
changes.

Positioning 1nodels

Because keyframed animation is based on key
“still” frames, the method of creating these frames is
a vital component of the system. The animator must
be able to easily set up all the parameters necessary to
define a keyframe. One basic method of positioning a
model in a keyframe is to type in a joint identifier,
the parameter to be changed at that joint, and the
value for that parameter. Although functional, this
method is not easy to use.

In BBOP the animator selects a joint using a
joystick to traverse the transformation tree of the
model. With a set of function keys, the animator
specifies that he wants to modify the translation, rota-
tion, or scaling parameters at that joint. Each param-
eter set has three elements, one for each of the x, y,
and z axes. Using a three-axis joystick, the animator
can modify these three values and watch the model
move on the screen. BBOP provides no constraints or
rules about moving the model, except that it follows
the x, y, z movements of the joystick. When manipu-
lating a human body model, for instance, limbs can
disconnect from the body structure and joints can be
bent at unrealistic angles, even causing a limb to
enter the body itself. At each joint, the interaction is
the same: the x, y, and z, translation, rotation, and
scaling parameters are controlled by the three outputs
of the joystick. This makes the system simple to use,
and an inexperienced person can learn to manipulate a
model in just a few minutes.

GRAMPS, which has a similar interactive input
method, takes a step beyond BBOP by allowing
several devices for input. By means of simple func-
tional assignment statements, values from eight dials,
a data tablet, and a joystick can be used to modify
the model’'s parameters. For instance, the animator
can assign the inverse value of a dial to the rotation
of a character and set bounds on the values the rota-
tion can assume. EM builds on BBOP and GRAMPS,
allowing input modes to be defined dynamically with
complicated dependency expressions including other
parameters and multiple input devices.

We noticed an interesting phenomena in systems
which have user configurable inputs. In BBOP, the
interaction modes are predefined and remain the same
from joint to joint and model to model. An animator
can sit down with a new model and immediately begin
to manipulate it. In EM, the interaction modes can
be configured specific to each parameter and joint in
the model’s tree structure, and by cach user. Each

Graphics Interface '84



- 37

model and each user can have different input modes.
Thus, it is difficult to sit down with a new model and
animate it right away. It takes time for the animator
to get used to the model's control characteristics.
Once familiar with a model's movement, however,
configurable inputs have proven to be very effective.
Especially useful has been the ability to interactively
control parameters of several joints of the model at
the same time. For instance, the animator can rotate
the shoulder, wrist, and waist of a model simultane-
ously. This was not possible with BBOP.

Modeling camera movement is also an important
part of an animation system. There are many ways
to move the camera interactively. We first must
define the coordinate axes in which the camera can be
moved. We define the pivoting of a camera on its
own axes, i.e. tilting, panning, and rolling the camera,
as rotation in the camera’s local coordinate system.
Camera movement around an external center point is
movement in a global coordinate system. This is
exemplified by a camera mounted on a crane that
moves around the space of the ‘“‘animation studio.” In
BBOP, the center of global camera movements is
always the center of world space and cannot be
changed. Movement along arbitrary coordinate axes
would be an important enhancement to the camera
model. This would aid in tracking a movement of the
model or moving the camera along a particular trajec-
tory while maintaining a constant object of interest.

The second aspect of camera movement is how
the camera moves relative to the model or scene. One
approach to interactive camera movement is to have
the joystick (or other interactive device) operate as if
it were attached to the camera. This is the local or
“airplane” method of camera control, because the
joystick models the pitch, yaw, and roll of an airplane
joystick. Pushing the joystick forward causes the
camera to tilt down; pulling the stick to the side
causes the camera to tilt to that side. The second
method is to model the input as if the animator were
controlling the world. In this “global” mode, joystick
control creates just the opposite effect of the ‘‘air-
plane” method. Pushing the joystick forward causes
the camera to tilt up (or apparently, the world tilt to
down, away from the eye). The two methods are
computationally equal since moving the camera to the
left is indistinguishable from moving the world to the
right. Different people favor different approaches;
however, the majority prefer the “move the world”
approach because the picture they see moves in the
same direction as the joystick. BBOP and EM also

can simulate multiple camerws, enabling an animator
to display the same animaation as seen from several
viewpoints.

In addition to camera movement, there is local
and global movement at the joints of the model.
That is to say, transformations at a joint can take
place in the coordinate system local to the joint or in
the coordinate system of the next higher, or “parent,”
joint. (In an ideal implementation the animator
would be able to effect transformations in any coordi-
nate system. This would aid, for instance, in making
a figure walk so that it rotates over the balls of the
feet, not around the center of the body.) Because
BBOP has just one interaction mode - joystick x, y, z
controlling model parameters x, y, z, — the joystick’s
motion often has little physical relation to the motion
of the model on the screen. To get around this prob-
lem, the animator can display the local coordinate
axes as they move with the current joint. EM fosters
more natural interaction because the animator designs
the input modes, adapting each to a particular mani-
pulation of the model. An example of this is to set
the tablet x/y to be the model x/z position on a floor,
and the joystick x, y, z to the model’s rotation around
its z, x, y axes respectively. Pushing the joystick
away from you would make the model tilt away from
you.

The most natural input method perhaps would
allow the animator to point directly to a joint and
‘“drag” it around on the screen. Thus the animator
would manipulate the model by pushing and pulling it
into position. There are, however, implementation
problems in trying to manage 3-D control from a 2-D
view. For instance, determining the coeflicient of
movement along the axis perpendicular to the screen
can be quite complicated. A typical solution would be
to set that ““z” coefficient to zero, but a more sophisti-
cated solution would be better.

Finally there are non-kinetic parameters such as
color, reflectance, elasticity, etec. which the animator
may need to control. These qualities may be required
if a raster version of the animation is desired, and
sometimes are perceptible only in a fully rendered
scene. The time it takes to render scenes is usually
prohibitive to display the actual property to the user
in an interactive fashion. An alternative form of
viewing these values is necessary. In EM, the anima-
tor can learn the current value of any parameter by
typing its name. With color vector devices, part of
this problem can be solved by coding various proper-
ties with different colors.

Graphics Interface ‘84



Keyframing

A frame in an animation is basically a description
of the particular state of the world at a particular
instant in time. In a keyframe system, the animator
need not describe each frame. Instead he describes a
set of “key frames” from which the animation system
can interpolate the frames in between. Interpolation
of intermediate values can be lincar, cubic spline,
cosine, ecte.

The information stored at a keyframe may vary
from a total description of the scene and animation to
the value of a single parameter used in the generation
of a frame. In secripted systems, the “key” informa-
tion is more like a cue to a stage performer [8]. The
cues tell the models (or actors) to start, stop, and in
some cases to modify or switch their behavicr to some
other pre-programmed mode. In goal-oriented sys-
tems, the animator describes a goal state and the
model moves towards that state using its knowledge
of itself and the world [11,13]. Goal states can be
considered the keys with the model itsell generating
the inbetween movements.

To set up keyframes in BBOP or EM, the anima-
tor positions the model cn the display screen. Then
he can record the position of the whole model, a sub-
set of the model, or just the value of a single parame-
ter as a keyed position in a particular numbered
frame. In 3-D systems, each parameter has its own
set of keys, unlike 2-D systems which key a whole
image. In BBOP, every value at every joint for every
frame is saved. Those values to be used as keys have
a note to that effect. This is a simple but storage
intensive implementation. = When an animator
specifies a position as a key in EM, the system saves
only the values of keyed parameters, the frame
number, and interpolation information about the
interval between that key and the next. EM has been
implemented in a way that eliminates the need to
maintain values at the inbetween frames. This
scheme is more complicated than BBOP’s, but more
space-eflicient. EM also can save key positions by
name, separate from the interpolated sequence of
numbered keyframes. Nuimnbered keyframes can con-
tain references to named keys, thus providing a sort of
macro facility to the keyframe process. For example,
if the same position is needed in multiple keyframes
the position can be described once and then referenced
by each key. If the position needs to be changed,
modification of the original copy modifies it in the
other keys.

38 -

An animator often uses the same key many
times. Copying keyframes from one position to
another at first scems to be conceptually simple, but
when looked at carefully a number of issues become
apparent. Frequently, an animator copies (or moves)
keys forward or backward in a sequence to change the
pace or timing of an animation. Moving a keyframe
forward to expand a sequence can be done by moving
the key to the new location, pushing subsequent keys
forward in the process. This expands the particular
key interval but also lengthens the entire animation.
For modification of the timing of an entire animation,
or non-synchronized motions, this is a valid approach.
However, moving a key for a motion that is, at some
point, synchronized or cued to other motions will push
the subsequent keys out of synchronization. Clearly
the subsequent keys cannot be moved forward with
any integrity unless corresponding keys for the entire
animation are also moved forward. Thus, lengthening
a keyframe interval for a subset of a model’s parame-
ters requires a corresponding contraction of another
keyframe interval. The reverse is also true.

In expanding or contracting an interval, an ani-
mator may wish to preserve the characteristics of the
original motion in the interval. For the most part.
interpolating functions take care of that. However.
there are cases in which the modified timing of the
intervals produces a motion with undesirable charac-
teristics. This is especially true with cubic spline
interpolation where keyframe spacing affects the shape
of the interpolating curve.

Creating motion cycles is another technique that
requires copying keyframes. Repeated motions are
common in animation, as in the cycle of a walk or
swing. To generate a cycle, an animator can manu-
ally copy keyframes of the basic motion to multiple
locations, one for each repetition of the cycle. This
method is tedious and error-prone. Often the original
keys contain information unnecessary to the cycle and
need to be trimmed down. Additionally, if the motion
13 to be repeated many times, the keyframe copy pro-
cess is unwieldy. Ideally, some form of cycle operator
or interpolation should exist in the animation system.

An alternative approach to modifying animation
pacing or cycle generation is to manipulate the
sequence of frame playback. An animator might draw
a curve as a function of time to indicate to the anima-
tion system the frame playback sequence he wants.
This curve could be saved and later used to comtrol
frame playback. A ramp function might be used to
produce linear playback of frames at a speed

Graphics Interface '84



= 0 =

dependent on the slope of the ramp. Cosine curves
would create cyclical animation. Acceleration and
deceleration could all be described in terms of this
function. With further refinement, different parts of a
model or animation could become subject to different
pacing functions.

As well as being able to key motions, the anima-
tion system should make it possible for the animator
to key attributes such as color, reflectance, ete. A
flexible database is necessary if these attributes,
varied in number, are to be added to a model without
destroying previous animation.

Using keyframe systems, an animator must
manage scores of joints across hundreds of frames;
perhaps hundreds of individual keys. Several systems
have successfully tackled the problem of giving such
control to the animator. One such system,
MUTAN]|14], divides a model or group of models into
tracks — separate entities that can be keyed individu-
ally. For each track, the system displays a sort of
ruler that spans the range of frames. Tick marks
indicate keys and include notations about the action
at that key. Animators manipulate the tick marks to
change key positions. MUTAN also has a mode which
the animator can use to deal with the set of keys at a
particular frame. Another system, DIAL[15], employs
a specialized notation that the animator edits on a
regular alphanumeric terminal. It displays frames
horizontally and tracks vertically on the screen. The
animator can view parallel tracks at once to facilitate
coordination of keys. BBOP and EM have a special
motion editor to manipulate keys along a single track
(or parameter), and a command that prints the list of
key frames for a particular parameter.

Interpolation

The interpolation process has been given little
attention in many animation systems. Usually they
only support linear and cubic spline interpolation.
Some systems allow cosine interpolation and accelera-
tion or deceleration functions. Animators’ experiences
with BBOP indicate that control of the inbetween
frames is very important. There are cases in which
the animator only needs linear or cubic spline interpo-
lation, but there are also cases in which a more
sophisticated motion is desired. One way to accom-
plish this is to add more keyframes. With this
method, however, the animator quickly gets lost in a
forest of keys, and the efficiency of the computer in-
betweening is lost. Another solution is to offer a

variety of interpolation types which can be selected
for the intervals between keyframes. This scheme is
better but the interface must give the animator a
clear picture of the various interpolation types and
the motions they produce. Limiting the animator to
typing in keyframes and interpolation information
may not be sufficient.

BBOP addresses this problem by providing a
motion editor. The animator uses the motion editor
to view the values of a parameter across the span of
the animation. Key frames are clearly marked along
the curve. The animator can add or delete keys and
specify one of several functions to interpolate values
in individual keyframe intervals. In addition, the ani-
mator can hand draw the desired motion between
keyframes to achieve unique movement.

With more than one type of interpolation possi-
ble, especially across the path of a single parameter, it
is important how curves of different interpolation
types are joined. To control the continuity of the
overall animation, the animator must be able to deter-
mine the degree of continuity across keyframes. Also,
the interpolant’s behavior at key boundaries is an
important factor in its behavior between keys. ASAS
solves this problem by using piecewise cubic curves
with a selectable degree of continuity at the joints.
MUTAN lets the animator specify acceleration or
deceleration functions at keys. The BBOP motion
editor supports an ease-in/ease-out function to match
slopes at key boundaries. Using BBOP, an animator
usually positions models at key frames, previews the
motion generated by the default cubic interpolation of
the inbetween frames, and then fine-tunes the move-
ment in the motion editor. The motion editor allows
an animator to give characters idiosyncratic motions,
limps, jerkyness, and human-like qualities that linear
and cubic interpolation would not provide.

Conclusions

The art of 3-D animation goes beyond positioning
models, setting keyframes, and interpolating the
inbetweens. Although many animations can be made
with these methods, a wide range of situations require
more. Scripted animation systems provide one set of
solutions. They tend to allow a high level of control
over an animation, simplifying many types of motion
control, and are often used to model algorithmic or
functionally-defined motions. These systems are well
suited to goal-directed animation and the simulation
of mechanical processes. However, scripted systems

Graphics Interface '84



. 1 g -

are not good at producing the idiosyncratic and non-
algorithmic ‘“natural” motions that professional ani-
mators favor in their productions. In addition, they
do not provide immediate feedback - an important
element in animation systems geared towards anima-
tors. Clearly, some combination of scripted and
interactive keyframe animation is desirable.

The combining of the two approaches has been
researched over the past year at NYIT, primarily by
Pat Hanrahan. The animation system, EM, that has
grown out of this research, is more clearly detailed in
a paper submitted to the ACM SIGGRAPH ’'84

conference.

Acknowledgements

BBOP was created by Garland Stern, who
developed and inspired many of the ideas in this
paper. Kenneth Wesley enhanced BBOP to its
current state. The BBOP motion editor was
developed by Thaddeus Beier. EM was conceived of
by Pat Hanrahan, and implemented with the help of
the author. Jacques Stroweis provided the French
translation to the abstract. Pat Hanrahan, Paul
Heckbert, and Jane Nisselson were extremely helpful
in providing constructive review and correction to this

paper.

References

(1) Burtnyk, N. and Wein, M., “Computer generated
key frame animation.” Journal of SMPTE 80
(March, 1971): 140-153

(2) Catmull, Edwin, ““The problems of computer-
assisted animation.” Computer Graphics (SIG-
GRAPH ’78 Proceedings) 12 (August 1978): 348-
353.

(3) Tween Users Manual. (New York: CGL Inc.,
(1983)).

(4) Stern, Garland, “Bbop - a system for 3D key-
frame figure animation.” SIGGRAPH '83, Course
7, Introduction to Computer Animation, July
1083: 240-243.

(5) Stern, Garland, “Bbop - a program for 3-
dimensional animation.” Nicograph '83 Proceed-
ings. Tokyo, Japan, December 1683: 403-404.

(6) Hanrahan, P, and Sturman, D., “Interactive con-

trol of parametric models.”” submitted to Com-
puter Graphics (SIGGRAFH '84).

(7) O'Donnell, T. J. and Olson, Arthur J.,
“GRAMPS - A graphical language interpreter for
real-time, interactive, three-dimensional picture
editing and animation.” Computer Graphics
(SIGGRAPH '81 Proceedings) 15 (July 1981):
133-142.

(8) Hackathorn, Ronald J., “Anima II: a 3D color
animation system.” Computer Graphics (SIG-
GRAPH 83 Proceedings) 17 (July, 1983): 91-102

(9) Reynolds, Craig W., “Computer z2nimation with
seripts and actors.”” Computer Graphics (SIG-
GRAPH ’82 Proceedings) 16 (July 1982): 289-
298.

(10) Magnenat-Thalmann, N., and Thalmann, D.,
“The use of high-level 3-D graphical types in the
Mira animation system.” IEEE Computer Graph-
ics and Applications 3 (December 1983): 9-16.

(11) Zeltzer, David, “Knowledge-based animation.”
Proc. ACM SIGGRAPH/SIGART Interdisci-
plinary Workshop, Motion: Representation and
Perception. Toronto, Canada, April 1983: 187-
192.

(12) Newell, Martin E., “The utilization of procedure
models in digital image synthesis.” Ph.D. disser-
tation, Depariment of Computer Science, Univer-
sity of Utah, 1475.

(13) Korein, James U. and Badler, Norman L., “Tech-
niques for generating the goal-directed motion of
articulated structures.” IEEE Computer Grephics
and Applications 2 (Movember 1982): 71-81.

(14) Fortin, D., Lamy, J.F., and Thalmann, D., “A
multiple track animator system for motion syn-
chronization.” Proc. ACM SIGGRAPH/SIGART
Interdisciplinary Workshop, Motlion: Representa-
tion and Perception. Toronto, Canada, April
1983: 180-186.

(15) Feiner, S., Salesin, D., and Banchoff, T., “Dial: a
diagrammatic animation language."” [EEE Com-
puter Graphies and Applications 2 (September
1982): 43-53.

Graphics Interface '84




