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ABSTRACT

This paper presents a new method for representing interpolating splines for use in a keyframe animation sys-
tem. Three control parameters allow the animator to change the tension, bias and continuity of the default interpo-
lating spline. Each of the three parameters can be used for either local or global control. Due to their high degree
of flexibility this class of splines has potential applications in other areas, such as CAD/CAM, modeling of dynamic

phenomena, and robotics.

1. Summary

Automatic inbetweening based on keyframes drawn by the
animator is one of the oldest techniques used in computer animation
[Burtnyk & Wein 71]. The intermediate drawings required to move
from one keyframe to the next are generated by interpolating
between the given keys. The straightforward linear interpolation
algorithm used in many inbetweening systems produces some
undesirable side effects which give the animation a mechanical
look, often referred to as the computer signature. The most objec-
tionable characteristic of this type of animation is the lack of
smoothness in the motion. The keyframes are clearly visible
because of sudden changes in the direction and speed of motion at
cach key position. Another common problem is the distortion
which occurs whenever the movement has a rotational component.

In view of the serious drawbacks of the simple linear interpo-
lation technique, a number of different methods which produce
smoother motion have been published. These techniques include P-
curves [Baecker 69], skeletons [Burtnyk & Wein 76], action overlap
[Tuori 77], and moving point constraints [Reeves 81]. All of these
techniques require the animator to specify additional information
other than just the keyframes; a completely automatic technique
which uses only the keyframes drawn by the animator is described
in [Kochanek 82]. The system described there is based on fitting a
set of interpolating splines through the key positions, thus
ameliorating the discontinuity problems produced by linear interpo-
lation.

The splines used in that system work well for most animated
sequences. However, a standardized smooth motion through a
given set of keys does not always produce the effect desired by the
animator. In certain cases the animator may want the motion to
follow a wider, more exaggerated curve, while in other cases he

may want the motion path to be much tighter, maybe almost linear.
Even continuity in the direction and speed of motion is not neces-
sarily desirable at all times. Animating a bouncing ball, for exam-
ple, actually requires the introduction of a discontinuity in the
motion at the point of impact. The research described in this paper
replaces the standardized interpolating spline used in [Kochanek
82] by a highly flexible class of splines which interpolate the key
positions but vary in several control parameters.

These three parameters, tension, bias, and continuity, allow
the animator to fine-tune the animated sequence by changing cer-
tain characteristics of the standardized interpolating spline either
locally (applying only in the vicinity of a specific keyframe), or glo-
bally (applying to the entire motion sequence). The research
presented here is based in part on the concepts of tension and bias
in approximating splines presented in [Barsky 81], [Barsky &
Beatty 83], and [Bartels et al. 83]. An excellent introduction to the
theory of interpolating and approximating splines for computer ani-
mation can be found in [Smith 83].

Given a sequence of key positions, we can interpolate them
with a piecewise cubic polynomial (a spline) by choosing two con-
straints for each interpolation interval. Together with the interpola-
tion requirement (the curve must pass through both of the keys
which define the interval), this gives a total of four constraints
which uniquely determine the four coefficients of the desired cubic
polynomial for each interval.

First and second derivative continuity are a possible choice
for these constraints. However, this technique is computationally
complex and not very flexible. Instead, we define the tangent vec-
tors at each key position directly, based on the geometry of the sur-
rounding keys. This approach allows us to provide first derivative
continuity where desired, yet leaves enough flexibility to generate
more than one standard curve. The resulting splines do not have
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second derivative continuity. This does not prove to be a significant
problem because the curves are never actually seen in graphic form,
but only indirectly through the dynamic behaviour of an object. In
the time dimension discontinuities of the second derivative are
almost impossible to detect.

The high degree of flexibility in our approach stems from the
fact that any piecewise cubic polynomial interpolating the key posi-
tions can be generated by choosing appropriate tangent vectors. A
single keyframe may contain several thousand points, making it
infeasible to ask the animator to specify the tangent vectors
directly. Instead the system defines the vectors based on the sur-
rounding key positions and provides several control parameters
which supply the desired flexibility. For keyframe » the tangent
vector for a point P is calculated as a linear combination of the
source chord vector SC and the destination chord vector DC These
two chords are usually not co-linear. Thus they form the basis of a
two-dimensional vector space, and any vector in the same plane can
be generated from a linear combination of these two chords, A
default curve is defined which is based on tangent vectors produced
by simply averaging the two adjacent chord vectors. This default
case, even though expressed in terms of different basis functions, is
exactly the Catmull-Rom spline described in [Smith 83].

The first control parameter is tension which is used to
increase or decrease the tightness of the curve. The tension param-
cter modifies the length of the tangent vectors, without changing
their direction. Increasing the tension shortens the length of the
tangent vectors, thus producing a tighter curve. Varying the ten-
sion equally for all key positions generates the entire class of cardi-
nal splines of which the Catmull-Rom spline is one particular exam-
ple [Smith 83].

The second control parameter is bias which is used to assign
different weighting factors to the two chords when averaging them
to find the tangent vector. In the extreme case the tangent vector
is determined entirely by one of the chords, whereas the default is
an equal weighting factor for both. The bias control is very useful
for producing the traditional animation effects of overshoot and fol-
low through for an action.

The third control parameter is continuity. By default the
splines have tangent vector continuity, i.e. the tangent vector when
approaching a key position is equal to the tangent vector when leav-
ing the same key position. By changing the continuity parameter
the animator can force two different tangent vectors for approach-
ing and leaving a key position, thus deliberately introducing kinks
into the curve.

The three control parameters add a degree of flexibility to the
curve which has previously been found only in approximating Beta-
splines. The class of interpolating splines described in this way was
developed for keyframe animation, but their potential range of
application is far more general, including areas such as modeling of
dynamic phenomena, tool path definition in computer-aided
manufacturing, and the description of complex motion sequences in
robotics.
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