43

A COLOR REAL-TIME ANIMATION SYSTEM

A. S. Malowany,

B. Kashef

Department of Electrical Engineering, McGill University

ABSTRACT
Work is underway in the Department of Electrical Engineering at McGill
University to develop a parallel processor system that is used by a general
purpose host computer to perform real time computer generated animation of
displays. The paper describes the system architecture, principles of operation,
the communication protocols, and software development. This presentation
focuses on the 2Z8000 implementation and test results. Finally, overall
performance estimates of the system are drawn.
KEYWORDS : Real Time, Animation, Color Graphics, Parallel Processing,
Microprocessors
1. Introduction. processor architecture, the GRADS is
capable of animating complex 3-D
The Electrical Engineering pictures in real-time. A multiple-bus
Department of McGill University has been structure has been adopted to
involved in research projects in accommodate the large throughput rates

Computer Vision, Computer Graphics, and
Robotics for a number of years. The
laboratory facilities 1include one DEC
VAX 780 and two VAX 750 computers
running the VAX WVMS and the UNIX
multiuser multitasking operating
systems, 1imaging peripherals and a PUMA
260 robot.

In this multiuser research

environment, there is a frequent need to

generate and display complex computer
generated images in real time, for
interactive program development. To

answer this need, the GRADS (an acronym
for Graphics Real-time Animation Display

System) has been designed to generate,
store, manipulate and display animated
colored images on a standard
raster-scanned TV monitor (Ref. 1). It

the frame buffer concept to obtain
free displays by
images at a rate of 30

uses
high density flicker
refereshing the

frames per second. The system is
capable of displaying 512 * 512 (high
resolution) or 256 * 256 (low
resolution) pictures having three

primary colors and five intensity bits
(32 levels) per color. This involves a
tremendous information flow of about 8
million 15 bit words per second to the
display monitor. By wusing a parallel

that are required for such a system.

The structure of the GRADS may be

divided 1into three levels of hierarchy
(Figure 1). The first level 1includes
the Host Computer and the Host Computer
Interface module. The second level
consists of a set of paralleled
microcomputers. Finally, the third
level consists of the Graphics

Controller, The Video Memory Planes, the
TV Sequencer, and the color TV Monitor.

responsible
system as
application
image at the
throughput
increased by
information

The Host Computer 1is
for supervising the entire
well as executing the
programs by processing the
high level only. The
capability of the system is
partitioning the high level
to the microcomputers operating in
parallel and letting them perform the
tedious basic operations for expansion
into the detailed information which |is
fed to the display. The dramatic
reduction in price of memory and
microprocessor integrated circuits makes
this design increasingly cost effective
as witnessed Dby by the recent
development of several commercial
multiprocessor graphic systems (Refs. 2
and 3).

Graphics Interface '84

GRADS 1is versatile 1in terms of
modularity and expandability. The
time-shared bus structure enables us to
use the system with a variable number of
modules., The system throughput can be
enhanced by adding more microcomputer
modules or faster video memory modules.
One very versatile feature of the GRADS
is that both the number of frame buffer
planes selected and the display
resolution are software programmable.
The programmer can reconfigure the
System to support Dblack and white
displays using a minimum number of
memory planes. A choice between
"opaque" writing mode which overwrites
previous frame content, and
"transparent" writing mode, which
combines new image data with the
previous frame content 1is available.
The modularity of GRADS provides an
easier way to design, debug, and
maintain chis system as compared to
designing- a single large integrated
system.

2. Implementation of the GRADS

2.1 The Host Computers and the Host
Computer Interface

Two Host computers are presently
used in the GRADS. The irole of the Host
Computers is to generate the high level
commands to be implemented by the array
of processors and to control the
activity of the system. To be able to
handle complex animations, a powerful
computer having large main angd secondary
memories is required. The VAX 11/780
DEC Computer in the image processing
laboratory of the University is
connected to the Host Computer Interface
through the UNIBUS adapter.

A second host computer was provided
for the purpose of performing simpler
tasks such as debugging and system
maintenance. A S5-100 based Z80
microprocessor system running CROMEMCO's
CDOS operating system is adequate for
this purpose.

The HCI provides a fast
communication channel to move blocks of
informations in a DMA (Direct Memory
Access) fashion. The HCI provides the
host computers with a path to access the
status of the different microcomputers

- 44 -

and to control them using an interrupt
network.

2.2 The Microcomputer Modules

Each microcomputer module in the
GRADS consists of a CPU, a local memory,
and local software. The slave
microcomputer modules are responsible
for executing the flow of graphic
instructions downloaded from the Host
Computer through the Host Computer
Interface and for generating low level
commands and data to be submitted to the

display subsystem. The GRADS can
currently accommodate up to five
microcomputers., Each microcomputer is

being built around a different CPU.
This allows valuable comparisons among
different popular CPUs currently
available on the market. To date, three
microcomputers were built using the 2901
bit slice microprocessor, the Intel 8086
and the Zilog Z8002 microprocessors.,

In the current implementation, the
Host Computer is responsible for
executing the specific application
programs as well as performing the

necessary three dimensional
transformations, windowing, and clipping
of the image scene. This results in

macro-instructions such as points,
lines, polygons, and shaded polygons.
The software provided in the
microcomputer modules 1is intended to
receive these macro-instructions and
produce the output format required by
the graphics subsystem. Two input
buffers are used at each microcomputer
to efficiently accomodate the latencies
involved in downloading
macro-instructions.

2.3 The Graphic Subsystem

The Graphic Subsystem consists of
the Graphics Controller, the Video
Memories, the T.V. Sequencer, and the
Color T.V. Monitor.

The Graphic Controller is
responsible for merging partial image
buffers from the parallel microcomputers
into the wvideo memory planes. It also
interprets the data from the local
memory of the microcomputers before
storing the corresponding data into the
video memory. The interpretation

Graphics Interface '84

- 45

depends on what graphics mode the system
is using.

The Graphics Controller is
microprogrammed and currently support
four graphic modes :

1) The Point Mode is used to draw many
pixels having the same colour.

2) The Solid Area Mode 1is wuseful for
painting areas 1in a chosen uniform
colour.

3) The Shading Area Mode is useful for
efficiently displaying the areas of
non-uniform or shaded color.

4) The Read Back Mode has been designed
mainly for maintenance purposes allowing
the Host Computer to verify the
fault-free operation of the video frame
memories.

3. Communication in the GRADS.

The GRADS design has sought to
incorporate a fast communication network
as an integral part of the system. Much
of this communication support is offered
by the hardware of the Host Computer
Interface (HCI). The communications in
the GRADS <can be divided into two
classes : the data communication class
and the control and status communication
class. To provide fast response times,
the two classes have been implemented
independently.

The data communication is provided
by the HCI which 1is a special DMA
machine. The HCI is capable of doing
block moves between buses of different
widths and protocols. This machine can
be requested by any processor in the
GRADS. The DMA machine then takes over
and carries out moves in packets of 16
words. The termination of the data
block move is signaled to the requester
of the DMA by means of an interrupt.

The control communication is
carried out by interrupts and control
word transfers. The interrupts are used
to signify a predefined event by drawing
attention to the contents of the status
register. Each microcomputer is
provided with two special registers,
namely the control and the status
registers. Typically, a processor
wanting to convey some information to
the Host Computer, loads 1its status
register with a selected bit pattern and

sends an interrupt causing the Host
Computer to look at the status register
and thus receive the 1information. The
sending of control information from the
Host to the microcomputers is done by
outputting a specific word, setting the
bits of the control register of that
particular processor. Some control
register's bits are hardwired to the
microcomputer systems in order to
generate a desired effect such as
'reset' or 'interrupt'.

4., The Microcomputer Operating System.

Each microcomputer module 1is also
governed by its local operating system.
The main functions of each microcomputer
operating system can be summarized as
initializing the microcomputer and
managing the local buffer resources.
The implementations of the operating
system for each of the microcomputers
vary slightly from each other as the
resources available 1in each module are
not all identical. In this paper we
concentrate on the Z8000 module, however
the main idea is similar for all the
microcomputers in the GRADS.

The software of the 28000 can be
divided 1into two classes, the Executive
and the Macro-programs, The Executive
has the <control over the entire module
from the time this subsystem is started
up, by the Host computer, until the halt
of the entire system. The Host Computer
resets each module by issuing a reset
pulse using the control register of the
microcomputer. A non-maskable interrupt
from the Host invokes the executive of
the module.

The Executive first initializes the
tables of parameters and switches used
for its proper functioning. In the case
of 2Z8B000 software, this includes the
stack pointer setting, initialization of
program status area and its pointer
settings. During this time, the
maskable interrupts are disabled.

After the initialization, the
Executive enables the interrupts and
requests input buffers from the Host
Computer. This 1is done by setting the
appropriate bits in the status register
and 1issuing an interrupt to the Host
Computer. Likewise, immediately after

Graphics Interface '84

= AB =

finishing the processing of an input
buffer of macro-instructions the
Executive updates the appropriate status
register bit and issues another
interrupt to the Host Computer.

As soon as a filled input buffer is
available, the Executive starts
processing this buffer. The
macro-instructions will be interpreted
by the Executive and the appropriate
macro-program will be called for each.
The End Macro-instruction defines the
end of an input buffer causing the
Executive to switch to the next full
input buffer.

The Executive 1is responsible for
managing the output buffers. Before
calling any macro-program, the executive
compares the current size of the output
buffer against a chosen threshold
length. If this length is exceeded that
output buffer is considered full, Iits
actual length is noted and the Executive
continues using the second buffer.

When an output buffer 1is filled,
the Executive requests the Micro-Bus, by
asserting its private Micro-Bus Request
line to the Graphics Controller. The
Micro-bus Grant signal engages the
graphics controller DMA operation
previously explained in section 2.3, At
the end of the DMA, the Micro-Bus DMA
Done interrupt causes the Executive to
free that buffer for further usage.

This programming development was
realized 1in assembly language using the
ZAS 28000 <cross assembler by Western
Wares under CDOS. Extensive use was
made of the sixteen 1internal registers
of the Z8000 CPU for managing loop
counters and Dbuffer pointers. The
general flexibility of register usage
contributed to efficient coding and
absence of register boﬁﬂenecks. When
necessary, the multiple loading and

storing instructions made register
saving and restoring very easy. The
multiple bit position shifting

instructions were frequently used for
processing fields of the color word.
The sixteen bit word size effectively
handled the 256 X 256 resolution
implementation using byte oriented
instructions.

5, Testing and System Performance

The software for Z8000 module was
recently completed and tested as shown
in figqure 2. The 28000 hardware module
is realized wusing an S100 base system
incorporating a 28000 CPU, 64K of RAM,
an I/0 card, and a specially constructed
interface card to link this module with
the Graphics Controller through the
Microbus. By using several 8-bit
parallel channels on the I/0 card, it
was possible to connect the system under
test to the second Host Computer of the
GRADS.

The Host Computer is a S-100 based
system consisting of a Z80 CPU, 64K of
RAM, an 1interface card for a video
terminal and dual floppy disc drives,
and finally an I/0 board to communicate
with the I/0 board of the Z8000 system.
Using a test program running on the
Host, the performance of the 2Z8000
module could be easily measured.

5.1 The Test Program

The Test Program performs a number
of services selectable from a display
menu with several options. First it is
used to download the microcode of the
Graphics Controller as well as the
Executive and the macro-programs into
the 28000 system from the Cromemco CDOS
floppy disc files. Another option
allows the user to program a timer for
measuring the performance of the system
by displaying a special character at the
time 1intervals requested by the user on
the host console.

The menu also allows the wuser to
select a continuous display operation
containing sequences of points, or
lines, or polygons. Here the Test
Program repeatedly fills the Z8000 input
buffers whenever they are emptied. Each
routine utilizes a random number
generator program to generate random
numbers used as the coordinates of
points, or the two end points of lines,
or the vertices of rectangular polygons
as well as their colors. Finally, the
Test Program provides the wuser with
extensive messages appropriate to each
stage of the program execution.

Graphics Interface ‘84

- a7

5.2 Deadlock detection and recovery

In such a networked environment,
where the processors are communicating
with each other wusing multiple shared
buses, the problem of deadlock 1is
critical. Deadlock may occur because of
environment noise problems, hardware
malfunctioning, or even design errors in
either hardware or software. Any of the
above might result in a situation where
both the Host and the 28000 wait on each
other indefinitely. For example, the
mutual waiting may consist of the Host
Computer waiting for request for filling
an empty buffer from the zZ8000 and the
z8000, in turn, waiting for an input
buffer to be filled from the Host
Computer. In order to break this tie, a
mechanism for detecting deadlocks and
recovering from them is essential.

Both the Host Computer and the
Z8000 System are provided with time-out
mechanisms. If one system 1is waiting
for the other one for more than a
specified time-out period a deadlock is
declared. By using different time-out
intervals for different parts of the
system (for example the Graphics
Controller DMA transaction or processing
of the input buffer of
macro-instructions), the existence of
each deadlock type can be easily
detected and classified. Proper
recovery procedures are then
automatically engaged. For example to
recover from a Graphics Controller
deadlock situation, the Host Computer
observes the presence of the DMA state.
It must issue a reset pulse followed by
a non maskable interrupt (NMI) to
reinstate the Z8000 CPU operation from
its previous tristated DMA mode, and
then issue a vectored interrupt to the
Z8000 system to inform it to reprocess
the same buffer. Appropriate messages
are printed for the user by both the Z80
Host Computer Test Program and the Z8000
Executive program to assist the
debugging process.

5.3 Performance Evaluation

The performance of the system
driven by the Z8000 module operating at
a 2 MHz clocking rate was evaluated
using an oscilloscope. The Host
repeatedly fills the Z8000 input buffers

with a set of 2048 points where the
(x,y) coordinate of each 1is randomly
specified, or a set of 512 lines where
each 1line 1is defined by the (x,y)
coordinates of its two randomly selected
end points, or finally with 256
rectangles where the (x,y) coordinates
of the diagonal vertices of each are
provided using the random number
generator.

Measurements were made to evaluate
the Z8000 software performance including
buffer management, graphics primitives,
and error recovery. This showed average
times of 22.5 microseconds per point,
243 miliseconds per line, and 12.7
miliseconds per rectangular polygon.
Statistics gathered offline showed that
the average line contained 106 points
and the average polygon had 1000 pixels.
This performance could be improved by
using hardware capable of operating at
the 8 MHz maximum CPU clock rate. A
further 10% improvement 1is estimated
possible by program optimization.

During these tests, measuahents
were also made to assess the performance
of the graphics display hardware. These
showed that the «current system can
update, on the average, 16,900 points,
85 lines or 22 polygons in 33
mili-seconds. These slow hardware
execution times are primarily limited by
the slow access time of the Z8000 memory
to Microbus interface card. These rates
should improve by a factor of 5 or 6
using the current microcomputer modules
presently under development. A further
improvement could be realized by
upgrading the speed of the video frame
memory board from the present 500
nanoseconds cycle time.

As mentioned earlier, a number of
such microcomputer modules can be
paralleled to enhance these figures
proportionally in obtaining a required
performance.

Conclusion

In this paper an attempt was made
to explain the GRAD System intended for
real-time animation and being developed
in the Department of Electrical
Engineering of McGill University. The
parallel operation of the GRAD system,

Graphics Interface '84

- 48 -

its communication protocols 1including
deadlock detection and recovery, its
software development emphasizing the
Z8000 module, and finally the testing
and performance estimation of the GRADS
are presented. References.

1. Malowany A. S., Levine M. D., "A
Raster Color Display System for Real
Time Computer Graphics", 6th
Man-Computer Communications
Conference, Ottawa, May 1979

2. Matrox GXT-1000 "2D/3D Interactive

Color Terminal” IEEE Computer
Graphics, vol 3, No. 5, Aug. 1983,
p69

3. ORCA, "ORCAS for all reasons", IEEE

Computer Graphics, wvol 3, no. 3,
May/June 1983, ple

Graphics Interface '84

= AQ =

Host
Computer
VAX 11/780

Host

Computer //

Interface \

CPU BUS

2900 8086 28000

Micro- Micro- Micro-

Computer Computer Computer
MICRO BUS

v

Graphics Controller
Video Memories
T.V.S5equencer

Color T,V Monitor

Fig 1. The Architecture of GRADS

Graphics Interface '84

Z80 S100 System

1/0 Board

20 Parallel lines

Z8000 Module
1/0 Board
Z8000 5100 system

Interface card

< MICRO BUS >

Graphics Controller
And

Display system

Fig ?. The test configuration

Graphics Interface '84

