
- 1 -

A THEORETICAL AND EMPmICAL ANALYSIS OF COHERENT RAY-TRACING

L. Richard Speer
Tonll D. DeRose
Bnan A. Barsky

Berkeley Computer Graphics Laboratory
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, California 94720

Abstract

The use of coherence has been advocated as a
means of reducing the large computational cost of the
ray-tracing method of image synthesis. This paper
examines the theoretical and empirical performance of
a typical coherent ray-tracing algorithm, one that
exploits the similarity between the intersection trees
generated by successive rays. It is shown that despite
the large degree of coherence present in a scene, the
need to ensure the validity of ray-object intersections
prevents any significant computational savings. This
indicates that other algorithmic methods must be used
in order to substantially reduce the computational cost
of ray-traced imagery.

Resume'

L'utilisation de la coherence a ele propose'e afin
de re'duire le cOlit eleve de la melhode de synthese
d'image basee sur le tra~age de rayons lumineux. Cet
article examine la performance, tant d 'un point de vue
theorique qu 'empirique, d 'un algorithme typique qui
met de coherence de rayons, c'est-a-dire un algorithme
qui exploit la ressemblance entre les arbres
d'intersections genere's par des rayons successifs. Nous
montrons qu 'en de'pit du degre eleve de coherence
present dans une image, l'obligation de maintenir la
validite' des structure d'intersection fait obstacle a
l'obtention de gains importants. Ces rcsultats donnent
a penser que des melhodcs algorithmiques plus
Condamentales sont ne'ccssaires pour reduire de fa~on
substantielle les COlitS de ealcul du tra~age de rayons
lumineux.

KEYWORDS: ray-tracing, coherence.

This work woo . upported in part by th. Defense Advanced R...,arch
Projects A~ney under contr&<:\ numb.r NOOO3~82-CO"..3S. tbe National
Science Foundation UDder ",ant number ECS-8204381 . and the State of
CUiI'ornia under a Mic:roelectrooics (nnovatioD &Dd C..omputer RHe&t'eb
Opportunities I"an\.

U.S.A.

1. Introduction
The technique of tracing rays through a scene

("ray-tracing"), first used to generate shadowsl and
solve the hidden-surface problem for quadrics,lO has
become the centre oC a great deal oC research activity.
Beginning with two papers on realistic image
generation, 16, 25 the method has been applied to
algebraic surCace rendering12,15 and a number of
problems in solids modelling.2, 17, 19 Probably the most
striking application oC the method, however, remains
its use in generating highly realistic imagery . ll , 14,25
The ray-tracing method is unique in its ability to
compute inter-object reflections, shadows, and
accurate reCraction , Ceatures that are difficult or
impossible to achieve with other techniques.

The price oC such eCCects, however, is not small.
Computation times Cor ray-traced pictures, Cor
example, are oCten measured in CPU_hours.1 1,24,25
The chief reason Cor this is that a very large number
oC rays (250,000 - 1,000,000 or more) must be traced
for high-quality imagery.

One strategy Cor reducing ray-tracing
computation time relies on hardware. A number of
papers have been published in this area, including one
on the use oC a "supercomputer" , 18 two on co
processor designs3,4 and several on muItiprocessor
based systems. 5.6,23

A second strategy uses algorithms that adaptively
subdivide scenes into a number of sub-volumes. The
resulting sub-volumes mayor may not be disjoint from
one another. In one study,7 the subdivision is
"cellular" ; that is, all sub-volumes are disjoint,
although together they contain the entire volume of
the scene. Other papers!)' 14. 20 present algorithms
based on a hierarchical scene subdivision. Such a
scene structure generally permits fast determinat ion oC
the nearest object intersected by a ray .

Another technique which has been mentioned by
several authors13.15.25 but not tried, centres on the
use of ray coherence. As Hcckbcrt13 noted, " .. .in

Graphics Interface '85

many scenes, groups of rays follow virtually the same
path from the eye ... " (see Figure 1). As a result, the
tree-like paths that are traced through the scene by
successive rays from the viewpoint are often very
similar. This similarity can be used to predict the
path of any such ray, given the path of its predecessor,

Figure 1 - Groups or Rays Follow Similar Paths

as follows. First, the ray currently being traced from
the viewpoint is checked against the object intersected
by the previous ray from the viewpoint. IC the current
ray does not intersect that object, it must be checked
against all other objects in the scene, as in standard
ray-tracing.25 Otherwise, a check of the other objects
need not be done, resulting in a computational
savings. In this case, we say that the two rays in
question are coherent. Also in this case, we can apply
the idea recursivdy: any renective ray that results is
checked against the object hit by the renective ray of
the last ray from the viewpoint; and so on. It should
be apparent that the degree of similarity of these
paths indicates (roughly) the computational savings
that coherence can provide over standard ray-tracing.

Before proceeding any further, we must add that
the detection of coherence is not quite as simple as
just described . Even when corresponding rays (two
rays at the same recursion level, one of which is either
the last ray from the viewpoint or one of its children,
the other the current ray from the viewpoint, or one
of its children) intersect the same object, the current
ray might also intersect a nearer, intervening object
just missed by its correspondent (Figure 2). These
false-coherence cases must be detected, to produce
correc t results.

In the rest of this paper we describe, analyze and
present performance data of an algorithm for coherent

- 2 -

\ \" Current Ray

YJ Its Correspondent

+---'::::::21'

\\

\I

\I

1\

Figure 2 - Current Ray Intersects Object Hit by
Its Correspondent, and Interceding Object

ray-tracing. Coherence ("the extent to which the
environment or the picture of it is locally constant")22
has oCten been used in graphic algorithms.21,22 It is
natural to expect coherent ray-tracing to yield the
same kinds of benefits seen in other rendering
algorithms. Empirically, however, we have found that
this is not the case. The following sections explain
why.

We should note that the algorithm we will be
discusssing is most naturally used on scenes containing
objects enclosed by spherical bounding volumes. The
general approach, however, could also be used with
other kinds of volumes. IQ

In Section 2, the coherent algorithm is presented
and compared with the standard one. Sect ion 3 gives
a probabilistic analysis of the new algorithm' s
performance. Finally, in Section 4 we discuss our
implementation and give statistics from test pictures
we made.

2. Ray-tracing Algorithms

2.1. Terminology

We begin by defining terms that will be used
throughout the rest of the paper. A ray is specified by
an anchor and a direction vector. The anchor is the
three-dimensional location of the origin of the ray.
The direction vector specifies the direction of
propagation of the ray.

The image plane IS a rectangular region
posit ioned (conceptually) in or Ilear the scene.
Elemental regions in the plane correspond to pixels of
the frame buffer. Along with the plane, a vic!vpoint is
specified. To simplify the discussion, we distinguish
rays that originate at the viewpoint from all others

Graphics Interface '85

and call them initial rays. A ray-set is composed oC
an initial ray and any reflected and reCracted rays that
it generates, together with their descendants.

As mentioned in Section 1, the scene consists oC
some number oC spherical bounding volumes. It will
aid the discussion if we assume that relatively Cew of
these volumes intersect, although this is not required
by the new algorithm. The volumes surround objects
composed oC primitive geometric elements such as
triangles or more general polygons. We reCer to the
latter simply as primitives.

Since most rays that are traced are the result oC
an intersection with an object, we say that a ray has
an associated originating object. For simplicity, we
will regard even initial rays as having such objects.

We now define some terms that describe the
relations between a given ray and the bounding
volumes present in a region or scene. Every ray
naturally divides space into two haIC-spaces, the
boundary being a particular plane (Figure 3). This
plane, which we call the bounding plane for the ray, is
defined as the plane passing through ray's anchor,
having the direction vector of the ray as its normal.
We call the halC-space in the direction of ray
propagation the front half-space oC the given ray, and
the other the rear half-space. A bounding volume
that lies entirely in the rear half-space is said to lie
"behind" the ray associated with the plane; those that
do not are said to lie "in Cront" of the ray. We refer
to the process of classifying all the volumes like this as
partitioning the region.

Finding the intersection oC a given ray and the
primitives in a region requires determining which
bounding volumes are intersected by the ray. All the
volumes in a region that are in Cront of a ray divide
into two groups, those that are actually intersected by
the ray and those that are not. And any volume
behind a ray cannot be intersected by it. Therefore,
we note that a ray divides all the volumes in a region
into three disjoint sets: those behind the ray, those in
front but not intersected, and those in Cront and
intersected. We call these sets B, N and I,
respectively.

A few other terms that are more easily defined in
context are presented later.

2.2. Standard Algorithm

We now consider the standard ray-tracing
algorithm. In its simplest form, a ray-tracing program
consists of two nested loops surrounding a call to a
ray-tracing routine. The loops s~rve to scan the rows
and columns of the image.

- 3 -

Object ~in front~ of
ray and intersected

C)
/ :: BO)lnding

/ '-plane
/ (se~n pn

edge,

Object ~ in front ~
of ray

o
Obj~t ~in front~

of ray / ~
/

o
Object ~behind~

ray

Figure 3 - Partition ot Space by a Ray
(Cross-sectional View)

The ray-tracing routine itself is usually written
recursively. If the initial ray passed into the routine
intersects an object, calls may in turn be made in the
directions of reflection and refraction. In the standard
algorithm,2S recursion terminates when a ray either
does not intersect anything or intersects an opaque,
non-reflective surCace. More recent papers8,11 have
noted that recursion can also terminate when a special
attenuated-intensity coefficient that is associated with
a ray drops below a threshold.

As the recursion proceeds, a record is kept of the
objects intersected. Due to the Cact that in many
implementations, no more than two rays are spa.wned
at an intersection, the record is often kept in the Corm
of a binary tree (the "intersection tree" referred to in
Section 1). When recursion has stopped Cor all
members oC the ray-set, the pixel's colour is computed
by applying an appropriate shading rule11,2S to the
tree. ACter shading, the tree is discarded and the
entire process repeated for the next pixe!.

In addition to those traced recursively, rays are
also traced Crom intersection points toward each light
source, to test Cor shadowing. The results oC this test
are stored in the nodes oC the intersection tree and
used in the shading calculation.25

2.3. Coherent Algorithm

2.3.1. Containers Around Rays

As discussed in Section 1, a coherent r:ly-tracing
algorithm can use the path generated by the last ray
set to predict the path of the current ray-set . Thus,
one immediate difference between the new coherent

Graphics Interface '85

algorithm and the standard one is that aCter colour
computation, the intersection tree is retained Cor one
more program iteration. It is used during this
iteration as a guide, providing hints as to which
objects will be intersected by rays in the current ray
set. When tracing Cor the current ray-set terminates,
the last intersection tree is discarded and the tree that
was just generated in turn is retained, to play the role
oC intersection-guide Cor the next ray-set.

However, we must be able to detect cases such as
those illustrated in Figure 2, as we mentioned; this can
be done as Collows. A logical "container", a kind oC
"saCety zone", can be constructed around every ray in
a ray-set. These containers will be centred around the
ray with which they are associated and extend
outward to the nearest object not intersected by that
ray (Figure 4). It can be seen that iC a corresponding
ray Crom the next ray-set does not "pierce" (intersect)
the side oC the relevant container, and intersect.s the
same object intersected by this ray, then that object
must be the Coremost object intersected by the
corresponding ray. Thus, iC each ray in the last ray
set has associated container inCormation, the situation
shown in Figure 2 can be avoided: rays in the next
ray-set that pierce the container oC their corresponding
ray or Cail to intersect the object intersected by that
ray, require a region partition, as in standard ray
tracing. Rays that do not pierce the relevant
container, on the other hand, and intersect the object
intersected by their corresponding ray do not require a
region partition.

0 ..
Figure 4 - "Safety Zone" Around a Ray

(Cross-sectional View)

Since the savings that can be achieved by this
strategy depend on trading the cost oC checking every
object in the region Cor the ~ost oC "pierce-checking"

- 4 -

the container, it is important that the latter operation
be as computation ally simple as possible. A radially
symmetric container is a great help in achieving this
goal. For this reason, we chose cylinders Cor the
containers. Such a cylinder starts at the point oi
origin oC a ray, has its central axis aligned with it, and
ends at its point oC intersection with an object.

2.3.2. Container/Cylinder Construction

It is not diCficult to construct a cylinder like the
one just described. Notice that every bounding
volume in a region becomes a member oC one and only
one oC the sets B, N and I, defined in Section 2.1, in
the course oC a region partition Cor some ray. Let us
now consider the set N. It it is not empty, then we
can simply check each element in the set to find any
that is between the bounding plane oC the ray and a
parallel plane that passes though the nearest object
intersection point. OC these, we take the distance oC
the volume that is nearest to the ray, radially, as the
cylinder radius (Figure 5). The cylinder has its central
axis aligned with the ray, which we call the formati ve
ray Cor the cylinder, and is bounded by the two planes
mentioned. We store the cylinder inCormation in an
intersection tree node simply by storing the radius
defined above and the ray direction. The other
attributes (the cylinder bounds) are defined implicitly
by inCormation already stored in the intersection tree
by the standard algorithm,2S namely the originating
object and the nearest object intersected by the
Cormative ray .

o

.... ·····<·:00

"lOounding
'Plane

....

Figure 5 - Sarety-Cylinder Construction

2.3.3. Containers/Cylinders ror Light Sources

To compute shadows, rays are traced Crom obj ect
in tersection points in the direction of each light

Graphics Interface '85

source, as mentioned in Section 2.2. If one oC these
rays intersects an object "en route", the point in
question is in shadow with respect to that source.
Rays traced Cor this purpose are somewhat diCCerent
than those traced Cor object intersection in that no
rays are traced recursively Crom any object that they
intersect.

Coherence cylinders can also be constructed and
used Cor these light-testing rays. If an object is
intersected by such a ray, a cylinder is built in the
manner discussed earlier (Figure 5).

2.4. Summary

In summary, our algorithm diCCers Crom the
standard one in two major ways: First, the standard
intersection tree is retained Crom pixel to pixel as the
program runs. The objects intersected by rays oC
previous ray-sets are used to suggest which objects
might be intersected by corresponding rays in the
current ray-set. Second, logical cylinders are
constructed using inCormation obtained during a
region partition. These are used to indicate when the
intersection information Crom a previous Cormative ray
is no longer useful and that a region partition will be
required.

3. Probabilistie Analysis

We now consider two major questions: first, for a
scene with a given percentage of coherent rays, what
order oC computational savings can be achieved using
the new algorithm and, second, since it has additional
costs beyond standard ray-tracing (due to cylinder
construction and pierce-checking), what percentage of
rays must be coherent for the new algorithm to
outperform standard ray-tracing!

Beginning with the first question, a simple
argument can be made to derive an upper bound on
the savings that can be achieved using the new
algorithm. Suppose that a ray Cound to be coherent
cost nothing computation ally. Denote the time
required to render a given scene using standard ray
tracing as T ST' Then, if a Craction C oC the number oC
rays traced by the algorithm are coherent, an
expression for the amount oC time saved is
Savings = C * TST. This is an upper bound since
any implemented algorithm must do some work to
process even a coherent ray.

From the above, we note that the savings that
can be achieved by the new algorithm are linear in the
amount of coherence present. For example, iC half the
rays traced in a scene are Cound to be coherent
(e = 0.5) , computation time can be reduced by no
more than 50%.

- 5 -

We now turn to the second question, concerning
the percentage of coherent rays needed before the new
algorithm shows a savings. We start by deriving
expressions for the amount oC time needed to process a
ray in the standard algorithm and in the new one.

In standard ray-tracing, there are two costs
associated with each ray. First, a scene partition must
be performed, at a cost proportional to the number of
volumes n in the scene. Second, the volumes that are
intersected must be checked to find the one that is
nearest to the ray anchor. The time needed to
determine this is a weak function of n due to the fact
that on average, few volumes will need to be checked.
Therefore, we treat this time as a constant, a. We
also say that this constant includes the cost of
computing the directions of any recursive rays.
Altogether then, the amount of time needed for each
ray in standard ray-tracing, which we denote tST, is
tST = kn + o.

We now look at the cost of a ray in the new
algorithm. There are two cases to consider,
corresponding to whether or not a safety cylinder must
be constructed. The cost oC a ray when a cylinder
must be constructed is similar to the cost of a ray in
standard ray-tracing: the scene must be partitioned
and the nearest intersected object Cound. An amount
of additional work An must then be done to determine
the cylinder radius. Thus, the time needed to process
a ray in this case is tC1/lintle1' = kn + a + An.
Simplifying in terms of tST yields tC1/lintle1' = tST + An.

The cost of a coherent ray, on the other hand, is
simply the cost of computing the intersection point
with the object intersected by the formative ray,
together with the cost oC computing any recursive
rays. This cost is less than or equal to a . (The cost oC
detecting that a cylinder is pierced is negligible
compared to the cost of a scene partition, for any
scene containing more than a few objects.)

We can now give an expression for the maximum
cost of a ray in the new algorithm, tCT' Denoting the
probability oC a ray being coherent as C, the time
needed for its processing is

ICT ~ C(a) + (l-C)tC1/lintle1" Cor 0 ~ C ~ 1.

Rearranging yields

tCT ~ IClllintle1' - C(tC1/lintltr - (}') . Cor 0 ~ C ~ 1.

Now. by setting 1ST equal to tCT and solving for
C , we can find the threshold value CT at which the
new algorithm costs less than standard ray-tracing.

Graphics Interface '85

tsr ~ tCT

~ tcylinder - C(tCYlinder - a)

Solving for C yields

tcylinder - tsr
CT ~ --:----

tcylinder - a

By substituting in for tcylinder and t sr, this reduces to

1
CT ~ ---=-k-

1 + I"

If the coherent fraction of all rays traced is
greater than the maximum value oC CT, the new
algorithm will outperCorm standard ray-tracing. To
examine this further, we look again at the last
equation. It is clear that the larger the ratio oC k IX,
the lower the threshold value will be. We will discuss
this ratio further in the next section.

Finally, in the worst case, the new algorithm will
require more computation time than the standard
algorithm. Consider a scene in which rays are never
coherent for example. In such a case, partitions are
required' for every ray, as in the standard algorithm
but, in addition, work must be done to construct
cylinders and check for piercing. Zero coherence is
clearly the limit case as the number of objects in the
scene increases. This underscores the point that
coherent ray-tracing can only be considered for low- or
moderate-density scenes.

4. Implementation Results

We have implemented the new algorithm in
Pascal under Berkeley Unix 4.2 BSD. The computers
used were Digital Equipment Corporation's VAX-
11/750 and VA.X-1l/780.

We rendered a group of scenes using two versions
of the new algorithm. The first version was the new
algorithm as presented above. The second version was
a modiCication oC the new algorithm to simulate
standard ray-tracing. The modification was
accomplished by commenting out all code dealing with
coherency; the N set was not retained or processed
and the intersection tree for a given image point was
discarded after the overall colour computation for that
point. .

I30th versions incorporate the same recurslOn
halting criteria. This includes the standard criteria
such as " nothing intersected" or "intersection with an
opaque, non-transparent object", as well as. the
"dynamic recursion termination" condition mentIOned

- 6 -

in Section 2.2.8•11

The programs were tested on four scenes
containing an increasing number of randomly
positioned spheres. The results are tabulated below.
It can be seen that the coherent technique is no better
than the standard algorithm for scenes containing on
the order of 8 or 9 spheres.

Results
Number (JPU CPU Percent Ratio,
oC time, time, rays coherent
spheres std. alg coher. coherent I std.

(hrs) alg (hrs)
1 0.283 0.232 76.0% .80
2 0.552 0.48 74.7% .86
4 1.351 1.208 78.0% .875
8 3.396 3.539 66.2% 1.02

Table 1.
Perhaps the most important result in this paper is

contained in the last row oC Table 1. It shows that
despite the fact that nearly two-thirds of the rays
behaved coherently, the new algorithm produced no
savings over standard ray-tracing. How can this be
the case? There are two likely answers.

First, pierce-checking even as simple a shape as a
cylinder is not cheap; the cost is about as much . as two
ray-sphere intersection tests. Thus, even ID the
absence of other negative factors, there would have to
be a certain number of objects in a scene before a
savings over standard ray-tracing could be realized.

However, as the number oC objects in a scene
increases, the average cylinder radius and length
decreases; more and more time is spent constructing
and checking cylinders that will be only be pierced.
This means that ultimately, Cor some "crossover"
number oC objects, coherent ray-tracing will inevitably
cost more than the standard method. The only
question is whether that crossover value is large
enough that the technique is of practical value. Table
1 shows that this is not the case.

Combining the last line of Table 1 with the final
equation of Section 3 shows that the ratio k / a is
approximately 0.5. Recall that k is the
proportionality constant for a scene partition while a
is a similar constant for cylinder construction. Notice
that if a could be reduced relative to k , CT could also
be reduced; this in turn implies that coherent ray
tracing could be applied to scenes with less coherence
than the amount in the 8-sphere scene. However,
since cylinder construction is already done by simple
comparisons, it is difficult to see how the speed of this
operation could be significantly increased .

Graphics Interface '85

6. Conelusions

An algorithm for coherent ray-tracing has been
presented. The algorithm uses coherence to reduce
the average amount of computation required to
construct the intersection tree needed for colour
computation. An analysis and empirical study of the
algorithm was performed. The results show that the
algorithm fails to out-perform standard ray-tracing on
scenes of practical size. This indicates that other
algorithmic techniques must be considered in order to
reduce the large computational cost of ray-tracing.

Acknowledgments

The authors would like to thank Mark Dippe and
the other members of the Berkeley Computer Graphics
Lab for fruitful discussions.

References

1. Arthur Appel , "Some Techniques for Shading
Machine Renderings of Solids," pp. 37-45 in
Proceedings of the Spring Joint Computer
Conference, Vol. 92, AFIPS, Thompson
Books,Washington, D.C.(1068).

2. Peter R. Atherton, "A Scan line Hidden-Surface
Removal Procedure for Constructive Solid
Geometry," pp. 73-82 in SIGGRAPH '89
Conference Proceedings, ACM,(July, 1083).

3. Chris Brown, "Special Purpose Computer
Hardware for Mechanical Design Systems," pp.
403-414 in Proceedings of the 1981 National
Computer Graphics Association Conference,
National Computer Graphics Association,
Inc.,Washington, DC.

4. Arthur G. Chang, Parallel Architectural Support
for Ray tracing Graphics Techniques, Master's
Thesis, Computer Science Division, EECS
Department, University of California, Berkeley,
Berkeley, California.

5. John G. Cleary, Brian Wyvill, Graham M.
Birtwistle, and Reddy Vatti, Multiprocessor Ray
Tracing, Technical Report No. 83/128/17,
Department of Computer Science, The University
of Calgary (October, 1083).

6. Hiroshi Deguchi, Hitoshi Nishimura, Hiroshi
Yoshimura, Toru Kawata, Isao Shirakawa, and
Koichi Omura, "A Parallel Processing Scheme for
Three-Dimensional Image Creation," in
Proceedings of the International Symposium on
Circuits and Systems, IEEE,Montreal(Hl81}.

7. Mark E. Dippe and John A. Swensen, "An
Adaptive Subdivision Algorithm and Parallel

- 7 -

Architecture for Realistic Image Synthesis," pp.
149-158 in SIGGRAPH '84 Conference
Proceedings, ACM,Minneapolis(July 23-27, 1984).

8. Patrick A. Fitzhorn, Realistic Image Synthesis:
A TIme Complexity Analysis of Ray Tracing,
Master's Thesis, Colorado State University, Fort
Collins, Colorado (Spring, 1082).

9. Andrew S. Glassner, "Space Subdivision for Fast
Ray Tracing," IEEE Computer Graphics and
Applications, Vol. 4, No. 10, October, 1984, pp.
15-22.

10. Robert Goldstein and Roger Nagel, "3-D Visual
Simulation," Simulation, Vol. 16, No. 1, 19i1,
pp. 25-31.

11. Roy A. Hall and Donald P . Greenberg, "A
Testbed for Realistic Image Synthesis," IEEE
Computer Graphics and Applications, Vol. 3, No.
8, November, 1983, pp. 10-19.

12. Patrick M. Hanrahan, "Ray tracing Algebraic
Surfaces," pp. 83-90 in SIGGRAPH '89
Conference Proceedings, (July, 1983).

13. Paul Heckbert and Pat Hanrahan, "Beam Tracing
Polygonal Objects," pp. 119-129 in SIGGRAPH
'84 Conference Proceedings, ACM,(July, 1984).

14. James T . Kajiya, "New Techniques for
Ray tracing Procedurally Defined Objects," ACM
Transactions on Graphics, Vol. 2, No. 3, July,
1983, pp. 161-181.

15. James T. Kajiya, "Ray Tracing Parametric
Patches," pp. 245-254 in SIGGRAPH '82
Conference Proceedings, (July, 1982).

16. Douglas S. Kay, Transparency, Refraction, and
Ray Tracing for Computer Synthesized Images,
Master's Thesis, Cornell University , Ithaca, N.Y.
(January, 1979).

17. Yong Tsui Lee and Aristides A. G. Requicha,
"Algorithms for Computing the Volume and
Other Integral Properties of Solid Objects, I :
Known Methods and Open Issues, and II: A
Family of Algorithms Based on Representation
Conversion and Cellular Approximation,"
Communications of the ACM, Vol. 25 , No. 0,
September, 1082, pp. 635-650.

18. Nelson L. Max, "Vectorized Procedur:tl Models
for Natural Terrain: Waves and Islands in the
Sunset," pp. 317-32,1 in SIGGRAPIl '81
Conference Proceedings, (August, 1081).

10. Scott D. Roth , "Ray Casting as a Method for
Solid Modr lling," Computer Vision , Graphics
and Image Processing, Vol. 18, No. 2, February,
H)82, pp. 109-144.

Graphics Interface '85

20. Steven M. Rubin and J. Turner Whitted, "A 3-
Dimensional Representation Cor Fast Rendering oC
Complex Scenes," pp. 110-116 in SIGGRAPH '80
Conference Proceedings, ACM,(July, 1980).

21. Kim L. Shelley and Donald P. Greenberg, "Path
Specification and Path Coherence," pp. 157-166
in SIGGRAPH '82 Conference Proceedings,
(July, 1982).

22. Ivan E. Sutherland, Robert F. Sproull, and
Robert A .. Schumacker, "A Characterization oC
Ten Hidden SurCace Algorithms," ACM
Computing Surveys, Vol. 6, No. 1, March, 1974,
pp. 1-55.

23. Michael Ullner, Parallel lwachines for Computer
Graphics, Ph.D. Thesis, California Institute of
Technology, Pasadena, California (1983).

24. J. Turner Whitted, "Processing Requirements for
Hidden SurCace Elimination and Realistic
Shading," pp. 245-250 in IEEE Compcon Digest
of Papers, (Spring, 1982).

25. J. Turner Whitted, "An Improved Illumination
Model for Shaded Display," Communications of
the ACM, Vol. 23, No. 6, June, 1980, pp. 343-
349.

- 8 -

Graphics Interface '85

