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Abstract 

The use of coherence has been advocated as a 
means of reducing the large computational cost of the 
ray-tracing method of image synthesis. This paper 
examines the theoretical and empirical performance of 
a typical coherent ray-tracing algorithm, one that 
exploits the similarity between the intersection trees 
generated by successive rays. It is shown that despite 
the large degree of coherence present in a scene, the 
need to ensure the validity of ray-object intersections 
prevents any significant computational savings. This 
indicates that other algorithmic methods must be used 
in order to substantially reduce the computational cost 
of ray-traced imagery. 

Resume' 

L'utilisation de la coherence a ele propose'e afin 
de re'duire le cOlit eleve de la melhode de synthese 
d'image basee sur le tra~age de rayons lumineux. Cet 
article examine la performance, tant d 'un point de vue 
theorique qu 'empirique, d 'un algorithme typique qui 
met de coherence de rayons, c'est-a-dire un algorithme 
qui exploit la ressemblance entre les arbres 
d'intersections genere's par des rayons successifs. Nous 
montrons qu 'en de'pit du degre eleve de coherence 
present dans une image, l'obligation de maintenir la 
validite' des structure d'intersection fait obstacle a 
l'obtention de gains importants. Ces rcsultats donnent 
a penser que des melhodcs algorithmiques plus 
Condamentales sont ne'ccssaires pour reduire de fa~on 
substantielle les COlitS de ealcul du tra~age de rayons 
lumineux. 
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1. Introduction 
The technique of tracing rays through a scene 

("ray-tracing"), first used to generate shadowsl and 
solve the hidden-surface problem for quadrics,lO has 
become the centre oC a great deal oC research activity. 
Beginning with two papers on realistic image 
generation, 16, 25 the method has been applied to 
algebraic surCace rendering12,15 and a number of 
problems in solids modelling.2, 17, 19 Probably the most 
striking application oC the method, however, remains 
its use in generating highly realistic imagery . ll , 14,25 
The ray-tracing method is unique in its ability to 
compute inter-object reflections, shadows, and 
accurate reCraction , Ceatures that are difficult or 
impossible to achieve with other techniques. 

The price oC such eCCects, however, is not small. 
Computation times Cor ray-traced pictures, Cor 
example, are oCten measured in CPU_hours.1 1,24,25 
The chief reason Cor this is that a very large number 
oC rays (250,000 - 1,000,000 or more) must be traced 
for high-quality imagery. 

One strategy Cor reducing ray-tracing 
computation time relies on hardware. A number of 
papers have been published in this area, including one 
on the use oC a "supercomputer" , 18 two on co
processor designs3,4 and several on muItiprocessor
based systems. 5.6,23 

A second strategy uses algorithms that adaptively 
subdivide scenes into a number of sub-volumes. The 
resulting sub-volumes mayor may not be disjoint from 
one another. In one study,7 the subdivision is 
"cellular" ; that is, all sub-volumes are disjoint, 
although together they contain the entire volume of 
the scene. Other papers!)' 14. 20 present algorithms 
based on a hierarchical scene subdivision. Such a 
scene structure generally permits fast determinat ion oC 
the nearest object intersected by a ray . 

Another technique which has been mentioned by 
several authors13.15.25 but not tried, centres on the 
use of ray coherence. As Hcckbcrt13 noted, " .. .in 
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many scenes, groups of rays follow virtually the same 
path from the eye ... " (see Figure 1). As a result, the 
tree-like paths that are traced through the scene by 
successive rays from the viewpoint are often very 
similar. This similarity can be used to predict the 
path of any such ray, given the path of its predecessor, 

Figure 1 - Groups or Rays Follow Similar Paths 

as follows. First, the ray currently being traced from 
the viewpoint is checked against the object intersected 
by the previous ray from the viewpoint. IC the current 
ray does not intersect that object, it must be checked 
against all other objects in the scene, as in standard 
ray-tracing.25 Otherwise, a check of the other objects 
need not be done, resulting in a computational 
savings. In this case, we say that the two rays in 
question are coherent. Also in this case, we can apply 
the idea recursivdy: any renective ray that results is 
checked against the object hit by the renective ray of 
the last ray from the viewpoint; and so on. It should 
be apparent that the degree of similarity of these 
paths indicates (roughly) the computational savings 
that coherence can provide over standard ray-tracing. 

Before proceeding any further, we must add that 
the detection of coherence is not quite as simple as 
just described . Even when corresponding rays (two 
rays at the same recursion level, one of which is either 
the last ray from the viewpoint or one of its children, 
the other the current ray from the viewpoint, or one 
of its children) intersect the same object, the current 
ray might also intersect a nearer, intervening object 
just missed by its correspondent (Figure 2). These 
false-coherence cases must be detected, to produce 
correc t results. 

In the rest of this paper we describe, analyze and 
present performance data of an algorithm for coherent 
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Figure 2 - Current Ray Intersects Object Hit by 
Its Correspondent, and Interceding Object 

ray-tracing. Coherence ("the extent to which the 
environment or the picture of it is locally constant" )22 
has oCten been used in graphic algorithms.21,22 It is 
natural to expect coherent ray-tracing to yield the 
same kinds of benefits seen in other rendering 
algorithms. Empirically, however, we have found that 
this is not the case. The following sections explain 
why. 

We should note that the algorithm we will be 
discusssing is most naturally used on scenes containing 
objects enclosed by spherical bounding volumes. The 
general approach, however, could also be used with 
other kinds of volumes. IQ 

In Section 2, the coherent algorithm is presented 
and compared with the standard one. Sect ion 3 gives 
a probabilistic analysis of the new algorithm' s 
performance. Finally, in Section 4 we discuss our 
implementation and give statistics from test pictures 
we made. 

2. Ray-tracing Algorithms 

2.1. Terminology 

We begin by defining terms that will be used 
throughout the rest of the paper. A ray is specified by 
an anchor and a direction vector. The anchor is the 
three-dimensional location of the origin of the ray. 
The direction vector specifies the direction of 
propagation of the ray. 

The image plane IS a rectangular region 
posit ioned (conceptually) in or Ilear the scene. 
Elemental regions in the plane correspond to pixels of 
the frame buffer. Along with the plane, a vic!vpoint is 
specified. To simplify the discussion, we distinguish 
rays that originate at the viewpoint from all others 
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and call them initial rays. A ray-set is composed oC 
an initial ray and any reflected and reCracted rays that 
it generates, together with their descendants. 

As mentioned in Section 1, the scene consists oC 
some number oC spherical bounding volumes. It will 
aid the discussion if we assume that relatively Cew of 
these volumes intersect, although this is not required 
by the new algorithm. The volumes surround objects 
composed oC primitive geometric elements such as 
triangles or more general polygons. We reCer to the 
latter simply as primitives. 

Since most rays that are traced are the result oC 
an intersection with an object, we say that a ray has 
an associated originating object. For simplicity, we 
will regard even initial rays as having such objects. 

We now define some terms that describe the 
relations between a given ray and the bounding 
volumes present in a region or scene. Every ray 
naturally divides space into two haIC-spaces, the 
boundary being a particular plane (Figure 3). This 
plane, which we call the bounding plane for the ray, is 
defined as the plane passing through ray's anchor, 
having the direction vector of the ray as its normal. 
We call the halC-space in the direction of ray 
propagation the front half-space oC the given ray, and 
the other the rear half-space. A bounding volume 
that lies entirely in the rear half-space is said to lie 
"behind" the ray associated with the plane; those that 
do not are said to lie "in Cront" of the ray. We refer 
to the process of classifying all the volumes like this as 
partitioning the region. 

Finding the intersection oC a given ray and the 
primitives in a region requires determining which 
bounding volumes are intersected by the ray. All the 
volumes in a region that are in Cront of a ray divide 
into two groups, those that are actually intersected by 
the ray and those that are not. And any volume 
behind a ray cannot be intersected by it. Therefore, 
we note that a ray divides all the volumes in a region 
into three disjoint sets: those behind the ray, those in 
front but not intersected, and those in Cront and 
intersected. We call these sets B, N and I, 
respectively. 

A few other terms that are more easily defined in 
context are presented later. 

2.2. Standard Algorithm 

We now consider the standard ray-tracing 
algorithm. In its simplest form, a ray-tracing program 
consists of two nested loops surrounding a call to a 
ray-tracing routine. The loops s~rve to scan the rows 
and columns of the image. 
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Figure 3 - Partition ot Space by a Ray 
(Cross-sectional View) 

The ray-tracing routine itself is usually written 
recursively. If the initial ray passed into the routine 
intersects an object, calls may in turn be made in the 
directions of reflection and refraction. In the standard 
algorithm,2S recursion terminates when a ray either 
does not intersect anything or intersects an opaque, 
non-reflective surCace. More recent papers8,11 have 
noted that recursion can also terminate when a special 
attenuated-intensity coefficient that is associated with 
a ray drops below a threshold. 

As the recursion proceeds, a record is kept of the 
objects intersected. Due to the Cact that in many 
implementations, no more than two rays are spa.wned 
at an intersection, the record is often kept in the Corm 
of a binary tree (the "intersection tree" referred to in 
Section 1). When recursion has stopped Cor all 
members oC the ray-set, the pixel's colour is computed 
by applying an appropriate shading rule11,2S to the 
tree. ACter shading, the tree is discarded and the 
entire process repeated for the next pixe!. 

In addition to those traced recursively, rays are 
also traced Crom intersection points toward each light 
source, to test Cor shadowing. The results oC this test 
are stored in the nodes oC the intersection tree and 
used in the shading calculation.25 

2.3. Coherent Algorithm 

2.3.1. Containers Around Rays 

As discussed in Section 1, a coherent r:ly-tracing 
algorithm can use the path generated by the last ray
set to predict the path of the current ray-set . Thus, 
one immediate difference between the new coherent 
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algorithm and the standard one is that aCter colour 
computation, the intersection tree is retained Cor one 
more program iteration. It is used during this 
iteration as a guide, providing hints as to which 
objects will be intersected by rays in the current ray
set. When tracing Cor the current ray-set terminates, 
the last intersection tree is discarded and the tree that 
was just generated in turn is retained, to play the role 
oC intersection-guide Cor the next ray-set. 

However, we must be able to detect cases such as 
those illustrated in Figure 2, as we mentioned; this can 
be done as Collows. A logical "container", a kind oC 
"saCety zone", can be constructed around every ray in 
a ray-set. These containers will be centred around the 
ray with which they are associated and extend 
outward to the nearest object not intersected by that 
ray (Figure 4). It can be seen that iC a corresponding 
ray Crom the next ray-set does not "pierce" (intersect) 
the side oC the relevant container, and intersect.s the 
same object intersected by this ray, then that object 
must be the Coremost object intersected by the 
corresponding ray. Thus, iC each ray in the last ray
set has associated container inCormation, the situation 
shown in Figure 2 can be avoided: rays in the next 
ray-set that pierce the container oC their corresponding 
ray or Cail to intersect the object intersected by that 
ray, require a region partition, as in standard ray
tracing. Rays that do not pierce the relevant 
container, on the other hand, and intersect the object 
intersected by their corresponding ray do not require a 
region partition. 

0 .. 
Figure 4 - "Safety Zone" Around a Ray 

(Cross-sectional View) 

Since the savings that can be achieved by this 
strategy depend on trading the cost oC checking every 
object in the region Cor the ~ost oC "pierce-checking" 
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the container, it is important that the latter operation 
be as computation ally simple as possible. A radially
symmetric container is a great help in achieving this 
goal. For this reason, we chose cylinders Cor the 
containers. Such a cylinder starts at the point oi 
origin oC a ray, has its central axis aligned with it, and 
ends at its point oC intersection with an object. 

2.3.2. Container/Cylinder Construction 

It is not diCficult to construct a cylinder like the 
one just described. Notice that every bounding 
volume in a region becomes a member oC one and only 
one oC the sets B, N and I, defined in Section 2.1, in 
the course oC a region partition Cor some ray. Let us 
now consider the set N. It it is not empty, then we 
can simply check each element in the set to find any 
that is between the bounding plane oC the ray and a 
parallel plane that passes though the nearest object 
intersection point. OC these, we take the distance oC 
the volume that is nearest to the ray, radially, as the 
cylinder radius (Figure 5). The cylinder has its central 
axis aligned with the ray, which we call the formati ve 
ray Cor the cylinder, and is bounded by the two planes 
mentioned. We store the cylinder inCormation in an 
intersection tree node simply by storing the radius 
defined above and the ray direction. The other 
attributes (the cylinder bounds) are defined implicitly 
by inCormation already stored in the intersection tree 
by the standard algorithm,2S namely the originating 
object and the nearest object intersected by the 
Cormative ray . 

o 

.... ·····<·:00 

"lOounding 
'Plane 
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Figure 5 - Sarety-Cylinder Construction 

2.3.3. Containers/Cylinders ror Light Sources 

To compute shadows, rays are traced Crom obj ect 
in tersection points in the direction of each light 
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source, as mentioned in Section 2.2. If one oC these 
rays intersects an object "en route", the point in 
question is in shadow with respect to that source. 
Rays traced Cor this purpose are somewhat diCCerent 
than those traced Cor object intersection in that no 
rays are traced recursively Crom any object that they 
intersect. 

Coherence cylinders can also be constructed and 
used Cor these light-testing rays. If an object is 
intersected by such a ray, a cylinder is built in the 
manner discussed earlier (Figure 5). 

2.4. Summary 

In summary, our algorithm diCCers Crom the 
standard one in two major ways: First, the standard 
intersection tree is retained Crom pixel to pixel as the 
program runs. The objects intersected by rays oC 
previous ray-sets are used to suggest which objects 
might be intersected by corresponding rays in the 
current ray-set. Second, logical cylinders are 
constructed using inCormation obtained during a 
region partition. These are used to indicate when the 
intersection information Crom a previous Cormative ray 
is no longer useful and that a region partition will be 
required. 

3. Probabilistie Analysis 

We now consider two major questions: first, for a 
scene with a given percentage of coherent rays, what 
order oC computational savings can be achieved using 
the new algorithm and, second, since it has additional 
costs beyond standard ray-tracing (due to cylinder 
construction and pierce-checking), what percentage of 
rays must be coherent for the new algorithm to 
outperform standard ray-tracing! 

Beginning with the first question, a simple 
argument can be made to derive an upper bound on 
the savings that can be achieved using the new 
algorithm. Suppose that a ray Cound to be coherent 
cost nothing computation ally. Denote the time 
required to render a given scene using standard ray
tracing as T ST' Then, if a Craction C oC the number oC 
rays traced by the algorithm are coherent, an 
expression for the amount oC time saved is 
Savings = C * TST. This is an upper bound since 
any implemented algorithm must do some work to 
process even a coherent ray. 

From the above, we note that the savings that 
can be achieved by the new algorithm are linear in the 
amount of coherence present. For example, iC half the 
rays traced in a scene are Cound to be coherent 
(e = 0.5) , computation time can be reduced by no 
more than 50%. 
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We now turn to the second question, concerning 
the percentage of coherent rays needed before the new 
algorithm shows a savings. We start by deriving 
expressions for the amount oC time needed to process a 
ray in the standard algorithm and in the new one. 

In standard ray-tracing, there are two costs 
associated with each ray. First, a scene partition must 
be performed, at a cost proportional to the number of 
volumes n in the scene. Second, the volumes that are 
intersected must be checked to find the one that is 
nearest to the ray anchor. The time needed to 
determine this is a weak function of n due to the fact 
that on average, few volumes will need to be checked. 
Therefore, we treat this time as a constant, a. We 
also say that this constant includes the cost of 
computing the directions of any recursive rays. 
Altogether then, the amount of time needed for each 
ray in standard ray-tracing, which we denote tST, is 
tST = kn + o. 

We now look at the cost of a ray in the new 
algorithm. There are two cases to consider, 
corresponding to whether or not a safety cylinder must 
be constructed. The cost oC a ray when a cylinder 
must be constructed is similar to the cost of a ray in 
standard ray-tracing: the scene must be partitioned 
and the nearest intersected object Cound. An amount 
of additional work An must then be done to determine 
the cylinder radius. Thus, the time needed to process 
a ray in this case is tC1/lintle1' = kn + a + An. 
Simplifying in terms of tST yields tC1/lintle1' = tST + An. 

The cost of a coherent ray, on the other hand, is 
simply the cost of computing the intersection point 
with the object intersected by the formative ray, 
together with the cost oC computing any recursive 
rays. This cost is less than or equal to a . (The cost oC 
detecting that a cylinder is pierced is negligible 
compared to the cost of a scene partition, for any 
scene containing more than a few objects.) 

We can now give an expression for the maximum 
cost of a ray in the new algorithm, tCT' Denoting the 
probability oC a ray being coherent as C, the time 
needed for its processing is 

ICT ~ C( a) + (l-C)tC1/lintle1" Cor 0 ~ C ~ 1. 

Rearranging yields 

tCT ~ IClllintle1' - C( tC1/lintltr - (}') . Cor 0 ~ C ~ 1. 

Now. by setting 1ST equal to tCT and solving for 
C , we can find the threshold value CT at which the 
new algorithm costs less than standard ray-tracing. 
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tsr ~ tCT 

~ tcylinder - C(tCYlinder - a) 

Solving for C yields 

tcylinder - tsr 
CT ~ --:----

tcylinder - a 

By substituting in for tcylinder and t sr, this reduces to 

1 
CT ~ ---=-k-

1 + I" 

If the coherent fraction of all rays traced is 
greater than the maximum value oC CT, the new 
algorithm will outperCorm standard ray-tracing. To 
examine this further, we look again at the last 
equation. It is clear that the larger the ratio oC k IX, 
the lower the threshold value will be. We will discuss 
this ratio further in the next section. 

Finally, in the worst case, the new algorithm will 
require more computation time than the standard 
algorithm. Consider a scene in which rays are never 
coherent for example. In such a case, partitions are 
required' for every ray, as in the standard algorithm 
but, in addition, work must be done to construct 
cylinders and check for piercing. Zero coherence is 
clearly the limit case as the number of objects in the 
scene increases. This underscores the point that 
coherent ray-tracing can only be considered for low- or 
moderate-density scenes. 

4. Implementation Results 

We have implemented the new algorithm in 
Pascal under Berkeley Unix 4.2 BSD. The computers 
used were Digital Equipment Corporation's VAX-
11/750 and VA.X-1l/780. 

We rendered a group of scenes using two versions 
of the new algorithm. The first version was the new 
algorithm as presented above. The second version was 
a modiCication oC the new algorithm to simulate 
standard ray-tracing. The modification was 
accomplished by commenting out all code dealing with 
coherency; the N set was not retained or processed 
and the intersection tree for a given image point was 
discarded after the overall colour computation for that 
point. . 

I30th versions incorporate the same recurslOn
halting criteria. This includes the standard criteria 
such as " nothing intersected" or "intersection with an 
opaque, non-transparent object", as well as. the 
"dynamic recursion termination" condition mentIOned 
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in Section 2.2.8•11 

The programs were tested on four scenes 
containing an increasing number of randomly
positioned spheres. The results are tabulated below. 
It can be seen that the coherent technique is no better 
than the standard algorithm for scenes containing on 
the order of 8 or 9 spheres. 

Results 
Number (JPU CPU Percent Ratio, 
oC time, time, rays coherent 
spheres std. alg coher. coherent I std. 

(hrs) alg (hrs) 
1 0.283 0.232 76.0% .80 
2 0.552 0.48 74.7% .86 
4 1.351 1.208 78.0% .875 
8 3.396 3.539 66.2% 1.02 

Table 1. 
Perhaps the most important result in this paper is 

contained in the last row oC Table 1. It shows that 
despite the fact that nearly two-thirds of the rays 
behaved coherently, the new algorithm produced no 
savings over standard ray-tracing. How can this be 
the case? There are two likely answers. 

First, pierce-checking even as simple a shape as a 
cylinder is not cheap; the cost is about as much . as two 
ray-sphere intersection tests. Thus, even ID the 
absence of other negative factors, there would have to 
be a certain number of objects in a scene before a 
savings over standard ray-tracing could be realized. 

However, as the number oC objects in a scene 
increases, the average cylinder radius and length 
decreases; more and more time is spent constructing 
and checking cylinders that will be only be pierced. 
This means that ultimately, Cor some "crossover" 
number oC objects, coherent ray-tracing will inevitably 
cost more than the standard method. The only 
question is whether that crossover value is large 
enough that the technique is of practical value. Table 
1 shows that this is not the case. 

Combining the last line of Table 1 with the final 
equation of Section 3 shows that the ratio k / a is 
approximately 0.5. Recall that k is the 
proportionality constant for a scene partition while a 
is a similar constant for cylinder construction. Notice 
that if a could be reduced relative to k , CT could also 
be reduced; this in turn implies that coherent ray
tracing could be applied to scenes with less coherence 
than the amount in the 8-sphere scene. However, 
since cylinder construction is already done by simple 
comparisons, it is difficult to see how the speed of this 
operation could be significantly increased . 
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6. Conelusions 

An algorithm for coherent ray-tracing has been 
presented. The algorithm uses coherence to reduce 
the average amount of computation required to 
construct the intersection tree needed for colour 
computation. An analysis and empirical study of the 
algorithm was performed. The results show that the 
algorithm fails to out-perform standard ray-tracing on 
scenes of practical size. This indicates that other 
algorithmic techniques must be considered in order to 
reduce the large computational cost of ray-tracing. 
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