
- 69 -

SPATIAL TREES: A FAST ACCESS METHOD FOR
URSTRUcrtJRED GRAPHICAL DATA

Dan R. Olsen Jr.
Co.pater Science Department

Brigham Young University

carol R. Cooper
Intel Corporation

Abstract

A spatial tree is a data str uct ure for
organizing graphical elements into a tree
using their extents so as to optimized
geometric queries on the database. Algo
rithms . are presented for insertion and
deletion. Queries on 20 spatial trees are
modeled as simple rectangles for windowing
purposes. Query algorithms for rays and
convex polyhedra are presented for 30
spatial trees. It is shown how a
least-recently-used swapping algorithm is
highly effective when portions of the
tree must reside in secondary storage.
Simulation statistics as well as worst
case analysis are provi ded f or each al god thm.

1.0 Introduction

As larger and larger graphical databases
are created, the costs of t:erforming graPlical
queries on such databases si gnifi cantly
increase. Many such databases are organized
in a hierarchic fashion. At each level of
the hierarchy an extent can be computed
which can be used to reject entire subtrees
from consideration in a query. This
technique is well known [Newm 79] and
very effective in optimizing the display
process.

There are, however, a number of applica
tions which have no such natural hier
archic decomposition. An example of such
an application is a topographic map.
There are masses of small details for
which there is little natural structure
along which the map can be decomposed
into sub-parts. A second example of this
problem is a municipal planning system.
These are typically quite large but one
is usually looking at a small part of it.

Such a system can possibly be decomposed
into sewage, streets, water, electrical
etc. The problem, however, lies in the
fact that all of these subsets have
gener ally the same e xten t s (th ey all

cover the entire city). The natural
decomposi tion then is of no use in extent
testing to optimize our queries. What is
needed is a data structure which will
automatically impose a spatial decomposition
on a database rather than relying on an
inherent decomposi tion f ran the appl ication.

A second problem, which we would like our
data structure to address, is that large
graphical worlds are frequently too large
to fit entirely in fast. local storage.
This occurs both in processors with
1 imi ted main memory which must swap to
and from disk and in distributed work
stations which must swap to and from a
host or file server. Any data structure
for large graphical worlds must address
this problem and optimize swapping where
possible.

In dealing with the swapping problem we
have made an assumption about the usage
of a graphical database. We call this
assumption 10cali~..Qf reference. This is
the assumption that any access of such a
database will be close to the previous
access. This assumption is valid if one
considers such interactive tasks as
panning and zooming. Each successive
window is close to or overlapping the
previous one. When one performs a picking
query from a locator input it will always
be found inside of the last window
query. In a ray tracing algorithm,
successive rays are adjacent to each
other. There are applications where the
local i ty of reference assumption might
not hold but for a large number of
interactive applications it does.

If we are using a data structure in which
graphical elements are stored according
to their extents and the locality of
reference assumption holds then a
least-recently-used swapping algorithm
should significantly reduce the swapping
overhead.

Graphics Interface '85

- 70 -

The remainder of the paper will proceed
by describing two dimensional spatial
trees followed by the algorithms to
manipulate them. We will also discuss the
the or e ti cal pe rf 0 rman ce of ea ch of the se
al gori thms f allowed by the re s ul t s of
simulating their use.

2.0 2D Spatial T{ees'

A spatial tree is composed of a set of
nodes. each of which corresponds to a
rectangular area in world coordinates. The
area, or extent, of the root of the tree
is all of world coordinates. The extent
of each node is divided into four quadrants
by divi ding each a xi s in hal f. Ea ch
quadrant forms the extent for four subnodes.
as shown in Figure 1.

Figure 1 .

Thi s is very similar to a quad tree [Fink
74]. The difference lies in the fact that
the graphical elements stored in a spatial
tree are not pixels but rather any whole
graphical element. The definition of a
spatial tree is independent of any particular
set of graphical elements . The only
information known about an element to be
inserted into the tree is its extent. This
makes subdivision of the elements down to
the pixel level impossible. Spatial trees
are also related to B-trees [Come 72] and
more specifically to digital B-trees [Lame
81], which subdivide their key space in
a binary fashion. The difference between
a digital B-tree and a spatial tree is that
the keys in a spatial tree are not points
in the key space but rather ranges, areas
o r vol ume s.

2.1 Bleaent Insertion

For an element to be placed in a particular
node of the tree the element's extent
must fit entirely within the extent of
the node. Elements are then inserted
into the root node (which by def ini tion
they will always fit into) and then
recursively inserted into the appropriate
subnode until it can go down the tree no
farther. An element stops when its extent
does not fit entirely within the extent
of one of the subnode s. Thi s occur s when
then element lies across one of the
div iding boundaries. Figure 2a shows
elements in world coordinates with the
dividing boundaries for the nodes of
the trees. Figure 2b shows how these elements
are placed in the tree

Fi gur e 2a .

{:1 I 0 - • 111 • Ir n,. •

\ ,,, lr . ur

\

~ j I
uJ • 11 I Ir I UT

Fi gure 2b.

Each node of the tree is defined to hold
a fixed number of elements which is
determined by the implementation. When
the number of elements that 1 ie in a
node I s extent exceeds the number of nodes
that can fit in the node . an overflow
node is created which has the same extent
as the original node. The only subnode
which an overflow node can have i s an
addi tional overflow node .

The insert i on algorithm c an t h en b e
stated as follows

Graphics Interface '85

- 71 -

Insert(N:Node; E:Element);
Begin

If N is not full then
place E in N

Else

End;

Begin
If subnodes of N are not pre se nt

then
Begin

Take all elements currently in
N and place them in their
appropriate subnodes,
creating subnodes as needed
and retaining in N all
elements which cannot fit in
a subnode.

End;
SelectASubNode (N, E, SubNode) ;
If SubNode = None Then

place E in an overflow node
Else

Begin
If SUbNode does not exist then

Create SubNode;
Insert(SubNode,E)i

End;
End;

Note that subnodes of N are only created
when N is full. When N finally fills then
the el ements are te sted to see if they
will fit into subnodes. This prevents the
creation of very deep trees with very few
el ements.

A key factor in the performance of insertion
is the probability that a particular
el erne nt will cro ss one of the no de's
dividing boundaries. If such an element
crosses a boundary it will remain in the
node and not proceed down further. If a
lot of this behavior occurs then the tree
becomes short and bushy and loses its
value as a search structure. In computing
these probabilities the ratio of the
world coordinate size to the element
size is the key consideration. Obviously
the larger the element is relative to
the size of the world, the more likely
it is to hang in the higher nodes of the
tree. Our studies show that given 10,000
elements whose size is l/lOOOth of the
world size which are uniformly distributed
across the world. and given a tree whi ch
holds 5 elements per node. over 92% of
the elements will be stored in the leaves
of the tree. This is ' an excellent result
in terms optimizing search times. When
simulating uniform insertion using the
actual implementation of spatial trees,

similar resul ts were achieved.

In order to test the swapping character
istics of the algorithm we saved the
uniformly distributed insertions from the
previous test. We then grouped these
insertions by their centers into areas or
buckets. We then sorted the buckets on X
and then Y. This caused the inserted
elem.ents to be somewhat randomly distrib
uted but to be cl umped into neighborhoods
and to be ordered into a sort of panning
sequence. This was to simulate to some
degree the behav ior of someone wor king
through the graphical world rather than
just randomly placi ng elements here and
there which is not the normal usage. This
test is more consistent with our locality
of ref erence assumption than a uniform
distribution. In all of our tests the
swapping was reduced using the sorted
order by 17-68% depending on how full
the tree actually was. The best swapping
performance was achieved on very large trees
with lots of little elements.

2.2 Bleaent Deletion

As elements are deleted from the tree we
obv iously would like to collapse the tree.
structure and reduce the space consumed. The
strategy is simply one of checking to see
if the total number of elements in the
current node plus those in the subnodes
is less than 1/2 of the node size. If so
then collapse the subnodes into the
cur rent node and apply the check recur sively
to the current node's parent. The reason
for the 1/2 stipulation is to prevent
coll apsi ng a node and then immediately
reinserting a new element into it causing
its subnodes to be recreated.

2.3 2D Query

Only rectangularquerieswhich are parallel
to the axes have been explored using 2D
spatial trees. There are two types. A
query for all el ement s ly ing enti rely
within the query rectangle and those
elements which in any way intersect
the query rectangle. The first form of
query is for interactive techniques which
surround elements to be selected with a
rectangle. The ' second form is for 2D
viewing operations and for locator-based
picking using a very small rectangle to
simulate a gravity field. The query
algorithm is rather simple and is shown

Graphics Interface '85

below for the case of intersecting elements.

Query (N:Node, R:Rectangle);
Begin

For each element E in N or any
overflow of N Do

End;

If E intersects R then
Return E

Else
Ignore E;

For each subnode SN of N Do
If extent(SN) intersects R then

Query(SN,R) ;

The above algorithm is stated recursively
for expository reasons. In practice a
stack algorithm is required so that the
sear ch ca n hal t and ret ur n ea ch el eme nt
found and then be restarted to locate
additional elements which match the
query.

When analyzing the performance of the
query algorithm we are most interested in
the elements which fall into the "Ignore
E" statement in the algorithm. We are not
concerned with elements which are returned
because. by definition of the query. we
wanted to look at them. We are not concerned
wi th elements that are in nodes that are
never checked because they involve no
work. Those elements which we do check
and then ignore constitute the overhead
of the algorithm which we want to minimize
as much as possible. The overhead of a
linear search algorithm for example is
all the el eme nt sin the da ta ba se w hi ch
are not matched by the que ry • .
Any overhead element will be stored in a
node whose extent crosses one of the
rectangle's boundaries. Any other node
will either be completely inside or
canpletely outside of the query. A simplistic
analysis can be performed under the
assumpti 0 n tha t the spa ti al tr ee is
compl ete down to some 1 evel N. If the
extents of the nodes at level N are 1 by
1 and the dimensions of the rectangle are
Rx by Ry then the total number of nodes
that can be crossed by the rectangle at
level N is 2* (Rx+Ry-2) (the length of the
rectangle's perimeter). At level N-l the
number crossed is 1/4 that at level N
because there are 1/4 as many nodes at
that level. Using the same tree param
eters discussed for insertion and a query
window that is 1/64 th the size of the
world. approximately 2% of the elements

- 72 -

looked at will be ignored. Our simula
tions show that the overhead is closer to
9-2%. The reason for this is that the
tree produced by the random insertions is
not actually complete . This means that
there are actually many fewer nodes in
the tree than the complete tree upon
which the probabilistic analysis was
based and thus elements are higher in the
tree and more 1 ikely to be tested by the
query.

3.0 3D Spatial Trees

The concept of spatial trees is very
easily extended to three dimensions- The
extents are now three dimensional and
each node has three dividing planes
rather than two dividing 1 ines. Because
each node divides into octants rather
than quadrants the tree tends to be
shorter and bushier . Because there is an
additional boundary which an element may
cross the probability that an element may
"hang" in a higher node increases
sl ightly . Both our simulations and our
analysis show that this is not a serious ·
problem. The extension of the insertion
and deletion algorithms is trivial. The
queries however must change because a
rectangular window i s not useful concept
in three dimensions.

We have implemented two forms of query .
The first is a ray query which returns all
elements whose extent is pierced by a
given ray. The ray query is obviously
useful for ray tracing algorithms and is
also used for 3D picking techniques. The
second form is a plane query which returns
all elements which are ninside" of all of
a set of planes. The notion of "inside n
is def ined by where the positive normal
vector of a plane points. By retrieving
elements which are inside of all the
given planes we can query on any convex
polyhedron including the usual perspective
viewing pyramid.

3.1 Ray Queries

Performing a ray query is a matter of
determining for each node, which of the
subnode extents the ray pierces and then
recursively traversing them. We do this
by determining which octant the ray
starts in and which dividing planes it
intersects. We then sort the intersect i on
points along the axis of greatest excursion
for the ray. That is the axis which has

Graphics Interface '85

- 73 -

the largest component in the ray IS di rection
vector. The traversal of subnodes then
begins wi th the origi nal octant and then
crosses boundaries into new octants in
the sorted order.

This process not only simply determines
which octants to traverse but it also
supplies a traversal order which proceeds
from the base of the ray to its head. In
most ray tracing al gori thms we want to
find the intersecting object which is
closest to the origin of the ray. This
traversal order will encounter the closest
one first. Upon finding an intersecting
element we can terminate the traversal
early. It is important to note that this
is only an ordering on the nodes not on
the elements in them. We get close to the
optimum order but not all the way there. One
should also note that the query algorithm
itself cannot determine object
intersection. It can only determine
extent intersection which is not quite
the same thing.

Note that the algorithm only enters a new
node by crossing a bounding plane. Since
a given node only has three dividing
planes, the ray can only intersect the
original octant plus three others. This
means that in the worst case only half of
the octants will actually be traversed. If
we consider a tree which is complete down
to level N then we have a cube consisting
of 2Nx2Nx2N (or 23N) nodes. In the wor st
case the ray will be on one of the diagonal s
of this cube and will cross all of the
bounding planes. This will mean that
2N+2N+2~+1 (or 3*2 N+l) nodes will be
intersected. This means that at level 5
in the tree only 0.3% of the nodes will
be traversed in the worst case. This
is a substantial savings. Similar savings
have already been demonstrated by [Glas
84] using a similar data structure.

In our simulations of ray queries using
uniformly distributed rays we found that
a single query accessed only 8 . 7% of the
nodes in the tree and act ually che cked
only 14.6% of the elements in the tree.
Out of those elements checked against the
ray, the overhead (or those elements not
actually pierced by the ray) was 69%.

3.2 Plane Queries

The plane query algorithm is simply

a process of determining which subnodes
of a node might possibly lie inside of
all of the query planes which is simply
an intersection of those lying inside of
each individual plane. The simplistic
approach is to this algorithm is to pass
the corner points of each suboctant
through the plane equation to determine
if it returns a positive or negative
value. This value is, of course. propor
ti onal to the di stance of the poi nt
from the plane. Points with positive
proportional distances are inside and
negative is outside. The relationship
between these points and the plane is
shown in Fi gure 3 -

c6,c----r'--~

Figure 3.

The cost of multiplying pOints through
plane equations would make the overhead
of the spatial trees too high to be
effective. Since the dividing planes
act ually spl it the extent in hal f each of
the edge points can have their propor
tional distances computed as the average
of two corner points, the face points are
the averages of two edge points and the
center point is the average of two face
points. Averages can be computed with an
add a division by 2 (shift right 1). Once
the proportional distances for the corners
of world coordinates were computed from
the plane equation the rest of the
computations proceed much more cheaply.

We further optimized the testing of all
of the points against the plane by noting
two geometr ic pr inciples about the non-corner
points. All of the non-corner points lie
at the center of one or more line
se gment s. If both endpoi nts of aline
segment is known to be inside of a given
plane then any interior point on that
segment is also inside. The same statement
can be made about the endpoints being
outside of the plane. This case is shown
in Figure 4a. A second case occurs when
one endpoi nt is on the opposite side of
the plane from the center point_ In this
case the other (unknown) endpoint must

Graphics Interface '85

- 74 -

be on the same si de of the plane as the
center point. This case is shown in
Figure 4b.

Figure 4a

IllrerreCl

"

Figure 4b

These principles can be applied to the
corner points of suboctants to determine
who is inside and outside without even
looking at many of the points. Given the
plane example in Figure 3 and having
already checked cl. c2. c3. c4. cS and c6
to determine if they are inside or outside
we can infer the status of elf e4. e5.
e6, e7 and e9 as well as fl . f2 and
f3 . As is shown in Figure 5 .

Figure 5

Only e2, e3 and e8 st ill remai n to be
checked. In this example only 11 points
were checked instead of a possible 27.

These inferences cannot be done at runtime
and instead are perf ormed once and coded
into a large nested IF. Since the total
number of cases required is larger than
can be accurately coded by hand we wrote
a program to generate the case testing by
automatically generating the inferences
from points already tested for inside and
outside. The generated code for case
testing was several hundred lines of

nested IF statements.

Our simulations used four planes arranged
as a viewing pyramid with uniformly
distributed view ing di rections and angl es.
On the average only 32% of the nodes in
the tree were traversed. Of those elements
which were actually examined by the query
only 17.6% were overhead elements.

4.0 Concl usion

The probabil istic analysi s that we have
performed on spatial trees as well as the
results of our simulations lead us to
believe that this is an effective data
structure for large graphical databases. In
addition to the efficiency of query
operations on the data a least-recently-used
swappi ng strategy on the nodes is very
effective and shows minimal swapping
requirementswhen the locality of reference
assumption holds.

Spatial trees al so have the advantage
that they work on any set of graphical
elements for which extents can be computed
unlike other data structures which require
pixels or polygons as their primitive
basi s. We have not yet researched the
integration of hierarchic models with
this structure and how best the two might
be integrated in a single system .

References

Comer. D. "The Ubiquitous B-tree . "
Comput i ng Survey s, Vol 11 , 2 (June
1972) •

Cooper, C. "Fast Retrieval of Graph i cal
Information." M. S. Thesis. Arizona
State University. (Dec. 1984) .

Donelson, W. "Spatial Management of
Information." Computer Graphics, Vol
12,3 (Aug 1978).

Finkel, R. A. and Bentley, J . L. "Quad
trees: A Structure for Retrieval on
Composite Keys." Acta Informatica
Vol 4.1-9 (1974).

Glassner. A. S. "Space Subdivision for
Fast Ray Tracing." IEEE Computer
Graphics and Applications, Vol 4. 10
(Oct. 1984).

Lomet. D. "Digital B-trees . n IEEE
Proceedings of the 7th Internationa l

Conference on Very Large Data Bases
(Sept. 1981) .

Newman, W. and Sproull. R. Principles of
Interactive Computer Graphi cs. McGr aw
Hill 1979.

Graphics Interface '85

