
- 151 -

EFFJOENT RECOVERY AND REVERSAL IN
GRAPHICAL USER IN'lERFACES GENERA'IED BY '!HE HIGGENS SYS'IEM

Scott E. Hudson
Ro&er Kin&

Department of Computer Science
University of Colorado at Boulder

Boulder, CO 80309

Abstract

The Higg~ns user interface gener::ltion system bein& developed
at the University of Colorado allows an interface designer to
r3pidly construct graphical user interfaces based on a primarily
non-procedur31 interface specification . This paper discusses
how user recovery and revers:JJ, or Undo, is performed witbin a
lIiggens generated interface . A special data model is developed
which has unique properties which combine to provide an
efficient environment for implementin& an undo mechanism.
New 31gorithms based on recent work in incremental attribute
ev:JJuation are used to efficiently implement both the &enerated
interfaces as a whole , and the undo mechanism in particular.
In addition, a form31 model of undo is used in an attempt to
ev:JJuate the power of the mechanism in order to compare it
with other undo implementations.

Keywords: Recovery, Reverse Execution, Undo, Graphics
Dased Interfaces, User Interface Management.

1. Inb-oduetlon

U8er rever81J1 and recovery systems , sometimes called Undo
systems , have recently been recognized as an important feature
in user interfaces. Adding an Undo system to a user interface
can have a profound effect on the useability and learn ability of
the interface . It a1lolVs the user to freely explore new or unfam­
iliar features of the interface without the normal fears of catas­
trophic mistakes. This greatly enhances the user 's confidence ,
and allows more rapid learning. In addition , the capability to
U ndo octions allows the user to act in a more exploratory way.
The U5er is able to try tentative actions which answer what if
type questions without commit.ting to those actions. This capa­
bility provides an entirely new level of runctionality to a sys­
tem , without changing any of its overt functionality .

U nrortunately, many prev ious Undo systems
[Arch84 , Vitt84! have been quite expensive . It has been

ne ces5ary to prod uce a series of checkpoints which preserved
p:vt or all of some previous stair. of the system , alon& with a
li st or commands which are executed to move from one
checkpoint' s state to the next. Recovery was accomplished by
res toring the state saved in some checkpoint, and reexecuting
so me saved commands , in order to return to the state
re'lllrsted by the user . Unrortunately , the process of creating a
checkpoint is normally slow and orten requ ires large amounts or
space.

Tb i, "ork "'" , npported iD part by IBM aDder a F' " ully De .. lopmeDI
Awud (IQ84) ."d iD part by 1I."lell p'ackurl UDder a. Am .. i". EleclroD ic.
A"o ci ltioD Faculty DevelopmtDt. Procrun rello",b ip.

··This paper discuses a technique ror constructing efficient
user recovery and revers31 systems. Tb is technique is
employed by user interraces constructed by the Higgens user
interface generator. Biggens generated inlr.rraces use a speci31
data model to describe and implement the semantics of the
interface , as well as the application itself. Interfaces con­
structed using this dah model are described in a primarily non­
procedural (rule-based) manner. Because or some special pro­
perties of th is ru le-based system , it is possible to construct sim­
ple inverses ror all actions . This makes construction of a gen­
eral undo system very easy and efficient.

In addition to being able to provide a powerful and gen­
er31 undo mechanism, the Biggens system has many other
advantages ror constructing graphical user interfaces . By using
the algorithms described later (in section 3) , it is able to
automatically and efficiently construct graphical interfaces from
a prim:vily non-procedural specification . In this way, the inter­
facf' designer is free to concentrat.e on describing the behavior
of the system without specifyin& precisely how or when the sys­
tem will perform the computations necess:vy to upd::lte the
graphical display. The system '.is able to use the rule-based
int..,face specification to determine how to construct and upd::lte
both the graphical images and the underlying application data,
based on use r actions.

In the next section we will talk about the Higgens inter­
bce generator and the goals behind it. Section 3 will discuss
the powt'rrul data model th::lt underlies Higgrns , and how it can
be used to ea.,ily describe and implement powerful interfaces.
Section 4 will discuss how undo can be implemented in a gen­
eral y('t very elJicient m:utner within this data model. Section 5
will discuss the power and limitations nf th e uDdo mechanism
provided , and finally , section 6 will discuss the current s tate or
the implement::ltion and provide conclusions .

Z. IIIggens

lliggcn s , the lluman Interr:\Ce Graphical Gen eration Sys­
tem , is a tool ror automatically generating graphics based user
interfaces . Higgens accepts a specification which is primarily
non-procedural , and gen('rates :l user interface rrom it. Like
somf' previous work done in g('nerating human
interraces[I<3Si82,Olse831 it borrows techniqu .. ~ rrom translator
writing systems . lliggens, unlike most previous work in this
area does not draw a sharp line brtween the application and the
interface . It works with and has knowledge of the semantics or
an application , as well or the interrace it.~('Jr .

One of the major goals of Higgens is to be able to support
. rapid and incremental developm ent. At the present s tate of the
:vt even ir we use the bes t available des ign techni'lu(' s, it i~

unlik e ly that we will be able to fully predict in adv ance all
a.pccts of how re31 use rs will actually use a gr3phical interface .

Graphics Interface '85

- 152 -

Const!qut!ntly, it is not usually possiblt! to crute interfact!s
which havt! good human factors the first time. In order to pro­
duct' high quality interfaces we are forced to test them with real
users and change them to take the problems found into
account. This means that we must often revise not only imple­
mentations, but also designs. This problem is particularly
severe in the case of user recovery and reversal systems. This
:l.~pect of the implementation is traditionally a difficult one. If
we are forced to reimplement the undo system each time the
interface is modified, it will likely be too expensive to build.

Higgens overcomes this problem by allowing incremental
development and by automatically providing an undo facility ror
all actions. Since interract!s are constructed as a set of semi­
indt!pendent active t!ntities, a partial working interrace can hi!
constructed and tested before the entire interface is finisht!d.
Only p:vt of tht! semantics of each entity need be fully defined
to construct a prototypt! interface which tests that part. In addi­
tion , sinct! Higgt'ns generated interfact!s are dt!scribt!d in a high
level manner , changl's are much e:lsit!r to pt!rform than they
would bt! if conVt!ntional implementation techniqut!s were used.
As a rt!sult tht! designer is able to rapidly construct and test an
interfact! in an incrt!mt'ntal fashion, without having to discard
all of tht! work th:lt would have hl!en put into one or more pro­
totype sysll'ms. In addition , since Higgens provides a powerful
undo facility as a primitive, the semantics of undo can he
designed and implemented along with the items it affects, and
does not need to be added later once the system is stable .

3. The Acdve Semanda Data Model

In order to understand how the Undo system works
within a lI iggens generated interface , it is necessary to under­
stand the actille semanticB data model used to implement much
of the functionality of the interface . In a lIiggens generated
interface , the semantics of both the application and the inter­
face are described hy this uniform data model. This data model
l'ncapsulates both the data of the application and its semantics.
The model employs new algorithms adapted from techniques
related to J(nuth 's attribute grammar5[l<nutG8,l<nut711 as well
as Crom more recent work on incremental attribute
evaluation[Dl'me8l , Reps831 used in synw directed editors.
The state of the application and the in terface are described in
an allributed graph . Like the attributed trees often used in com­
piling, each node of an attributed graph has associated with it a
number of allributeB which describe the internal state of the
semantic entity described by th:lt node . In addition, allribute
evaluation rules are given for computing certain attribute values
as a function of other attributes within a given node, and from
the values contained in related nodes . This allows the model to
ar.tively respond to its environment in a way wh ich refiects its
sem an tics . Fin a1l.v , the in terface desi)l;ner may attach constrain t

predicates to attributes to perform error checking, and insure
the integrity of the model. These constraints are automatically
tested by the system and must always hold.

As an example of how we might use an attributed graph
to mod~1 an application , we will l'xamine a vr.ry simple gate
Ipv e l logic d~5ign system . In this ~yste m we will dl'sign a series
of runctional unit.~ call~d Boxes . As shown in figure I , a BOlt
cnnsist.~ of (is related to) a 5Ct of inputs , a se t of output, and a
Sf't of p:lrt.~ (gates) which imple me nt its function . For this
c X :Ullpl~ , we will he interested in finding the maximum delay
time rcquircd fo r each box . CO nSf' llucntiy , as shown in figure
I , we computc an attrihute Box_Delay, which is defined as the
m:uimum or the Delay values tran smitted from the outputs.

Node Type BOl(

Rttrlbule.
Name : String
BolL.Delay : Integer

. +- Mal(oyer Outputs of Outputs.Delay

Connecton
Inputs : Box-In c::::ll>
Outputs : Box-Out c:::m:
Parts : Bo>LParts c::::ll>

Figure I.

As shown in figure 2, these valul's :ve in turn derived from the
values transmitted along the Input 'WIre rl'lationship. These
values come either Crom a Box_Input node (which always sup­
plil's 0). or Crom a Gate node . Gate nodes calculate a delay as
a function of their operation , and logic family type, as shown in
figure 3 .

Node Type Box-Input

Rttrlbute.
Nam. : Strtng

Connecton
Owner : Box-In c:::I
Output : Wtre c::::ll>
Tran.mlt. 0 •• Delay

Node Type Box-Output

Rttrlbutes
Nam. : Strtng

Connector.
Input : WIre c:::I
Owner : Box-Out c:::>
Trensmlt. Input.Oelay 11. Delay

Figure 2.

8ecaus.e of the definition of thl' attrihu~s in this graph ,
the model 15 able to respond automatically to changes. For
example , if the user were to chang!' the logic family type of a
gall' , the system would automatically determ ine which delay
valul's were no longer correct, and recompute them . This will
all happen without the implementor being forced to explicitly

Nodi Type Gate

Rttrlbutes
Dp : Gate_OperatIon
Type : logtcJaml1y
M!J-Oelay : Integer

+- Mex(Ill.. LDelay • 11I..2.0elay) •

Connecton
Gate_Oelay(Op,Type)

Owner : Bo>LParts c:::I
111..1 , 111..2 : WIre c:::I
Output : Wire c=:ID
Transmits M!J-Delay .. Delay

Figure :l .

Graphics Interface '85

- 153 -

describe how or when the computations are to take place.
Instead, the system can determine from the attribute evaluation
rules exactly what attributes need to be recomputed when a
change is made.

3.1. Level. of Interface

A Higgens generated interface is divided into 3 levels:
application data, views, and abstrxt devices. The application
data .. levt'1 encapsulates the data of the application and imple·
ments its semantics . The second level creates one or more
t·iew8 of the applications data. A view normally involves selec·
tion, filtration , and abstraction of information in order to
speciflcly highlight or emphasize one aspect of the dat.a In
addition, overall decisions about how data will be presented to
the user, along with how the user may interact with the data,
are done within views. Finally, the third level of abstract dev­
ices provides a very abstrxt and high level interfxe to the
actual graphical I/O devices used .

Each of these levels is implemented using an attributed
graph . This means that each level is able to respond to changes
in other parts of the system in W3YS which are meaningful at
th3t level. Entities 3t the abstract device level can translate the
actions of physical devices and a/Ject entities at the level of
views . Actions on views C3n affect the way views are
presented, and can be translated into actions on 3pplication
d3ta Application data C3n then respond in W3YS tbat are mean­
ingful to the semantics of the 3pplic3tion they support. These
responses can in turn 3ITect views , abstract devices , and eventu­
ally the graphic31 images presented to tbe user. This process
allows very powerful feedbxk to occur. This feedback C3n he
not only on the normal lexical 3nd. syntactic levels , but can also
be on a <1eeper level which reOects the sem3ntics of the under­
lying problem domain . It is this powerful sem3ntic feedback
which guides the user into forming the helpful mental models
needed for good interfaces. In 3d (lition , since the specification
of the attribute evaluation rules lvhich control this feedback is
prim:lfily non-procedllral , the designer is free to concentrate on
what thl' feedh3Ck will be, and may le3ve m3ny of the details of
how :IOd when it is c:!.fried out to the system .

3.2. Translatlng Data Into VleW!! and ImagH

In order to construct graphical im3ges from data graphs,
th convention31 3pproach would he to use progr:l.fDS which
tr3versed the graph extracting in form3tion , m3king decisions ,
and producing p:!.ftbl im3ges as the travers31 proceeds. Such a
travers31 can in general be very powerful and nexible, since the
nature of the tr3Hrs31 can be determined in arbitr3rily complex
ways based on the actual d3t3 encounte red in the gr:!ph . lIig­
gens uses a traversal process simil3r to this conventional
approach in order to tr3ns13te its attributed d3ta graphs into
views.

A Higgens interface specifi cation contains .a series of
Ira versal plana. These plan s determine how travers31s proceed
based on predicates over the attributes of noclf'~ tbey visit.

1I0wever, unlike conventional traversals which exist only as a
dynamic SNics of procedure invoc3tions, Higgens traversals :Ill'

explicitly represented as data objects . E3Ch visit of a d3t3 node
is representcd by a viewing node (thus forming a tree of viewing
nodes) . Thl'se nodI'S are normal dat:! objects . They are given
attributes 3nd attribute evaluation rules. They are persistent,
and have 3Ccess to the attributes of the data node they visit. In
this way , they are able to implement the view dependent

st'mantics needt'd to provide 5election , filtering, and abstraction
of the underlying data In addition , each node may render
images and accept input from the abstract devices used to
implemen~ tbe gr3phics of the interface .

BaN: My 60M MeN Delay - 36n.

Figure 4.

For example, in our simple logic design system, the user
might W:lOt one of several different views of a box . These views
could range from a simplt' 5ummary view showing just a recl:lll­
gle with the box's name in it, to a complete view like the one
in figure 4, showing all inputs , output, :IOd gates which imple­
mt'nt the box . E3Ch of these views can be construct,··1 by a
dilTerent tr3versal .

Figure 5a.

Figure .~b .

As :10 intcrmcdiate exampll' , we will consider a view
which shows jllst the name , ma:dmum delay, input.~ , and Ollt,.
put.~ of a box without showing the gates uspc\ to implemen tit.
Figure 5a shows an example data graph correspo nding to the
vi('w givr.n in figure 1 . Figure 5b shows the path that a trave r­
sal would take in order to impll'ment o ur sample view. This

Graphics Interface '85

- 154 -

path visi,", the box node i,",elr, then each or the inpu,"" then
finally the single output node. Each or these node visi,", is
represented by a viewing node. Figure 6 shows several or these
viewing nodes as they would be created by a traversal.

Graph Do des

Figure 6.

Travarsal
Dadll

TrDUDnD' _J 1_"
o
o
o

In order to deal with actual graphical I/O devices, a view­
ing node communicates with a series or abstract devices . These
abstract devices are constructed using the P/IJnil picture plan­
ning language which is a part or lIiggens . Planit allows the
interrace designer to construct picture p/IJn8. A picture pl:lll con­
sis ,", or a specification or how (hierarchical) images are to be
drawn, and how logical in pu t dev ices are to be constructed .
These specifications describe images and devices based on a set
or rormal parameters . A viewing node gives a picture plan and
provides a set or actual parameters in order to instantiate :Ill

abstract device . A viewing node may then at any time change
these actual parameters . The images and devices controlled by
the picture plan will then be updated to renect these new actual
parameter values. The parameters provided by a viewing node
may be intrinsic or derived attributes or the node . In this way ,
when they are changed, or recomputed, they will directly affect
the picture prese nted to the user. Since picture plans may con­
tain conditionals based on arbitrary expressions or parameters,
as well as calls to other picture plans, they can be given arbi­
trarily complex behavior . Figure 7 illustrates how picture plans
would be attached to the viewing nodes or our example.

Graph Dodes
Traversal

Dodes

Figure 7 .

Picture
Plans

In addition to presenting output images to the use r,
abstract devices can respond to user inputs by means or mes­
sages sent to viewing nodes . Viewing nodes respond to these
messages by invoking editing commands. These editing com­
mands can modiry attributes , create and delete data nodes, as
well as establish and break relationships within the data graph .
In this way, views may translate the actions or devices into
actions :IIlpropriate to the semantics or the underlying data.

In a Higgens generated interrace, reedback can occur at all
levels. The user can use actual graphical I/O devices to mani­
pulate the abstract devices presented . The abstract devices send
messages to views, which in turn may modiry their own attri­
bu tes, and those or applications nodes in order to carry ou t user
requested actions . These modifications in turn invoke whatever
comput:ltions are needed in order to satisry the attribu te evalua­
tion rules or the system . These computations propagate their
effects thrQughout the system , and may result in changes to
view~; ' or to the traversals that construct views . This in turn
may change the parameters or the abstract devices they control.
This can 6nally change the images and logical devices presented
to the user. Thus , it is possible ror reedback to occur locally at
each level , l\.'! well as :lcross several levels. In this way, reed­
back can go beyond the properties or the graphical entities used
to present the data, and is able to convey the semantics or the
underlying dat:l.

3.3. The Atb-lbute EvaluatIon Algorithm

Whenever changes are made to some part or the attri­
buted graph , the system must ensure that all attributes retain a
value wh ich is consistent with the attribute rules given by the
intnrace designer . This requires some sort or an attribute
evaluation algorithm . One approach would be to recompu te all
attribute values evl'fy time a change is made to any p:ut or the
system. This is c11':uly too expl'nsive . What is nel'ded is an
algorithm ror incremental attribute eval uation , which computes
only those attributes whose values ch ange as a result o r a given
modification . Th is probll'm also arisl's in the :uea or syn t:l.,(
directed editing systems, so it is not su rprising that algorithms
exist to so lve this problem ror thc attribute grammars used in
that application . The most succl'ssrlll or these algorithms is due
to /l~p~ . 1/ll'ps821 /le ps ' algorithm is optimal in the sense that
only ~ttribute5 whose valucs actually change are rc computed ,
and that the total oVl'rhl'ad or the algorithm is O(r: hang('cl~ ,
where Changed is the set or attributes whose values actually
change .

Unrortunately , /lr.ps ' algorithm , while optimal ror attri­
bll ted trees , does not seem to exte nd directly to the arbitrary
graphs used by a 11 iggens gcneratrd interrace. In stead. a new
incremental attribute evaluation algorithm has been designed
ror use with lIiggens . This new :llgorithm is si mpler, and exhi.
bits similar bchavior to /leps ' algorithm . In particular, ror any
given ch:tl1gl' it will neVl'r recompllte an attribute that would
not haH hecn reco mputed by Rt'ps' opti mal algorithm . How­
ever, it does have a slightly inrerior worst C:l.~e upper bound on
the amount or overhead incu rred .

The algorithm works by using a ~trategy which first dcter­
mines what work has to be done' , thcn pcrrorms the actual
complltatio ns . The' algorithm u s ~s the dt'p~ndcncics betwl'cn
attrihutes . An attribute is d~pendt'nt on anoth~r attribute ir that
at.trihute is m~ntionl'd in it.~ attrihute cvaluation rule (i .e . is
npedcd to COIllPute the d<'fivcd value or that attribute) . Whl'n
the value or an intrinsic attribute is changed, it may cause th e

Graphics Interface '85

- 155 -

attributes which depend on it to become out 0/ date with respect
to their defining attribute evaluation rules . Instead of immedi­
ately recomputing these values, we simply mark them as out of
date . We then find all attributes which are dependent on llIese
newly out of date atUibutes, and mark them out of date as well.

This process continues until we have marked all aft'ected
attribu tes. During this process of marking, we determine if
each marked attribute is important. Attributes are said to be
important ir they have a constraint predicate attached to III em ,
or if -part or the current graphical display depends on llIem.
When we have completed marking attributes during the llrst
phase or the algorithm, we will have obtained a list or attributes
which are both out or date and important. We can then use a
demand driven algorithm to evaluate these attributes in a sim­
ple recursive manner. The calculation or attribute values which
are not important may he dererred, as they have no immediate
effect on the interface or the application . If user actions cause
abstract devices or views to be changed, new attributes may
become important, and new computations or out or data attri­
butes ,may be invoked in order to obtain the values needed to
construct new displays.

Figure 8,

Figure 9.

In figure 8, we have presented a set or attributes in order to
illustrate how the attribute evaluation algorithm works. The
circles represe nt individual attributes . How these attributes are
distributed among nodes is not important to the evaluation
algorithm , only the dependencies between attributes are impor­
tant. In this case , two attributes have been designated impor­
tant. One provides a parameter to a picture plan which controls
part of the current display . The other h:lS a constraint predicate
attached . For this example, we will presume that the attribute

Figure 10.

marked with an X in figure 9 has been changed by some user
action . The IIrst phase of the algorithm responds to this change
by marking a series of attributes as out of date . These attributes
have been marked in gray in llgure 9. Notice that along with a
number of other nodes, the two important nodes have been
marked out or date . These nodes will be remembered for use
in the second phase or the algorithm . During the second
phase, the system will attempt to obtain correct values for all
important attributes using a simple recursive evaluation stra­
tegy. The evaluation starts with each important attribute which
is also marked out or date, and recursively evaluates only those
attributes need to obtain the original important attribute value .
The attributes that are reevaluated in the second phase ror our
example are marked in figure 10. Once the second phase or the
algorithm is complete , the graph will be left in the state.hown . _ •. .

Figure 11.

in figure 11. Notice that anum ber or attributes are left with
out or date values. The values or these attributes cannot afi'ect
the observable state of the system, thererore, we can salely
defer their computation . If the same change made here is done
several times, the system will not be forced to recompute these
values several times despite the ract that none of them will
actually be used . Instead , the attributes will retain their old out
or date values until the correct values are actually needed.

In order to support actions which change not only the
attributes of the application data but also , its structure (i.e. the
relationships between entities) a process similar to that used ror
intrinsic attribute changes is used . . When a relationship is bro­
ken , the system determines which derived attributes depend on
values that are passed across the relationship. These attributes

Graphics Interface '85

- 156 -

are marked out of date just 35 if an intrinsic attribute had
changed. When a relationship is established, tbe second half of
the attribute evaluation algorithm is invoked to evaluate attri­
bu tes which are ou t of date and important. In order to insure
that derived attributes can always be given a valid value, and
hence a display generated, the system insures that relationships
are not left dangling across attribute evaluations. This is either
done explicitly by application supplied actions, or where neces­
sary the system will provide special dummy nodes to tie 011 any
dangling relationships.

During the evaluation of attributes, certain attributes will
have constraint predicates attached to them . By att.:lching a
constraint predicate to an attribute, the interface designer is
able check for error conditions, and insure the semantic
integrity of all entities. After an attribute is evaluated, any
attached constraint predicates are tested. If any of these evalu­
ates false, a constraint violation exists . By default, this causes
the user command invoking the evaluation to fail and be
undone. Optionally, a special recovery action 35sociated with
the constraint can be invoked to attempt to recover from the
violation . In either C35e, the constraint must be satisfied or the
user command invoking the evaluation will fail and be undone.
The next section will discuss how user recovery and reversal is
actually performed, and how the boundaries between user com­
mands are established .

4. Execudon and Reve"a1

It would seem that the large amounts of derived data,
along with the fact that the order of computations is not
defined , and that some computations are deferred , would make
creating a general user reversal and recovery system a difficult
wk . However, 35 it turns out, the properties of the active
semantics data model combine to provide an excellent environ­
ment for efficient implementation of a user recovery and rever­
sal system . Note that the set of attribute evaluation rules can
be used at any time to obtain the values of derived attributes
from the set of intrinsic attribute values. This means that in
order to Undo commands whicb simply cbange attributes, the
on Iy action needed is to restore the old values of those attri­
butes changed , and invoke tbe normal attribute evaluation

mechanism used to respond to these cbanges. The system will
restore itself to its old state automatically. Similarly, commands
which change the structure of the attributed grapb, need only
remember the old structure in order to allow for their complete
reversal . It is this simplicity which makes user reversal and
recovery efficient in a Higgens generated interface.

4.1. Prlmltlve Commands

. We can now examine the kinds of primitive commands
needed to ellectively deal with the attributed graphs used to
implement the interface, and how the effects of each of these
primitivcs can he reversed . Clearly we need a command to
rrplace the value of an intrinsic attributp. . We also need a com­
mand to create a new node of a given type, to delete a node, to
hreak a connection between nodes, and finally to establish a
new connection between nodes . We will call thp.se primitive
command5 ualgnment, create, delete, cut, and connect.
Notice that each of these primitive commands h35 a simple
inver5e as shown below.

Operadon
A .. lgnment

Create
Delete
Cut
Connect

Inve"e
an ualgnment which restores tbe old value of
the attribu te
a delete of the created node
replacement of the deleted node
a connect between the affected nodes
a cut of the affected relationship

Because each primitive command b35 a simple inverse , we are
not forced to determine or remember the full eflects of each
command to be able to reverse its action . Instead, we need
only remember its inverse . The system is able to derive the
reversal of its full effects in tbe same way it derived tbe effects
to begin witb .

· In addition, we can use tbis same capability to provide a
Redo mechanism . The user may wish to undo an undo ; that is
they may wisb to redo the original operation. Since all primitive
operations have an inverse wbich is also a primitive command ,
the system can reconstruct original commands from their
inverses in much tbe same way that the inverses were con­
structed to begin witb. In this way, the system has tbe ability
to redo commands alter they bave been undone . Unfortunately,
wbenever new commands are executed after an undo , the sys­
tem will be unable to redo old commands , since the new com­
mands may have destroyed something which the old commands
depend upon . As we will see in section 5, this places a limit on
the power of the undo mechanism provided .

In order to make effective use of primitive commands to
act upon attributed graphs, we need to embed tbem in control
structures . We need the conditionals, loops, and procedural
abstraction mechanisms found in more traditional programming
languages. However, in order to reverse comm ands , we need
only record the sequence of inverses for the prim itive com­
mands actually executed, without regard for the control struc­
tures which arranlted for their oriltinal execution . Usinlt these
inverse commands , it is possible to fully reverse the ellect of
commands without explicitly reexecuting their control struc­
tures .

4.2. Ueer Leftl Commands

Although the primitive commands described above pro­
vide a good mechanis m for the des igner to describe the imple­
mentation of the interface , they are not suitable for use directly
35 user commands. Instead , user commands are normally built
35 a series of primitive commands embedded in control s truc­
tures . From the user's point of view, howeve r, this internal
structure is invisible, and commands appear 35 atomic units .

Command.

Undo
Stack

Figure 12.

User Command
Boundary Marters

Graphics Interface '85

- 157 -

~c:wse of this, it would be highly inappropriate to undo and
redo individual primitive commands. Instead commands should
be undone and redone in groups which correspond to what the
user considers atomic operations . In order to accomplish this,
Higgens provides a means for declaring the boundaries of user
commands . As shown in figure 12, as operations are per­
formed, their inverses are automatically saved on an undo stack
for possible later reversal. In order to allow the manipulation
or whole user commands instead of primitives, Higgens allows
the interrace impl~mentor to use a special command which
marks the boundaries of user commands on the undo stack.
Later when an undo action is invoked , Higgens will undo all
primitive commands up to the last mark and construct a
corresponding redo stack ror those commands. As shown in
figure 13, an undo operation perrorms the saved inverse opera­
tions, and pushes the recreated original commands onto the
redo stack. Silllibrly, if a later redo action is performed, Hig­
gens redoes all primitive commands up to the last command
mark, and places their inverses on the undo stack. In this way,
the interface designer is able to implement user commands
using whatever primitives and control structures are needed
while still allowing the system to undo actions in chunks which
are meaningful to the user .

Undo I I I I Redo

Undo
Slack

Figure 13.

User Command
Boundary Marten

5. Powu ~ the Hlgsens Undo Meehanlam

In!Gord8·1! an elegant formal model of undo systems is
constructed which allows us to compare and characterize the
power or various undo strategies. Their model makes use of
the rollowing formal entities:

S
C(I)

o

u in 0
K

a set of extended states (including history information)
the contents of an extended state s (excluding history
in rorm ation)
a set of operations mapping extended states to extended
states !denote applying operation It to state s as Its!
an Undo operation
a subset or 0 not including u

Notice that a state s in S includes whatever history of previous
commands is needed in order to be able to perrorm undo
operations . In a lIiggens generated system this includes the
attributed graph as well as the undo and redo stxks (which we
will rcCer to as the history) . The expression c(s) is used to
denote the state 5 without its associated history . In a Hiuens

generated system this includes just the attributed graph .

Based on these entities, we can define a formal property
which captures our intuitive notion of undo. This property is
the Basic Undo Property.

Basic Undo Property!
c(uks) = c(s) for all s in Sand a1lk in K

In :lddition to this basic property, Gordon et.a1. define two
other important properties that we would like undo systems to
have ;' ,

Thoroughness:
c(oD, .. oJuks) = c(o oJs)

for all s in S and o. in 0 (possibly including u)

Invert! ti 11 ty:
c(rus) = c(s) for all s in S and some r in 0

Intuitively, the thoroughness property insures that an undo is
complete, that the state returned to by using an undo can in no
way be distinguished rrom the original state (even when we
consider the behavior of the undo or redo operators) . Inverti­
bility insures that a redo operation (r) exists, so that undo
operations are not themselves irreversible . Both these proper­
ties are highly desirable, unfortunately, it is can be show that
no non-trivial system can be both thorough and invertible . As
a consequence Gordon et.a1. explore a somewhat weaker form
of thoroughness called unstxking.

Unstaeklng:

c(uDfD ... fJs) = c(s) for f. in K and any positive n

It can be shown that systems with separate undo and redo
operations can be both unstacking and invertible . In fxt, these
are precisely the properties that a Higgens generated interface
has . The user can undo arbitrary sequences of operations by
repeated applications of the undo operation, and can redo
operations so long as new operations are not performed . More
form ally , the Basic Undo Property holds since

c(upg) = c(g) for any primitive operation p and any
attributed graph (and history) g

The Invertibility property holds since Higgens supports a redo
operator r such that

c(rug) = c(g) for any attributed graph and history g

The Unstacking property holds since

c(u·p PJg) = c(g) for any primitive operations p.

but, the Thoroughness property rails since

c(rru pu pg) < > c(ppg)

It is not clear at this point if unstxking is the most
powerful property that might be achieved in conjunction with
invertibility (while still retaining the basic undo property) ,
However , it does seem clear that it is at least near what we can
hope to achieve given the theoretical limits that exist, and it
compares ravorably with existing undo systems.

G. Conclulllon

The Higgens system is currently being implemented at the
University or Colornrlo at Ooulder. A prototype of the abstract
device description language Planit which makes up part of lIig­
gens, h:lS been completed . The current implementation runs on
a Silicon Graph ics IIUS di~play device connected to a V AX, and
on a SUN workstation . The remainder or the system is under

Graphics Interface '85

- 158 -

developmeni and is scheduled Cor completioo iD middle to late
1985.

In this paper we have discussed the user recovery and
reversal mechanism used in the Higgens interCxe generation
sys~m . Despite the very powerCul data model used to imple.
ment Higgens generated interfxes , they provide aD etricient
undo mechanism in a way which is Cully integrated with the rest
oC the system . This technique greatly improves the useability
oC human interCaces, and makes learning to use these interfaces .
much easier.

Acknowl~menta

The authors would like to thank Dan Olsen oC BYU. The
original Corm oC the incremental attribute evaluation algorithm
we use in the Higgens system emerged from a loog discussion
between Dan and one oC the authors . The authors would also
like to thank Clayton L~wis Cor introducing us to the Cormal
notion oC undo that he and his colleagues have developed.

References

Arch84 .
Archer, James E. Jr ., Richard Conway, and Fred B.
Schneider, " User Rl'covery and Reversal in Interxtive
Systems," ACM TOPLAS8 pp. 1·19 (Jan . 1981).

Deme8!.
Demers, Alan, Thomas Rl'ps, and Tim Teitelbaum ,
" Incremental Evaluation ror Attribu~ Grammars with
A pplication to Syn ta."(D irl'cted Editors," Conference
Record of the 8 th Annual ACM Symposium on Principle8 of
Programming Languages, pp. 105·116 (Jan . 1981) .

Gord84 .
Gordon , Robert F., George B. Ll'eman , and Clayton H.
Lewis , " Concl'pt.~ and Implications oC Interactive
Recovery ," IDM Tech Report RC 10562 (#-17299) , IDM
Thomas J. Watson Research Center, (June 198·1) .

Kasi82.
Kasik , D . J., .. A User InterC:lCe Man:lgement System ,"
Computer Graphics 18 pp. 99· 106 (July 1982) .

KnuW8.
Kn uth , D . E., " Semantics oC Context-Free Languages,"
Math . Systems Theory J. 2 pp. 127·115 (June 1968) .

I<nut71.
Knuth , D . E., " Semantics oC Context-Free Languages:
Co rrection, " M ath . Systems Theory J. 5 pp. 95·96 (Mar.
1971) .

0 1se83.
Olsl'n , Dan R. and Elizabeth P. Dempsey, " SYNGRAPII :
A Graphical User Interfxe Generator," SIGGRAPH '89
Conference Proceedings, pp. 43·50 (July, 1983).

Reps82 .
Rrps , Thomas , "Optimal-time Incremental Semantic
A nalysis for Syntax-direc~d Editors, " Conference Record
of the 9th Annual A CM Symposium on Principle8 of Pro·
gramming Languages, pp. 169·176 (Jan . 1982) .

Reps83.
nrps, Thom:l.~ , Tim Te itelbaum , and Alan Demers,
" Incre men tal Con~x t-Depe ndc nt Analysis ror Language­
Dased Editors ," A CM TOl'LA S 6 pp. 419-177 (July 1983) .

Vitt84 .
Vitter, Jeffrey , "US&R: A New Framework Cor Redo·
ing," SIGPLAN Notiu81V pp. 168· 176 (May 1984).

Graphics Interface '85

