Abstract

The Higgens user interface generation system being developed
at the University of Colorado allows an interface designer to
rapidly construct graphical user interfaces based on a primarily
non-procedural interface specification. This paper discusses
how user recovery and reversal, or Undo, is performed within a
Higgens generated interface. A special data model is developed
which has unique properties which combine to provide an
eflicient environment for implementing an undo mechanism.
New algorithms based on recent work in incremental attribute
evaluation are used to efliciently implement both the generated
interfaces as a whole, and the undo mechanism in particular.
In addition, a formal model of undo is used in an attempt to
evaluate the power of the mechanism in order to compare it
with other undo implementations.

Keywords: Recovery, Reverse Execution, Undo, Graphics
Based Interfaces, User Interface Management.

1. Introduction

User reversal and recovery systems, sometimes called Undo
systems, have recently been recognized as an important feature
in user interfaces. Adding an Undo system to a user interface
can have a profound effect on the useability and learnability of
the interface. It allows the user to frecly explore new or unfam-
iliar features of the interface without the normal fears of catas-
trophic mistakes. This greatly enhances the user’s confidence,
and allows more rapid learning. In addition, the capability to
Undo actions allows the user to act in a more exploratory way.
The user is able to try tentative actions which answer what if
type questions without committing to those actions. This capa-
bility provides an entirely new level of functionality to a sys-
tem, without changing any of its overt functionality.

Unfortunately, many previous Undo systems
[Arch84, Vitt84] have been quite expensive. It has been

necessary to produce a series of checkpoints which preserved
part or all of some previous state of the system, along with a
list of commands which are exccuted to move from one
checkpoint's state to the next. Recovery was accomplished by
restoring the state saved in some checkpoint, and reexecuting
some saved commands, in order to return to the state
requested by the user. Unfortunately, the process of creating a
checkpoint is normally slow and often requires large amounts of
space.

This work was supported in part by IBM under a Faculty Development
Award (1984) and in part by Hewlett Rackard under an American Electronics
Association Faculty Development Program fellowship.

- 151 -

EFFICIENT RECOVERY AND REVERSAL IN
GRAPHICAL USER INTERFACES GENERATED BY THE HIGGENS SYSTEM

Scott E. Hudson
Roger King

Department of Computer Science
University of Colorado at Boulder
Boulder, CO 80309

“This paper discuses a technique for constructing eflicient
user recovery and reversal systems. This technique is
employed by user interfaces constructed by the Higgens user
interface generator. Higgens generated interfaces use a special
data model to describe and implement the semantics of the
interface, as well as the application itself. Interfaces con-
structed using this data model are described in a primarily non-
procedural (rule-based) manner. Because of some special pro-
perties of this rule-based system, it is possible to construct sim-
ple inverses for all actions. This makes construction of a gen-
eral undo system very easy and efficient.

In addition to being able to provide a powerful and gen-
eral undo mechanism, the Higgens system has many other
advantages for constructing graphical user interfaces. By using
the algorithms described later (in section 3), it is able to
automatically and efficiently construct graphical interfaces from
a primarily non-procedural specification. In this way, the inter-
face designer is free to concentrate on describing the behavior
of the system without specifying precisely how or when the sys-
tem will perform the computations necessary to update the
graphical display. The system'is able to use the rule-based
interface specification to determine how to construct and update
both the graphical images and the underlying application data,
based on user actions.

In the next section we will talk about the Higgens inter-
face gencrator and the goals behind it. Section 3 will discuss
the powerful data model that underlies Higgens, and how it can
be used to easily describe and implement powerful interfaces.
Section 4 will discuss how undo can be implemented in a gen-
eral yet very efficient manner within this data model. Section 5
will discuss the power and limitations of the undo mechanism
provided, and finally, section 6 will discuss the current state of
the implementation and provide conclusions.

2. Higgens

Higgens, the Human Interface Graphical Generation Sys-
tem, is a tool for automatically generating graphics based user
interfaces. Higgens accepts a specification which is primarily
non-procedural, and gencrates a user interface from it. Like
some previous work done in generating human
intcrfacele:\siS‘Z, Olse83] it borrows techniques from translator
writing systems. lliggens, unlike most previous work in this
area does not draw a sharp line between the application and the
interface. It works with and has knowledge of the semantics of
an application, as well of the interface itself.

One of the major goals of Higgens is to be able to support

‘rapid and incremental development. At the present state of the

art even if we use the best available design techniques, it is
unlikely that we will be able to fully predict in advance all
aspects of how real users will actually use a graphical interface.

Graphics Interface ’85

Consequently, it is not usually possible to create interfaces
which have good human factors the first time. In order to pro-
duce high quality interfaces we are forced to test them with real
users and change them to take the problems found into
account. This means that we must often revise not only imple-
mentations, but also designs. This problem is particularly
severe in the case of user recovery and reversal systems. This
aspect of the implementation is traditionally a difficult one. If
we are forced to reimplement the undo system each time the
interface is modified, it will likely be too expensive to build.

Higgens overcomes this problem by allowing incremental
development and by automatically providing an undo facility for
all actions. Since interfaces are constructed as a set of semi-
independent active entities, a partial working interface can be
constructed and tested before the entire interface is finished.
Only part of the semantics of each entity need be fully defined
to construct a prototype interface which tests that part. In addi-
tion, since Higgens generated interfaces are described in a high
level manner, changes are much easier to perform than they
would be if conventional implementation techniques were used.
As a result the designer is able to rapidly construct and test an
interface in an incremental fashion, without having to discard
all of the work that would have been put into one or more pro-
totype systems. In addition, since Higgens provides a powerful
undo facility as a primitive, the semantics of undo can be
designed and implemented along with the items it affects, and
does not need to be added later once the system is stable.

3. The Active Semantics Data Model

In order to understand how the Undo system works
within a Higgens generated interface, it is necessary to under-
stand the active semantics data model used to implement much
of the functionality of the interface. In a Higgens generated
interface, the semantics of both the application and the inter-
face are described by this uniform data model. This data model
encapsulates both the data of the application and its semantics.
The model employs new algorithms adapted from techniques
related to Knuth’'s attribute grammars|Knut68, Knut71] as well
as from more recent work on incremental attribute
evaluation|Deme81, Reps83] used in syntax directed editors.
The state of the application and the interface are described in
an altributed graph. Like the attributed trees often used in com-
piling, each node of an attributed graph has associated with it a
number of attributes which describe the internal state of the
semantic entity described by that node. In addition, attridute
evaluation rules are given for computing certain attribute values
as a function of other attributes within a given node, and from
the values contained in related nodes. This allows the model to
actively respond to its environment in a way which reflects its
semantics. Finally, the interface designer may attach constraint

predicates to attributes to perform error checking, and insure
the integrity of the model. These constraints are automatically
tested by the system and must always hold.

As an example of how we might use an attributed graph
to model an application, we will examine a very simple gate
level logic design system. In this system we will design a series
of functional units called Boxes. As shown in figure 1, a Box
consists of (is related to) a set of inputs, a set of output, and a
set of parts (gates) which implement its function. For this
example, we will be interested in finding the maximum delay
time required for each box. Consequently, as shown in figure
1, we compute an attribute Box_Delay, which is defined as the
maximum of the Delay values transmitted from the outputs.

152

Node Type Box
Attributes
Name : String

Box_Delay : Integer
€ Max over Outputs of Outputs.Delay
Connectors
Inputs :Box_In
Outputs : Box_Out XX
Perts :Box_Parts

Figure 1.

As shown in figure 2,these values are in turn derived from the
values transmitted along the Input Wire relationship. These
values come either from a Box_Input node (which always sup-
plies 0), or from a Gate node. Gate nodes calculate a delay as
a function of their operation, and logic family type, as shown in
figure 3.

Node Type Box_Input

Attributes
Neme : String
Connectors
Owner :Box_In X
Output : Wire

Transmits O as Delay

Node Type Box_Output

Attributes
Name : String
Connectors
Input : Wire ==
Owner : Box_Out CO
Transmits Input.Delay as Delay

Figure 2.

Because of the dcfinition of the attributes in this graph,
the model is able to respond automatically to changes. For
example, if the user were to change the logic family type of a
gate, the system would automatically determine which delay
values were no longer correct, and recompute them. This will
all happen without the implementor being forced to explicitly

Node Type Gate

Rttributes
Op : Gate_Operation
Type :Logic_Femily

My_Deley : Integer
¢ Max(In_1.Delay, In_2Delay) ¢
Gate_Delay(0Op,Type)

Connectors
Owner :Box_Parts X
i, In_2: Wire =
Output : Wire | —>2
Transmits My Delay as Delay

Figure 3.

Graphics Interface '85

describe how or when the computations are to take place.
Instead, the system can determine from the attribute evaluation
rules exactly what attributes need to be recomputed when a
change is made.

3.1. Levels of Interface

A Higgens generated interface is divided into 3 levels:
application data, views, and abstract devices. The application
data_level encapsulates the data of the application and imple-
ments its semantics. The second level creates one or more
views of the applications data. A view normally involves selec-
tion, filtration, and abstraction of information in order to
specificly highlight or emphasize one aspect of the data In
addition, overall decisions about how data will be prescented to
the user, along with how the user may interact with the data,
are done within views. Finally, the third level of abstract dev-
ices provides a very abstract and high level interface to the
actual graphical 1/O devices used.

Each of these levels is implemented using an attributed
graph. This means that each level is able to respond to changes
in other parts of the system in ways which are meaningful at
that level. Entities at the abstract device level can translate the
actions of physical devices and affect entities at the level of
views. Actions on views can affect the way views are
presented, and can be translated into actions on application
data. Application data can then respond in ways that are mean-
ingful to the semantics of the application they support. These
responses can in turn affect views, abstract devices, and eventu-
ally the graphical images presented to the user. This process
allows very powerful feedback to occur. This feedback can be
not only on the normal lexical and.syntactic levels, but can also
be on a deeper level which reflects the semantics of the under-
lying problem domain. It is this powerful semantic feedback
which guides the user into forming the helpful mental models
needed for good interfaces. In addition, since the specification
of the attribute evaluation rules which control this feedback is
primarily non-procedural, the designer is free to concentrate on
what the feedback will be, and may leave many of the details of
how and when it is carried out to the system.

3.2. Translating Data Into Views and Images

In order to construct graphical images from data graphs,
the conventional approach would be to use programs which
traversed the graph extracting information, making decisions,
and producing partial images as the traversal proceeds. Such a
traversal can in general be very powerful and flexible, since the
nature of the traversal can be determined in arbitrarily complex
ways based on the actual data encountered in the graph. Hig-
gens uses a traversal process similar to this conventional
approach in order to translate its attributed data graphs into
views.

A Higgens interface specification contains a series of
traversal plans. These plans determine how traversals proceed
based on predicates over the attributes of nodes they visit.

Ilowever, unlike conventional traversals which exist only as a
dynamic series of procedure invocations, Higgens traversals are
explicitly represented as data objects. Each visit of a data node
is represented by a viewing node (thus forming a tree of viewing
nodes). These nodes are normal data objects. They are given
attributes and attribute evaluation rules. They are persistent,
and have access to the attributes of the data node they visit. In
this way, they are able to implement the view dependent

semantics needed to provide selection, filtering, and abstraction
of the underlying data. In addition, each node may render
images and accept input from the abstract devices used to
implement the graphics of the interface.

Bow: My Box Maux Delay = 36ns

2 |)—=p

Figure 4.

For example, in our simple logic design system, the user
might want one of several different views of a box. These views
could range from a simple summary view showing just a rectan-
gle with the box's name in it, to a complete view like the one
in figure 4, showing all inputs, output, and gates which imple-
ment the box. Each of these views can be constructed by a
different traversal.

Bon_Input

Figure 5a.

.M‘“‘ﬁ"m‘jf;—

Bon_Input }—

Figure 5b.

As an intermediate example, we will consider a view
which shows just the name, maximum delay, inputs, and out-
puts of a box without showing the gates used to implement it.
Figure 5a shows an example data graph corresponding to the
view given in figure 4. Figure 5b shows the path that a traver-
sal would take in order to implement our sample view. This

Graphics Interface '85

path visits the box node itself, then each of the inputs, then
finally the single output node. Each of these node visits is
represented by a viewing node. Figure 6 shows several of these
viewing nodes as they would be created by a traversal.

Traversal
Graph Nodes Nodes

Traversal of Box

a
O

Bow
Name : "My Box"
Box_Delay : 36

Bou_Input
Name : "A°

Traversal of []
Bow_Input []

Bon_Input

rl Traversal of a
Name:: '8 Bow_input]

Figure 6.

In order to deal with actual graphical 1/O devices, a view-
ing node communicates with a series of abstract devices. These
abstract devices are constructed using the Planit picture plan-
ning language which is a part of Iliggens. Planit allows the
interface designer to construct picture plans. A picture plan con-
sists of a specification of how (hierarchical) images are to be
drawn, and how logical input devices are to be constructed.
These specifications describe images and devices based on a set
of formal parameters. A viewing node gives a picture plan and
provides a set of actual parameters in order to instantiate an
abstract device. A viewing node may then at any time change
these actual parameters. The images and devices controlled by
the picture plan will then be updated to reflect these new actual
parameter values. The parameters provided by a viewing node
may be intrinsic or derived attributes of the node. In this way,
when they are changed, or recomputed, they will directly affect
the picture presented to the user. Since picture plans may con-
tain conditionals based on arbitrary expressions of parameters,
as well as calls to other picture plans, they can be given arbi-
trarily complex behavior. Figure 7 illustrates how picture plans
would be attached to the viewing nodes of our example.

Traversal Picture
Graph Nodes Hoides Plans
nnN»;m — | | Traversal of BE?] T
Box_Delay : 36
My Box
3%
Box_Input a
Name : "A” —_ﬁ ()

Bow_lnput ________ &

Figure 7.

154 -

In addition to presenting output images to the user,
abstract devices can respond to user inputs by means of mes-
sages sent to viewing nodes. Viewing nodes respond to these
messages by invoking editing commands. These editing com-
mands can modify attributes, create and delete data nodes, as
well as establish and break relationships within the data graph.
In this way, views may translate the actions of devices into
actions appropriate to the semantics of the underlying data.

In a Higgens generated interface, feedback can occur at all
levels. The user can use actual graphical I/O devices to mani-
pulate the abstract devices presented. The abstract devices send
messages to views, which in turn may modify their own attri-
butes, and those of applications nodes in order to carry out user
requested actions. These modifications in turn invoke whatever
computations are needed in order to satisfy the attribute evalua-
tion rules of the system. These computations propagate their
effects throughout the system, and may result in changes to
views, or to the traversals that construct views. This in turn
may change the parameters of the abstract devices they control.
This can finally change the images and logical devices presented
to the user. Thus, it is possible for feedback to occur locally at
each level, as well as across several levels. In this way, feed-
back can go beyond the properties of the graphical entities used
to present the data, and is able to convey the semantics of the
underlying data.

3.3. The Attribute Evaluation Algorithm

Whenever changes are made to some part of the attri-
buted graph, the system must ensure that all attributes retain a
value which is consistent with the attribute rules given by the
interface designer. This requires some sort of an attribute
evaluation algorithm. One approach would be to recompute all
attribute values every time a change is made to any part of the
system. This is clearly too expensive. What is needed is an
algorithm for incremental attribute evaluation, which computes
only those attributes whose values change as a result of a given
modification. This problem also arises in the area of syntax
directed editing systems, so it is not surprising that algorithms
exist to solve this problem for the attribute grammars used in
that application. The most successful of these algorithms is due
to Reps. [Reps82] Reps’ algorithmn is optimal in the sense that
only attributes whose values actually change are recomputed,
and that the total overhead of the algorithm is O{[Changed),
where Changed is the set of attributes whose values actually
change.

Unfortunately, Reps' algorithm, while optimal for attri-
buted trees, does not seem to extend directly to the arbitrary
graphs used by a Higgens generated interface. Instead, a new
incremental attribute evaluation algorithm has been designed
for use with lliggens. This new algorithm is simpler, and exhi-
bits similar behavior to Reps’ algorithm. In particular, for any
given change it will never recompute an attribute that would
not have been recomputed by Reps’ optimal algorithm. How-
ever, it does have a slightly inferior worst case upper bound on
the amount of overhead incurred.

The algorithm works by using a strategy which first deter-
mines what work has to be done, then performs the actual
computations. The algorithin uses the dependencies between
attributes. An attribute is dependent on another attribute if that
attribute is mentioned in its attribute evaluation rule (ie. is
needed to compute the derived value of that attribute). When
the value of an intrinsic attribute is changed, it may cause the

Graphics Interface ’'85

attributes which depend on it to become out of date with respect
to their defining attribute evaluation rules. Instead of immedi-
ately recomputing these values, we simply mark them as out of
date. We then find all attributes which are dependent on these
newly out of date attributes, and mark them out of date as well.

This process continues until we have marked all affected
attributes. During this process of marking, we determine if
each marked attribute is important. Attributes are said to be
important if they have a constraint predicate attached to them,
or if “part of the current graphical display depends on them.
When we have completed marking attributes during the first
phase of the algorithm, we will have obtained a list of attributes
which are both out of date and important. We can then use a
demand driven algorithm to evaluate these attributes in a sim-
ple recursive manner. The calculation of attribute values which
are not important may be deferred, as they have no immediate
effect on the interface or the application. If user actions cause
abstract devices or views to be changed, new attributes may
become important, and new computations of out of data attri-
butes may be invoked in order to obtain the values needed to
construct new displays.

O—0O—0O—0O

Figure 8.

Figure 9.

In figure 8, we have presented a set of attributes in order to
illustrate how the attribute evaluation algorithm works. The
circles represent individual attributes. How these attributes are
distributed among nodes is not important to the evaluation
algorithm, only the dependencies between attributes are impor-
tant. In this case, two attributes have been designated impor-
tant. One provides a parameter to a picture plan which controls
part of the current display. The other has a constraint predicate
attached. For this example, we will presume that the attribute

155 -

Figure 10.

marked with an X in figure 9 has been changed by some user
action. The first phase of the algorithm responds to this change
by marking a series of attributes as out of date. These attributes
have been marked in gray in figure 9. Notice that along with a
number of other nodes, the two important nodes have been
marked out of date. These nodes will be remembered for use
in the second phase of the algorithm. During the second
phase, the system will attempt to obtain correct values for all
important attributes using a simple recursive evaluation stra-
tegy. The evaluation starts with each important attribute which
is also marked out of date, and recursively evaluates only those
attributes need to obtain the original important attribute value.
The attributes that are reevaluated in the second phase for our
example are marked in figure 10. Once the second phase of the
algorithm is complete, the graph will be left in the state shown

Figure 11.

in figure 11. Notice that a number of attributes are left with
out of date values. The values of these attributes cannot affect
the observable state of the system, therefore, we can safely
defer their computation. If the same change made here is done
several times, the system will not be forced to recompute these
values several times despite the fact that none of them will
actually be used. Instead, the attributes will retain their old out
of date values until the correct values are actually needed.

In order to support actions which change not only the
attributes of the application data but also, its structure (i.e. the
relationships between entities) a process similar to that used for
intrinsic attribute changes is used. When a relationship is bro-
ken, the system determines which derived attributes depend on
values that are passed across the relationship. These attributes

Graphics Interface ‘85

are marked out of date just as if an intrinsic attribute had
changed. When a relationship is established, the second half of
the attribute evaluation algorithm is invoked to evaluate attri-
butes which are out of date and important. In order to insure
that derived attributes can always be given a valid value, and
hence a display generated, the system insures that relationships
are not left dangling across attribute evaluations. This is either
done explicitly by application supplied actions, or where neces-
sary the system will provide special dummy nodes to tie off any
dangling relationships.

During the evaluation of attributes, certain attributes will
have constraint predicates attached to them. By attaching a
constraint predicate to an attribute, the interface designer is
able check for error conditions, and insure the semantic
integrity of all entities. After an attribute is evaluated, any
attached constraint predicates are tested. If any of these evalu-
ates false, a constraint violation exists. By default, this causes
the user command invoking the evaluation to fail and be
undone. Optionally, a special recovery action associated with
the constraint can be invoked to attempt to recover from the
violation. In either case, the constraint must be satisfied or the
user command invoking the evaluation will fail and be undone.
The next section will discuss how user recovery and reversal is
actually performed, and how the boundaries between user com-
mands are established.

4. Execution and Reversal

It would seem that the large amounts of derived data,
along with the fact that the order of computations is not
defined, and that some computations are deferred, would make
creating a general user reversal and recovery system a difficult
task. However, as it turns out, the properties of the active
semantics data model combine to provide an excellent environ-
ment for efficient implementation of a user recovery and rever-
sal system. Note that the set of attribute evaluation rules can
be used at any time to obtain the values of derived attributes
from the set of intrinsic attribute values. This means that in
order to Undo commands which simply change attributes, the
only action needed is to restore the old values of those attri-
butes changed, and invoke the normal attribute evaluation
mechanism used to respond to these changes. The system will
restore itself to its old state automatically. Similarly, commands
which change the structure of the attributed graph, need only
remember the old structure in order to allow for their complete
reversal. It is this simplicity which makes user reversal and
recovery efficient in a Higgens generated interface.

4.1. Primitive Commands

‘We can now examine the kinds of primitive commands
needed to effectively deal with the attributed graphs used to
implement the interface, and how the effects of each of these
primitives can be reversed. Clearly we need a command to
replace the value of an intrinsic attribute. We also need a com-
mand to create a new node of a given type, to delete a node, to
break a connection between nodes, and finally to establish a
new connection between nodes. We will call these primitive
commands assignment, create, delete, cut, and connect.
Notice that each of these primitive commands has a simple
inverse as shown below.

156

Operation Inverse
Assignment an assignment which restores the old value of
the attribute
Create a delete of the created node
Delete replacement of the deleted node
Cut a connect between the affected nodes
Connect a cut of the affected relationship

Because each primitive command has a simple inverse, we are
not forced to determine or remember the full efects of each
command to be able to reverse its action. Instead, we need
only remember its inverse. The system is able to derive the
reversal of its full effects in the same way it derived the eflects
to begin with.

-In addition, we can use this same capability to provide a
Redo mechanism. The user may wish to undo an undo; that is
they may wish to redo the original operation. Since all primitive
operations have an inverse which is also a primitive command,
the system can reconstruct original commands from their
inverses in much the same way that the inverses were con-
structed to begin with. In this way, the system has the ability
to redo commands after they have been undone. Unfortunately,
whenever new commands are executed after an undo, the sys-
tem will be unable to redo old commands, since the new com-
mands may have destroyed something which the old commands
depend upon. As we will see in section 5, this places a limit on
the power of the undo mechanism provided.

In order to make effective use of primitive commands to
act upon attributed graphs, we need to embed them in control
structures. We need the conditionals, loops, and procedural
abstraction mechanisms found in more traditional programming
languages. However, in order to reverse commands, we need
only record the sequence of inverses for the primitive com-
mands actually executed, without regard for the control struc-
tures which arranged for their original execution. Using these
inverse commands, it is possible to fully reverse the effect of
commands without explicitly reexecuting their control struc-
tures.

4.2. User Level Commands

Although the primitive commands described above pro-
vide a good mechanism for the designer to describe the imple-
mentation of the interface, they are not suitable for use directly
as user commands. Instead, user commands are normally built
as a series of primitive commands embedded in control struc-
tures. From the user’s point of view, however, this internal
structure is invisible, and commands appear as atomic units.

User Command
Boundary Markers

Inverses

[Undo]
L Stack |

Figure 12.

Graphics Interface '85

Because of this, it would be highly inappropriate to undo and
redo individual primitive commands. Instead commands should
be undone and redone in groups which correspond to what the
user considers atomic operations. In order to accomplish this,
Higgens provides a means for declaring the boundaries of user
commands. As shown in figure 12, as operations are per-
formed, their inverses are automatically saved on an undo stack
for possible later reversal. In order to allow the manipulation
of whole user commands instead of primitives, Higgens allows
the interface implementor to use a special command which
marks the boundaries of user commands on the undo stack.
Later when an undo action is invoked, Higgens will undo all
primitive commands up to the last mark and construct a
corresponding redo stack for those commands. As shown in
figure 13, an undo operation performs the saved inverse opera-
tions, and pushes the recreated original commands onto the
redo stack. Similarly, if a later redo action is performed, Hig-
gens redoes all primitive commands up to the last command
mark, and places their inverses on the undo stack. In this way,
the interface designer is able to implement user commands
using whatever primitives and control structures are needed,
while still allowing the system to undo actions in chunks which
are meaningful to the user.

Redo
Stack

3

User Command
Boundary Markers

ey

Undo
Stack

TTTI

Figure 13.

5. Power of the Higgens Undo Mechanism

In[Gord84] an elegant formal model of undo systems is
constructed which allows us to compare and characterize the
power of various undo strategies. Their model makes use of
the following formal entities:

S a set of extended states (including history information)

c(s) the contents of an extended state s (excluding history
information)

(o] a set of operations mapping extended states to extended
states [denote applying operation k to state s as ks|

u in O an Undo operation

K a subset of O not including u

Notice that a state s in S includes whatever history of previous
commands is needed in order to be able to perform undo
operations. In a Higgens generated system this includes the
attributed graph as well as the undo and redo stacks (which we
will refer to as the history). The expression c(s) is used to
denote the state s without its associated history. In a Higgens

157

generated system this includes just the attributed graph.

Based on these entities, we can define a formal property
which captures our intuitive notion of undo. This property is
the Basic Undo Property.

Basic Undo Property:
c(uks) = c(s) for all s in S and all k in K

In addition to this basic property, Gordon et.al. define two
other important properties that we would like undo systems to
have.

Thoroughness:
¢(o,...0,uks) = c(0,...0;s)
for all s in S and o, in O (possibly including u)

Invertibility:
c(rus) = ¢(s) for all s in S and some r in O

Intuitively, the thoroughness property insures that an undo is
complete, that the state returned to by using an undo can in no
way be distinguished from the original state (even when we
consider the behavior of the undo or redo operators). Inverti-
bility insures that a redo operation (r) exists, so that undo
operations are not themselves irreversible. Both these proper-
ties are highly desirable, unfortunately, it is can be show that
no non-trivial system can be both thorough and invertible. As
a consequence Gordon et.al. explore a somewhat weaker form
of thoroughness called unstacking.

Unstacking:
c(uf ..[s) = c(s)

It can be shown that systems with separate undo and redo
operations can be both unstacking and invertible. In fact, these
are precisely the properties that a Higgens generated interface
has. The user can undo arbitrary sequences of operations by
repeated applications of the undo operation, and can redo
operations so long as new operations are not performed. More
formally, the Basic Undo Property holds since

c(upg) = c(g) for any primitive operation p and any

attributed graph (and history) g

The Invertibility property holds since Higgens supports a redo
operator r such that

c(rug) = (g)
The Unstacking property holds since

for f, in K and any positive n

for any attributed graph and history g

c(u’p,...p,8) = c(g)
but, the Thoroughness property fails since
c(rrupupg) <> c(ppg)

for any primitive operations p,

It is not clear at this point if unstacking is the most
powerful property that might be achieved in conjunction with
invertibility (while still retaining the basic undo property).
However, it does seem clear that it is at least near what we can
hope to achieve given the theoretical limits that exist, and it
compares favorably with existing undo systems.

6. Conclusion

The Higgens system is currently being implemented at the
University of Colorado at Boulder. A prototype of the abstract
device description language Planit which makes up part of Hig-
gens, has been completed. The current implementation runs on
a Silicon Graphics IRIS display device connected to a VAX, and
on a SUN workstation. The remainder of the system is under

Graphics Interface 85

- 158 -

development and is scheduled for completion in middle to late Vitts4.
1985. Vitter, Jefirey, “US&R: A New Framework for Redo-
In this paper we have discussed the user recovery and ing,” SIGPLAN Notices 19 pp. 168-176 (May 1984).

reversal mechanism used in the Higgens interface generation

system. Despite the very powerful data model used to imple-

ment Higgens generated interfaces, they provide an efficient

undo mechanism in a way which is fully integrated with the rest

of the system. This technique greatly improves the useability

of human interfaces, and makes learning to use these interfaces
much easier.

Acknowledgements

The authors would like to thank Dan Olsen of BYU. The
original form of the incremental attribute evaluation algorithm
we use in the Higgens system emerged from a long discussion
between Dan and one of the authors. The authors would also
like to thank Clayton Lewis for introducing us to the formal
notion of undo that he and his colleagues have developed.

References

Arch84.
Archer, James E. Jr, Richard Conway, and Fred B.
Schneider, ‘‘User Recovery and Reversal in Interactive
Systems,’”” ACM TOPLAS 6 pp. 1-19 (Jan. 1984).

Deme81.
Demers, Alan, Thomas Reps, and Tim Teitelbaum,
‘‘Incremental Evaluation for Attribute Grammars with
Application to Syntax Directed Editors,”” Conference
Record of the §th Annual ACM Symposium on Principles of
Programming Languages, pp. 105-116 (Jan. 1981).

Gord84.
Gordon, Robert F., George B. Leeman, and Clayton H.
Lewis, ‘‘Concepts and [Implications of Interactive

Recovery,”” IBM Tech Report RC 10562 (#47293), IBM
Thomas J. Watson Research Center, (June 1984).

Kasi82.
Kasik, D. J, ‘A User Interface Management System,”’
Computer Graphics 18 pp. 99-106 (July 1982).

Knut68.
Knuth, D. E., ‘‘Semantics of Context-Free Languages,"
Math. Systems Theory J. 2 pp. 127-145 (June 1968).

Knut71.
Knuth, D. E., ‘“Semantics of Context-Free Languages:
Correction,”’ Math. Systems Theory J. 5 pp. 95-96 (Mar.
1971).

Olse83.
Olsen, Dan R. and Elizabeth P. Dempsey, ‘‘SYNGRAPH:
A Graphical User Interface Generator,’”” SIGGRAPH '88
Conference Proceedings, pp. 43-50 (July, 1983).

Reps82.
Reps, Thomas, ‘“Optimal-time Incremental Semantic
Analysis for Syntax-directed Editors,’’ Conference Record
of the 9th Annual ACM Symposium on Principles of Pro-
gramming Languages, pp. 169-176 (Jan. 1982).

Reps83.
Reps, Thomas, Tim Teitelbaum, and Alan Demers,
‘‘Incremental Context-Dependent Analysis for Language-
Based Editors,”” ACM TOPLAS 5 pp. 449-477 (July 1983).

Graphics Interface '85

