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Abstract 

The Higg~ns user interface gener::ltion system bein& developed 
at the University of Colorado allows an interface designer to 
r3pidly construct graphical user interfaces based on a primarily 
non-procedur31 interface specification . This paper discusses 
how user recovery and revers:JJ, or Undo, is performed witbin a 
lIiggens generated interface . A special data model is developed 
which has unique properties which combine to provide an 
efficient environment for implementin& an undo mechanism. 
New 31gorithms based on recent work in incremental attribute 
ev:JJuation are used to efficiently implement both the &enerated 
interfaces as a whole , and the undo mechanism in particular. 
In addition, a form31 model of undo is used in an attempt to 
ev:JJuate the power of the mechanism in order to compare it 
with other undo implementations. 

Keywords: Recovery, Reverse Execution, Undo, Graphics 
Dased Interfaces, User Interface Management. 

1. Inb-oduetlon 

U8er rever81J1 and recovery systems , sometimes called Undo 
systems , have recently been recognized as an important feature 
in user interfaces. Adding an Undo system to a user interface 
can have a profound effect on the useability and learn ability of 
the interface . It a1lolVs the user to freely explore new or unfam­
iliar features of the interface without the normal fears of catas­
trophic mistakes. This greatly enhances the user 's confidence , 
and allows more rapid learning. In addition , the capability to 
U ndo octions allows the user to act in a more exploratory way. 
The U5er is able to try tentative actions which answer what if 
type questions without commit.ting to those actions. This capa­
bility provides an entirely new level of runctionality to a sys­
tem , without changing any of its overt functionality . 

U nrortunately, many prev ious Undo systems 
[Arch84 , Vitt84! have been quite expensive . It has been 

ne ces5ary to prod uce a series of checkpoints which preserved 
p:vt or all of some previous stair. of the system , alon& with a 
li st or commands which are executed to move from one 
checkpoint' s state to the next. Recovery was accomplished by 
res toring the state saved in some checkpoint, and reexecuting 
so me saved commands , in order to return to the state 
re'lllrsted by the user . Unrortunately , the process of creating a 
checkpoint is normally slow and orten requ ires large amounts or 
space. 

Tb i, "ork "'" , npported iD part by IBM aDder a F' " ully De .. lopmeDI 
Awud ( IQ84) ."d iD part by 1I."lell p'ackurl UDder a. Am .. i". EleclroD ic. 
A"o ci ltioD Faculty DevelopmtDt. Procrun rello",b ip. 

··This paper discuses a technique ror constructing efficient 
user recovery and revers31 systems. Tb is technique is 
employed by user interraces constructed by the Higgens user 
interface generator. Biggens generated inlr.rraces use a speci31 
data model to describe and implement the semantics of the 
interface , as well as the application itself. Interfaces con­
structed using this dah model are described in a primarily non­
procedural (rule-based) manner. Because or some special pro­
perties of th is ru le-based system , it is possible to construct sim­
ple inverses ror all actions . This makes construction of a gen­
eral undo system very easy and efficient. 

In addition to being able to provide a powerful and gen­
er31 undo mechanism, the Biggens system has many other 
advantages ror constructing graphical user interfaces . By using 
the algorithms described later (in section 3) , it is able to 
automatically and efficiently construct graphical interfaces from 
a prim:vily non-procedural specification . In this way, the inter­
facf' designer is free to concentrat.e on describing the behavior 
of the system without specifyin& precisely how or when the sys­
tem will perform the computations necess:vy to upd::lte the 
graphical display. The system '.is able to use the rule-based 
int..,face specification to determine how to construct and upd::lte 
both the graphical images and the underlying application data, 
based on use r actions. 

In the next section we will talk about the Higgens inter­
bce generator and the goals behind it. Section 3 will discuss 
the powt'rrul data model th::lt underlies Higgrns , and how it can 
be used to ea.,ily describe and implement powerful interfaces. 
Section 4 will discuss how undo can be implemented in a gen­
eral y('t very elJicient m:utner within this data model. Section 5 
will discuss the power and limitations nf th e uDdo mechanism 
provided , and finally , section 6 will discuss the current s tate or 
the implement::ltion and provide conclusions . 

Z. IIIggens 

lliggcn s , the lluman Interr:\Ce Graphical Gen eration Sys­
tem , is a tool ror automatically generating graphics based user 
interfaces . Higgens accepts a specification which is primarily 
non-procedural , and gen('rates :l user interface rrom it. Like 
somf' previous work done in g('nerating human 
interraces[I<3Si82,Olse831 it borrows techniqu .. ~ rrom translator 
writing systems . lliggens, unlike most previous work in this 
area does not draw a sharp line brtween the application and the 
interface . It works with and has knowledge of the semantics or 
an application , as well or the interrace it.~('Jr . 

One of the major goals of Higgens is to be able to support 
. rapid and incremental developm ent. At the present s tate of the 
:vt even ir we use the bes t available des ign techni'lu(' s, it i~ 

unlik e ly that we will be able to fully predict in adv ance all 
a.pccts of how re31 use rs will actually use a gr3phical interface . 
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Const!qut!ntly, it is not usually possiblt! to crute interfact!s 
which havt! good human factors the first time. In order to pro­
duct' high quality interfaces we are forced to test them with real 
users and change them to take the problems found into 
account. This means that we must often revise not only imple­
mentations, but also designs. This problem is particularly 
severe in the case of user recovery and reversal systems. This 
:l.~pect of the implementation is traditionally a difficult one. If 
we are forced to reimplement the undo system each time the 
interface is modified, it will likely be too expensive to build. 

Higgens overcomes this problem by allowing incremental 
development and by automatically providing an undo facility ror 
all actions. Since interract!s are constructed as a set of semi­
indt!pendent active t!ntities, a partial working interrace can hi! 
constructed and tested before the entire interface is finisht!d. 
Only p:vt of tht! semantics of each entity need be fully defined 
to construct a prototypt! interface which tests that part. In addi­
tion , sinct! Higgt'ns generated interfact!s are dt!scribt!d in a high 
level manner , changl's are much e:lsit!r to pt!rform than they 
would bt! if conVt!ntional implementation techniqut!s were used. 
As a rt!sult tht! designer is able to rapidly construct and test an 
interfact! in an incrt!mt'ntal fashion, without having to discard 
all of tht! work th:lt would have hl!en put into one or more pro­
totype sysll'ms. In addition , since Higgens provides a powerful 
undo facility as a primitive, the semantics of undo can he 
designed and implemented along with the items it affects, and 
does not need to be added later once the system is stable . 

3. The Acdve Semanda Data Model 

In order to understand how the Undo system works 
within a lI iggens generated interface , it is necessary to under­
stand the actille semanticB data model used to implement much 
of the functionality of the interface . In a lIiggens generated 
interface , the semantics of both the application and the inter­
face are described hy this uniform data model. This data model 
l'ncapsulates both the data of the application and its semantics. 
The model employs new algorithms adapted from techniques 
related to J(nuth 's attribute grammar5[l<nutG8,l<nut711 as well 
as Crom more recent work on incremental attribute 
evaluation[Dl'me8l , Reps831 used in synw directed editors. 
The state of the application and the in terface are described in 
an allributed graph . Like the attributed trees often used in com­
piling, each node of an attributed graph has associated with it a 
number of allributeB which describe the internal state of the 
semantic entity described by th:lt node . In addition, allribute 
evaluation rules are given for computing certain attribute values 
as a function of other attributes within a given node, and from 
the values contained in related nodes . This allows the model to 
ar.tively respond to its environment in a way wh ich refiects its 
sem an tics . Fin a1l.v , the in terface desi)l;ner may attach constrain t 

predicates to attributes to perform error checking, and insure 
the integrity of the model. These constraints are automatically 
tested by the system and must always hold. 

As an example of how we might use an attributed graph 
to mod~1 an application , we will l'xamine a vr.ry simple gate 
Ipv e l logic d~5ign system . In this ~yste m we will dl'sign a series 
of runctional unit.~ call~d Boxes . As shown in figure I , a BOlt 
cnnsist.~ of (is related to) a 5Ct of inputs , a se t of output, and a 
Sf't of p:lrt.~ (gates) which imple me nt its function . For this 
c X :Ullpl~ , we will he interested in finding the maximum delay 
time rcquircd fo r each box . CO nSf' llucntiy , as shown in figure 
I , we computc an attrihute Box_Delay, which is defined as the 
m:uimum or the Delay values tran smitted from the outputs. 

Node Type BOl( 

Rttrlbule. 
Name : String 
BolL.Delay : Integer 

. +- Mal( oyer Outputs of Outputs.Delay 

Connecton 
Inputs : Box-In c::::ll> 
Outputs : Box-Out c:::m: 
Parts : Bo>LParts c::::ll> 

Figure I. 

As shown in figure 2, these valul's :ve in turn derived from the 
values transmitted along the Input 'WIre rl'lationship. These 
values come either Crom a Box_Input node (which always sup­
plil's 0). or Crom a Gate node . Gate nodes calculate a delay as 
a function of their operation , and logic family type, as shown in 
figure 3 . 

Node Type Box-Input 

Rttrlbute. 
Nam. : Strtng 

Connecton 
Owner : Box-In c:::I 
Output : Wtre c::::ll> 
Tran.mlt. 0 •• Delay 

Node Type Box-Output 

Rttrlbutes 
Nam. : Strtng 

Connector. 
Input : WIre c:::I 
Owner : Box-Out c:::> 
Trensmlt. Input.Oelay 11. Delay 

Figure 2. 

8ecaus.e of the definition of thl' attrihu~s in this graph , 
the model 15 able to respond automatically to changes. For 
example , if the user were to chang!' the logic family type of a 
gall' , the system would automatically determ ine which delay 
valul's were no longer correct, and recompute them . This will 
all happen without the implementor being forced to explicitly 

Nodi Type Gate 

Rttrlbutes 
Dp : Gate_OperatIon 
Type : logtcJaml1y 
M!J-Oelay : Integer 

+- Mex( Ill.. LDelay • 11I..2.0elay ) • 

Connecton 
Gate_Oelay(Op,Type) 

Owner : Bo>LParts c:::I 
111..1 , 111..2 : WIre c:::I 
Output : Wire c=:ID 
Transmits M!J-Delay .. Delay 

Figure :l . 
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describe how or when the computations are to take place. 
Instead, the system can determine from the attribute evaluation 
rules exactly what attributes need to be recomputed when a 
change is made. 

3.1. Level. of Interface 

A Higgens generated interface is divided into 3 levels: 
application data, views, and abstrxt devices. The application 
data .. levt'1 encapsulates the data of the application and imple· 
ments its semantics . The second level creates one or more 
t·iew8 of the applications data. A view normally involves selec· 
tion, filtration , and abstraction of information in order to 
speciflcly highlight or emphasize one aspect of the dat.a In 
addition, overall decisions about how data will be presented to 
the user, along with how the user may interact with the data, 
are done within views. Finally, the third level of abstract dev­
ices provides a very abstrxt and high level interfxe to the 
actual graphical I/O devices used . 

Each of these levels is implemented using an attributed 
graph . This means that each level is able to respond to changes 
in other parts of the system in W3YS which are meaningful at 
th3t level. Entities 3t the abstract device level can translate the 
actions of physical devices and a/Ject entities at the level of 
views . Actions on views C3n affect the way views are 
presented, and can be translated into actions on 3pplication 
d3ta Application data C3n then respond in W3YS tbat are mean­
ingful to the semantics of the 3pplic3tion they support. These 
responses can in turn 3ITect views , abstract devices , and eventu­
ally the graphic31 images presented to tbe user. This process 
allows very powerful feedbxk to occur. This feedback C3n he 
not only on the normal lexical 3nd. syntactic levels , but can also 
be on a <1eeper level which reOects the sem3ntics of the under­
lying problem domain . It is this powerful sem3ntic feedback 
which guides the user into forming the helpful mental models 
needed for good interfaces. In 3d (lition , since the specification 
of the attribute evaluation rules lvhich control this feedback is 
prim:lfily non-procedllral , the designer is free to concentrate on 
what thl' feedh3Ck will be, and may le3ve m3ny of the details of 
how :IOd when it is c:!.fried out to the system . 

3.2. Translatlng Data Into VleW!! and ImagH 

In order to construct graphical im3ges from data graphs, 
th convention31 3pproach would he to use progr:l.fDS which 
tr3versed the graph extracting in form3tion , m3king decisions , 
and producing p:!.ftbl im3ges as the travers31 proceeds. Such a 
travers31 can in general be very powerful and nexible, since the 
nature of the tr3Hrs31 can be determined in arbitr3rily complex 
ways based on the actual d3t3 encounte red in the gr:!ph . lIig­
gens uses a traversal process simil3r to this conventional 
approach in order to tr3ns13te its attributed d3ta graphs into 
views. 

A Higgens interface specifi cation contains .a series of 
Ira versal plana. These plan s determine how travers31s proceed 
based on predicates over the attributes of noclf'~ tbey visit. 

1I0wever, unlike conventional traversals which exist only as a 
dynamic SNics of procedure invoc3tions, Higgens traversals :Ill' 

explicitly represented as data objects . E3Ch visit of a d3t3 node 
is representcd by a viewing node (thus forming a tree of viewing 
nodes) . Thl'se nodI'S are normal dat:! objects . They are given 
attributes 3nd attribute evaluation rules. They are persistent, 
and have 3Ccess to the attributes of the data node they visit. In 
this way , they are able to implement the view dependent 

st'mantics needt'd to provide 5election , filtering, and abstraction 
of the underlying data In addition , each node may render 
images and accept input from the abstract devices used to 
implemen~ tbe gr3phics of the interface . 

BaN: My 60M MeN Delay - 36n. 

Figure 4. 

For example, in our simple logic design system, the user 
might W:lOt one of several different views of a box . These views 
could range from a simplt' 5ummary view showing just a recl:lll­
gle with the box's name in it, to a complete view like the one 
in figure 4, showing all inputs , output, :IOd gates which imple­
mt'nt the box . E3Ch of these views can be construct,··1 by a 
dilTerent tr3versal . 

Figure 5a. 

Figure .~b . 

As :10 intcrmcdiate exampll' , we will consider a view 
which shows jllst the name , ma:dmum delay, input.~ , and Ollt,. 
put.~ of a box without showing the gates uspc\ to implemen tit. 
Figure 5a shows an example data graph correspo nding to the 
vi('w givr.n in figure 1 . Figure 5b shows the path that a trave r­
sal would take in order to impll'ment o ur sample view. This 
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path visi,", the box node i,",elr, then each or the inpu,"" then 
finally the single output node. Each or these node visi,", is 
represented by a viewing node. Figure 6 shows several or these 
viewing nodes as they would be created by a traversal. 

Graph Do des 

Figure 6. 

Travarsal 
Dadll 

TrDUDnD' _J 1_" 
o 
o 
o 

In order to deal with actual graphical I/O devices, a view­
ing node communicates with a series or abstract devices . These 
abstract devices are constructed using the P/IJnil picture plan­
ning language which is a part or lIiggens . Planit allows the 
interrace designer to construct picture p/IJn8. A picture pl:lll con­
sis ,", or a specification or how (hierarchical) images are to be 
drawn, and how logical in pu t dev ices are to be constructed . 
These specifications describe images and devices based on a set 
or rormal parameters . A viewing node gives a picture plan and 
provides a set or actual parameters in order to instantiate :Ill 

abstract device . A viewing node may then at any time change 
these actual parameters . The images and devices controlled by 
the picture plan will then be updated to renect these new actual 
parameter values. The parameters provided by a viewing node 
may be intrinsic or derived attributes or the node . In this way , 
when they are changed, or recomputed, they will directly affect 
the picture prese nted to the user. Since picture plans may con­
tain conditionals based on arbitrary expressions or parameters, 
as well as calls to other picture plans, they can be given arbi­
trarily complex behavior . Figure 7 illustrates how picture plans 
would be attached to the viewing nodes or our example. 

Graph Dodes 
Traversal 

Dodes 

Figure 7 . 

Picture 
Plans 

In addition to presenting output images to the use r, 
abstract devices can respond to user inputs by means or mes­
sages sent to viewing nodes . Viewing nodes respond to these 
messages by invoking editing commands. These editing com­
mands can modiry attributes , create and delete data nodes, as 
well as establish and break relationships within the data graph . 
In this way, views may translate the actions or devices into 
actions :IIlpropriate to the semantics or the underlying data. 

In a Higgens generated interrace, reedback can occur at all 
levels. The user can use actual graphical I/O devices to mani­
pulate the abstract devices presented . The abstract devices send 
messages to views, which in turn may modiry their own attri­
bu tes, and those or applications nodes in order to carry ou t user 
requested actions . These modifications in turn invoke whatever 
comput:ltions are needed in order to satisry the attribu te evalua­
tion rules or the system . These computations propagate their 
effects thrQughout the system , and may result in changes to 
view~; ' or to the traversals that construct views . This in turn 
may change the parameters or the abstract devices they control. 
This can 6nally change the images and logical devices presented 
to the user. Thus , it is possible ror reedback to occur locally at 
each level , l\.'! well as :lcross several levels. In this way, reed­
back can go beyond the properties or the graphical entities used 
to present the data, and is able to convey the semantics or the 
underlying dat:l. 

3.3. The Atb-lbute EvaluatIon Algorithm 

Whenever changes are made to some part or the attri­
buted graph , the system must ensure that all attributes retain a 
value wh ich is consistent with the attribute rules given by the 
intnrace designer . This requires some sort or an attribute 
evaluation algorithm . One approach would be to recompu te all 
attribute values evl'fy time a change is made to any p:ut or the 
system. This is c11':uly too expl'nsive . What is nel'ded is an 
algorithm ror incremental attribute eval uation , which computes 
only those attributes whose values ch ange as a result o r a given 
modification . Th is probll'm also arisl's in the :uea or syn t:l.,( 
directed editing systems, so it is not su rprising that algorithms 
exist to so lve this problem ror thc attribute grammars used in 
that application . The most succl'ssrlll or these algorithms is due 
to /l~p~ . 1/ll'ps821 /le ps ' algorithm is optimal in the sense that 
only ~ttribute5 whose valucs actually change are rc computed , 
and that the total oVl'rhl'ad or the algorithm is O( r: hang('cl~ , 
where Changed is the set or attributes whose values actually 
change . 

Unrortunately , /lr.ps ' algorithm , while optimal ror attri­
bll ted trees , does not seem to exte nd directly to the arbitrary 
graphs used by a 11 iggens gcneratrd interrace. In stead. a new 
incremental attribute evaluation algorithm has been designed 
ror use with lIiggens . This new :llgorithm is si mpler, and exhi. 
bits similar bchavior to /leps ' algorithm . In particular, ror any 
given ch:tl1gl' it will neVl'r recompllte an attribute that would 
not haH hecn reco mputed by Rt'ps' opti mal algorithm . How­
ever, it does have a slightly inrerior worst C:l.~e upper bound on 
the amount or overhead incu rred . 

The algorithm works by using a ~trategy which first dcter­
mines what work has to be done' , thcn pcrrorms the actual 
complltatio ns . The' algorithm u s ~s the dt'p~ndcncics betwl'cn 
attrihutes . An attribute is d~pendt'nt on anoth~r attribute ir that 
at.trihute is m~ntionl'd in it.~ attrihute cvaluation rule (i .e . is 
npedcd to COIllPute the d<'fivcd value or that attribute) . Whl'n 
the value or an intrinsic attribute is changed, it may cause th e 
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attributes which depend on it to become out 0/ date with respect 
to their defining attribute evaluation rules . Instead of immedi­
ately recomputing these values, we simply mark them as out of 
date . We then find all attributes which are dependent on llIese 
newly out of date atUibutes, and mark them out of date as well. 

This process continues until we have marked all aft'ected 
attribu tes. During this process of marking, we determine if 
each marked attribute is important. Attributes are said to be 
important ir they have a constraint predicate attached to III em , 
or if -part or the current graphical display depends on llIem. 
When we have completed marking attributes during the llrst 
phase or the algorithm, we will have obtained a list or attributes 
which are both out or date and important. We can then use a 
demand driven algorithm to evaluate these attributes in a sim­
ple recursive manner. The calculation or attribute values which 
are not important may he dererred, as they have no immediate 
effect on the interface or the application . If user actions cause 
abstract devices or views to be changed, new attributes may 
become important, and new computations or out or data attri­
butes ,may be invoked in order to obtain the values needed to 
construct new displays. 

Figure 8, 

Figure 9. 

In figure 8, we have presented a set or attributes in order to 
illustrate how the attribute evaluation algorithm works. The 
circles represe nt individual attributes . How these attributes are 
distributed among nodes is not important to the evaluation 
algorithm , only the dependencies between attributes are impor­
tant. In this case , two attributes have been designated impor­
tant. One provides a parameter to a picture plan which controls 
part of the current display . The other h:lS a constraint predicate 
attached . For this example, we will presume that the attribute 

Figure 10. 

marked with an X in figure 9 has been changed by some user 
action . The IIrst phase of the algorithm responds to this change 
by marking a series of attributes as out of date . These attributes 
have been marked in gray in llgure 9. Notice that along with a 
number of other nodes, the two important nodes have been 
marked out or date . These nodes will be remembered for use 
in the second phase or the algorithm . During the second 
phase, the system will attempt to obtain correct values for all 
important attributes using a simple recursive evaluation stra­
tegy. The evaluation starts with each important attribute which 
is also marked out or date, and recursively evaluates only those 
attributes need to obtain the original important attribute value . 
The attributes that are reevaluated in the second phase ror our 
example are marked in figure 10. Once the second phase or the 
algorithm is complete , the graph will be left in the state.hown . _ •. . 

Figure 11. 

in figure 11. Notice that anum ber or attributes are left with 
out or date values. The values or these attributes cannot afi'ect 
the observable state of the system, thererore, we can salely 
defer their computation . If the same change made here is done 
several times, the system will not be forced to recompute these 
values several times despite the ract that none of them will 
actually be used . Instead , the attributes will retain their old out 
or date values until the correct values are actually needed. 

In order to support actions which change not only the 
attributes of the application data but also , its structure (i.e. the 
relationships between entities) a process similar to that used ror 
intrinsic attribute changes is used . . When a relationship is bro­
ken , the system determines which derived attributes depend on 
values that are passed across the relationship. These attributes 
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are marked out of date just 35 if an intrinsic attribute had 
changed. When a relationship is established, tbe second half of 
the attribute evaluation algorithm is invoked to evaluate attri­
bu tes which are ou t of date and important. In order to insure 
that derived attributes can always be given a valid value, and 
hence a display generated, the system insures that relationships 
are not left dangling across attribute evaluations. This is either 
done explicitly by application supplied actions, or where neces­
sary the system will provide special dummy nodes to tie 011 any 
dangling relationships. 

During the evaluation of attributes, certain attributes will 
have constraint predicates attached to them . By att.:lching a 
constraint predicate to an attribute, the interface designer is 
able check for error conditions, and insure the semantic 
integrity of all entities. After an attribute is evaluated, any 
attached constraint predicates are tested. If any of these evalu­
ates false, a constraint violation exists . By default, this causes 
the user command invoking the evaluation to fail and be 
undone. Optionally, a special recovery action 35sociated with 
the constraint can be invoked to attempt to recover from the 
violation . In either C35e, the constraint must be satisfied or the 
user command invoking the evaluation will fail and be undone. 
The next section will discuss how user recovery and reversal is 
actually performed, and how the boundaries between user com­
mands are established . 

4. Execudon and Reve"a1 

It would seem that the large amounts of derived data, 
along with the fact that the order of computations is not 
defined , and that some computations are deferred , would make 
creating a general user reversal and recovery system a difficult 
wk . However, 35 it turns out, the properties of the active 
semantics data model combine to provide an excellent environ­
ment for efficient implementation of a user recovery and rever­
sal system . Note that the set of attribute evaluation rules can 
be used at any time to obtain the values of derived attributes 
from the set of intrinsic attribute values. This means that in 
order to Undo commands whicb simply cbange attributes, the 
on Iy action needed is to restore the old values of those attri­
butes changed , and invoke tbe normal attribute evaluation 

mechanism used to respond to these cbanges. The system will 
restore itself to its old state automatically. Similarly, commands 
which change the structure of the attributed grapb, need only 
remember the old structure in order to allow for their complete 
reversal . It is this simplicity which makes user reversal and 
recovery efficient in a Higgens generated interface. 

4.1. Prlmltlve Commands 

. We can now examine the kinds of primitive commands 
needed to ellectively deal with the attributed graphs used to 
implement the interface, and how the effects of each of these 
primitivcs can he reversed . Clearly we need a command to 
rrplace the value of an intrinsic attributp. . We also need a com­
mand to create a new node of a given type, to delete a node, to 
hreak a connection between nodes, and finally to establish a 
new connection between nodes . We will call thp.se primitive 
command5 ualgnment, create, delete, cut, and connect. 
Notice that each of these primitive commands h35 a simple 
inver5e as shown below. 

Operadon 
A .. lgnment 

Create 
Delete 
Cut 
Connect 

Inve"e 
an ualgnment which restores tbe old value of 
the attribu te 
a delete of the created node 
replacement of the deleted node 
a connect between the affected nodes 
a cut of the affected relationship 

Because each primitive command b35 a simple inverse , we are 
not forced to determine or remember the full eflects of each 
command to be able to reverse its action . Instead, we need 
only remember its inverse . The system is able to derive the 
reversal of its full effects in tbe same way it derived tbe effects 
to begin witb . 

· In addition, we can use tbis same capability to provide a 
Redo mechanism . The user may wish to undo an undo ; that is 
they may wisb to redo the original operation. Since all primitive 
operations have an inverse wbich is also a primitive command , 
the system can reconstruct original commands from their 
inverses in much tbe same way that the inverses were con­
structed to begin witb. In this way, the system has tbe ability 
to redo commands alter they bave been undone . Unfortunately, 
wbenever new commands are executed after an undo , the sys­
tem will be unable to redo old commands , since the new com­
mands may have destroyed something which the old commands 
depend upon . As we will see in section 5, this places a limit on 
the power of the undo mechanism provided . 

In order to make effective use of primitive commands to 
act upon attributed graphs, we need to embed tbem in control 
structures . We need the conditionals, loops, and procedural 
abstraction mechanisms found in more traditional programming 
languages. However, in order to reverse comm ands , we need 
only record the sequence of inverses for the prim itive com­
mands actually executed, without regard for the control struc­
tures which arranlted for their oriltinal execution . Usinlt these 
inverse commands , it is possible to fully reverse the ellect of 
commands without explicitly reexecuting their control struc­
tures . 

4.2. Ueer Leftl Commands 

Although the primitive commands described above pro­
vide a good mechanis m for the des igner to describe the imple­
mentation of the interface , they are not suitable for use directly 
35 user commands. Instead , user commands are normally built 
35 a series of primitive commands embedded in control s truc­
tures . From the user's point of view, howeve r, this internal 
structure is invisible, and commands appear 35 atomic units . 

Command. 

Undo 
Stack 

Figure 12. 

User Command 
Boundary Marters 
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~c:wse of this, it would be highly inappropriate to undo and 
redo individual primitive commands. Instead commands should 
be undone and redone in groups which correspond to what the 
user considers atomic operations . In order to accomplish this, 
Higgens provides a means for declaring the boundaries of user 
commands . As shown in figure 12, as operations are per­
formed, their inverses are automatically saved on an undo stack 
for possible later reversal. In order to allow the manipulation 
or whole user commands instead of primitives, Higgens allows 
the interrace impl~mentor to use a special command which 
marks the boundaries of user commands on the undo stack. 
Later when an undo action is invoked , Higgens will undo all 
primitive commands up to the last mark and construct a 
corresponding redo stack ror those commands. As shown in 
figure 13, an undo operation perrorms the saved inverse opera­
tions, and pushes the recreated original commands onto the 
redo stack. Silllibrly, if a later redo action is performed, Hig­
gens redoes all primitive commands up to the last command 
mark, and places their inverses on the undo stack. In this way, 
the interface designer is able to implement user commands 
using whatever primitives and control structures are needed 
while still allowing the system to undo actions in chunks which 
are meaningful to the user . 

Undo I I I I Redo 

Undo 
Slack 

Figure 13. 

User Command 
Boundary Marten 

5. Powu ~ the Hlgsens Undo Meehanlam 

In!Gord8·1! an elegant formal model of undo systems is 
constructed which allows us to compare and characterize the 
power or various undo strategies. Their model makes use of 
the rollowing formal entities: 

S 
C(I) 

o 

u in 0 
K 

a set of extended states (including history information) 
the contents of an extended state s (excluding history 
in rorm ation) 
a set of operations mapping extended states to extended 
states !denote applying operation It to state s as Its! 
an Undo operation 
a subset or 0 not including u 

Notice that a state s in S includes whatever history of previous 
commands is needed in order to be able to perrorm undo 
operations . In a lIiggens generated system this includes the 
attributed graph as well as the undo and redo stxks (which we 
will rcCer to as the history) . The expression c(s) is used to 
denote the state 5 without its associated history . In a Hiuens 

generated system this includes just the attributed graph . 

Based on these entities, we can define a formal property 
which captures our intuitive notion of undo. This property is 
the Basic Undo Property. 

Basic Undo Property! 
c(uks) = c(s) for all s in Sand a1lk in K 

In :lddition to this basic property, Gordon et.a1. define two 
other important properties that we would like undo systems to 
have ;' , 

Thoroughness: 
c(oD, .. oJuks) = c(o .... oJs) 

for all s in S and o. in 0 (possibly including u) 

Invert! ti 11 ty: 
c(rus) = c(s) for all s in S and some r in 0 

Intuitively, the thoroughness property insures that an undo is 
complete, that the state returned to by using an undo can in no 
way be distinguished rrom the original state (even when we 
consider the behavior of the undo or redo operators) . Inverti­
bility insures that a redo operation (r) exists, so that undo 
operations are not themselves irreversible . Both these proper­
ties are highly desirable, unfortunately, it is can be show that 
no non-trivial system can be both thorough and invertible . As 
a consequence Gordon et.a1. explore a somewhat weaker form 
of thoroughness called unstxking. 

Unstaeklng: 

c(uDfD ... fJs) = c(s) for f. in K and any positive n 

It can be shown that systems with separate undo and redo 
operations can be both unstacking and invertible . In fxt, these 
are precisely the properties that a Higgens generated interface 
has . The user can undo arbitrary sequences of operations by 
repeated applications of the undo operation, and can redo 
operations so long as new operations are not performed . More 
form ally , the Basic Undo Property holds since 

c( upg) = c( g) for any primitive operation p and any 
attributed graph (and history) g 

The Invertibility property holds since Higgens supports a redo 
operator r such that 

c( rug) = c( g) for any attributed graph and history g 

The Unstacking property holds since 

c( u·p . ... PJg) = c( g) for any primitive operations p. 

but, the Thoroughness property rails since 

c( rru pu pg) < > c( ppg) 

It is not clear at this point if unstxking is the most 
powerful property that might be achieved in conjunction with 
invertibility (while still retaining the basic undo property) , 
However , it does seem clear that it is at least near what we can 
hope to achieve given the theoretical limits that exist, and it 
compares ravorably with existing undo systems. 

G. Conclulllon 

The Higgens system is currently being implemented at the 
University or Colornrlo at Ooulder. A prototype of the abstract 
device description language Planit which makes up part of lIig­
gens, h:lS been completed . The current implementation runs on 
a Silicon Graph ics IIUS di~play device connected to a V AX, and 
on a SUN workstation . The remainder or the system is under 
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developmeni and is scheduled Cor completioo iD middle to late 
1985. 

In this paper we have discussed the user recovery and 
reversal mechanism used in the Higgens interCxe generation 
sys~m . Despite the very powerCul data model used to imple. 
ment Higgens generated interfxes , they provide aD etricient 
undo mechanism in a way which is Cully integrated with the rest 
oC the system . This technique greatly improves the useability 
oC human interCaces, and makes learning to use these interfaces . 
much easier. 
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