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ABSTRACT' 

This paper introduces a modified 
version of the linear quadtree [8] for 
region representations. The modified 
linear quadtree (MLQ) uses only 
(2n+log n)/3n of the memory space re
quired by the linear quadtree to repre
sent the same region, where n is the res
olution parameter of the image. The fol
lowing results will be presented. 
An MLQ can be constructed, given the ar
ray description of the image, in time 
proportional to the number of pixels in 
the image . Computing a neighbor node and 
determining its color can be done in time 
O(n) and O(log N) respectively, where N 
is the number of nodes in the MLQ. Final
ly , an O(n ' N) algorithm is given to gen
erate the background of the region . 

1. INTRODUCTION 

Region representation is an 
important issue in image processing, 
cartography, computer graphics, 
geographic information system, and 
robotics . There are a variety of 
approaches in use. The success of such an 
approach to region representations 
depends on how easy to implement it in 
terms of computational complexity, memory 
space requirements, and extensibility. 

Recently, quadtrees have received 
increasing attention. The quadtree region 
representation is based on the principle 
of recursive decomposition of an image 
proposed by Klinger [2]. It is relatively 
compact, and well-suited to operations 
such as complement, union and 
intersection [3], as well as the 
detection of various region properties 
[4,5,6,7). 

, This research was supported in part by 
the Nat~ral Sc i ences and Engineering 
Research Council of Canada under Grant 
NSERC A7634. 

Efforts to further reduce the space 
requirements of quadtrees have led to the 
concept of linear quadtrees [8]. In 
linear quadtrees, the use of a locational 
code or key provides a unique 
identification of the BLACK node 
associated with that key, and the 
quadtree topology can be obtained from 
the keys. As a result, a linear quadtree 
can represent a quadtree as a sequence of 
terminal nodes in a specific key order, 
while nonterminal nodes, or even WHITE 
nodes of the quadtree are omitted, 
achieving space efficiency. 

In this direction, linear quadtrees 
proposed by Mark and Lauzon [10] stores 
both BLACK and WHITE nodes in a 
compressed form that only the key of the 
last terminal node in a sequence of 
consecutive terminal nodes of the same 
color is stored. The linear quadtree of 
Gargantini [8] stores only BLACK nodes 
comprising the region, and generates 
WHITE nodes when required, where each 
BLACK node is associated with an n digit 
quaternary code whose digits reflect the 
successive decomposition of a 2" by 2" 
image. As reported in [8], such a repre
sentation introduces a saving of at least 
66 percent of the memory space required 
by a quadtree. 

The purpose of this paper is to 
present a modified version of 
Gargantini ' s linear quadtree to achieve 
further efficiency in terms of storage 
requirements and execution time. The re
cursive decomposition of images is 
briefly reviewed in Section 2 along with 
quadtree and linear quadtree representa
tions in preparation for the dev~lopment 
and discussion of an alternative repre
sentation. The modified linear quadtree 
(MLQ) is introduced in Section 3, and is 
shown to be more efficient than a linear 
quadtree spacewise. Section 4 
investigates some basic operations on 
images using the proposed structure. 
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2. BACKGROUND 

Definition 1: A binary image is a 2" by 
2" array of unit square pixels each of 
which can assume either BLACK or WHITE 
values, where n is called the resolution 
parameter of the image. 

Definition 2: The region of an binary 
image is composed 6f all BLACK pixels, 
and the background of the region is 
composed of all WHITE pixels. 

Example: The region shown in Fig. 1 is 
represented by the 2 3 by 2 3 binary array 
in Fig. 2, where 1 and 0 correspond to 
BLACK and WHITE pixels, respectively. 
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Fig. 1. A region. 

0 0 0 0 1 1 0 0 

0 0 0 0 1 1 0 0 

0 0 0 0 1 1 0 0 

0 0 1 1 1 1 0 0 

1 1 1 1 0 0 0 0 

1 1 1 1 0 0 0 0 

1 1 1 1 0 0 0 0 

1 1 1 1 0 0 0 0 

o 2 3 4 5 6 7 

Fig. 2. The reg i on in binary 
array representation. 
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Definition 3: Let (i,j) be a pixel of a 
given image. Then (i,j) has four 
horizontal and vertical neighbors: 
( i - 1 , j ), (i, j - 1 ), (i, j + 1) and (i + 1 , j ) • 
These pixels are called the neighbors ef 
(i,j). 

There has been considerable interest 
in region representations based on the 
principle of a recursive decomposition. 
An image is decomposed in the following 
manner: if the region does not cover the 
entire binary array, the array will be 
subdivided into four equal-sized square 
blocks, this process will be applied re
cursively to each block, till blocks are 
obtained that are totally contained in 
the region or totally disjoint from it. 
As an example, Fig . 3 is the 
decomposition of the region shown in 
Fig. 1. 

E 

D 
B C 

A 

Fi g. 3 . Block decomposit i on of 
the region in Fig. 1. 

The recursive decomposi t ion of the 
i mage results in blocks that must have 
standard sizes and positions. Sim i lar de 
finitions can be formulated in terms of 
blocks . For example, a block is said 
BLACK if it contains only BLACK pixels, 
WHITE if it contains only WHITE pixe l s, 
and GREY if it contains both BLACK and 
WHITE pixels . 

A quadtree is an ordered tree of 
degree four . The root represents the 
e nt i re image , and each o t he r node 
represents one of the four subbloc ks i n 
order NW, NE, SW, SE of i ts father ' s 
block. No father node can have al l its 
descendant terminal nodes wi th the same 
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color. Fig. 4 demonstrates the quadtree 
representation for the region in Fig. 1, 

where the symbols 0, 0 and • represent 

GREY, WHITE and BLACK nodes, respective
ly. The terms block and node will be used 
interchangeably throughout. 

SE 

B C 

Fig. 4. The quadtree representation 
for the region in Fig 1. 

Each node in the quadtree has five 
pointers: one to its father and four to 
its sons. Terminal nodes have color BLACK 
or WHITE while nonterminal nodes have 
color GREY. 

The distinct feature of the linear 
quadtree is pointerless and stores only 
BLACK nodes. To encode BLACK nodes, the 
NW quadrant is encoded with 0, the NE 
with 1, the SW with 2, and the SE with 3. 
Each BLACK pixel is then encoded by a se
quence of n integers (i.e., quaternary 
code): q" - I, q"-2, "', qo, where 
qje{0,1,2,3} for O~i<n. 

Each successive integer represents the 
block decomposition from which it 
originates. Thus, q"_j, l~i~n, identifies 
the subblock to which the pixel belongs 
at the ith decomposition. A BLACK node 
corresponding to a 2k by 2k block is 
encoded by q"-I, q" - 2, ... , qo, with 
q j=X, X~0,1,2,3, for O~i<k. X is called a 
don't care sign. A linear quadtree is an 
array of BLACK nodes comprising the 
region sorted in the quaternary code 
order. As an example, the liner quadtree 
representation for the reg i on in Fig. 1 
is given by the following sequence: 

032,033, 10X, l2X, 2XX 
which correspond to the BLACK nodes B, C, 
E, D, and A in Fig 3. 

A number of algorithms supporting 
the linear quadtree have been reported in 
[8,9], and they suffer, in speed, from 
the above quaternary code encoding of the 
BLACK nodes. 

3. THE MODIFIED LINEAR QUADTREE 

The following conventions will be 
adopted throughout. 

Definition 4: For integers I and J given 
by 

n-l 
1= 1: 

i=O 

n-l 
( I I . 2 I) and J= 1: 

i=O 

where 1 1, J , e{O,l}, 

n-l 
SHUFFLE(I,J) = 1: (1 1 ·2+J i ) '4 1

, 

i=O 

Definition 5: For an integer S 
s 2" _ 1 ... so , where S I e {O, 1 } , 

n-l 
EVEN(S) = 1: S2i ' 2 1

, and 
i=O 

n-l 
ODD(S) = 1: S21.1 ' 21. 

i=O 
Hereafter, SH, EV and OD will be 

used as abbreviated versions of SHUFFLE, 
EVEN and ODD, respectively. 

There are a number of ways to assign 
consecutive integers to the pixels of a 
2" by 2" image. A method which is now 
known as a Morton matrix [1] , is the best 
to capture the nature of the recursive 
decomposition process. A Morton matrix is 
an array of 2" by 2" pixels each of which 
is assigned an integer as follows. For a 
pixel p with coordinates (r,J), where I 
and J are the column and row position, 
respectively, the integer assigned to p 
is given by SH(I,J}. 

The integer assigned to a pixel is 
termed the key of the pixel. To represent 
a block obtained by the recursive 
decomposition method discussed in 
Section ~ requires: 

Definition 6: The key of a block or node 
is the key of its left lower pixel, and 
the resolution parameter of the block is 
an integer s such that the size of the 
block is 2'. 
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Example: Fig. 5 shows a 2' by 2' Morton 
matrix. 
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1 B 24 

7 13 

6 12 
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2 B 
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31 53 55 61 63 

30 52 54 60 62 

27 49 51 57 59 

26 4B 50 56 58 

15 37 39 45 47 

14 36 3B 44 46 

1 1 33 35 41 43 

10 32 34 40 42 

3 4 5 6 7 

Fig . 5. A 2' by 2' Morton matrix. 

The two-tuple <K,s> will uniquely 
represent a block, where K and s respec
tively are the key and the resolution pa 
rameter of the block. For a given block 
Q, its quadrant with label i is called 
the ith quadrant of Q and denoted as QI, 
where ie{0,1,2,3}. The quadrant labeling 
shown in Fig. 6 will be assumed . 

~ 
~ 

Fi g. 6. Quadrant Labeling . 

The following two lemmas are useful 
in developing successive algorithms. 

Lemma 1: For any two nodes <KI,SI> and 
<K 2,S2> where <K I ,SI> e Qi and 
<Kz,sz> f Qj for some node Q, if i<j then 
KI<K z . 

Lemma 2: For any two nodes <KI,SI> and 
<K Z ,S2> where SI>S2, then either <K I ,S I> 
contains <K 2,s2>, or the intersection of 
<Kt,sl> and <K z ,s2> is empty. 

3.1. An encoding scheme 

A BLACK node can now be encoded by a 
two- t uple <K , s>, where K uniquely 
i dentifies the position of the node i n 
the image, and s specifies the size of 
the node. A modified linear quadtree is 

defined as a sorted sequence -of BLACK 
nodes in their two-tuple form in 
ascending key order. This differs from 
the linear quadtree in that, firstly, the 
key of the node is stored as a single in
teger rather than an n digit quaternary 
code, and, secondly, the resolution pa
rameter of the node is explicitly 
expressed rather than implied by the num
ber of don't cares in the quaternary 
code. 

Such a modification results in two 
advantages: space efficiency and improved 
execution time. The second advantage will 
become clear in [1']. To see the first 
advantage necessitates the comparison be
tween the storage requirements of the two 
encoding methods. As reported in [B), 
each BLACK node needs 3n bits. By 
contrast, the proposed encoding scheme 
requires (2n+log n) bits for each BLACK 
node, where 2n bits are used for storing 
the key and (log n) bits for the 
resolution parameter of the node. As an 
example, when n=12, ' the MLQ can save 
approximately 22 percent of the memory 
space required by the linear quadtree . 

3 . 2. Constructing an MLQ 

A recurs i ve algorithm to be intro
duced in this section constructs an MLQ , 
given the array description of an image . 
An optimal algorithm will be presented in 
[ 1' ] for obtaining an MLQ, given the 
quadtree description of the image. Such 
an algorithm is useful because obtaining 
an MLQ from a quadtree description of an 
image costs much less both in time and 
space than generating an MLQ from an 
array description of the same i mage. 

The algorithm for generating an MLQ 
from the array description of a 2" by 2" 
b i nary image is presented below as a 
procedure termed ARR-TO-MLQ. It takes 
three input parameters E, key and s, 
where E is a 2' by 2' binary array , key 
and s initially correspond to zero and n 
respectively. The output of the algor i th~ 
is a globle variable called LIST 
containing the desired MLQ. 

The algorithm examines each pixel 
element of the binary image in Morton se
quence order . If a pixel is BLACK then 
i ts two-tuple representation is f~rmed 
and added to LIST. One of the key fea
tures is that the algorithm merges the 
four small BLACK nodes corresponding to 
the last four two-tuples in LIST to yield 
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a bigger BLACK node whenever it is possi
ble by replacing the four two-tuples by 
one repre~ent~ng the bigger BLACK node. 
Upon term1nat10n of the algorithm LIST 
~ontains all maximal BLACK nodes.'This is 
1n constrast with the algorithm that 
first builds a list containing all BLACK 
p~xels"and the~ at~empts to merge the 
p1xels 1n the llSt 1nto maximal BLACK 
nodes [8]. 

As an example, if the algorithm is 
applied to the binary image in Fig. 2, 
the MLQ representing the region in Fig. 
is obtained: 

<0,2>, <24,0>, <26,0>, <48,1>, <52 1> 
which corresponds to the BLACK nodes'A ' 
B, C, D, E of Fig. 3, respectively. ' 

Procedure ARR-TO-MLQ(E,key,s) 
begin 

if s=o then 
begin 
if E is a BLACK pixel then 
begin 

add pair <key,s> to LIST; 
return(BLACK) ; 

end 
else return (NONBLACK) 

end 
else 

begin 
for i:=O to 3 do 
color[ i ] : = 
ARR-TO-MLQ(E j ,key+i*4**(s-1) s-1)' 

if color[i] is BLACK, 0~i~3, then' 
begin 
:eplace the last 4 pairs 
1n LIST by <key,s>; 
return(BLACK); 

end 
else return(NONBLACK); 

end; 
end; 

Theorem 1: The above method constructs an 
~LQ, gi~en ~he a:ray description of the 
lmage, 1n tlme Ilnear to the number of 
pixels in the image. 
Proof: Let T(4") be the number of steps 
required by procedure ARR-TO-MLQ to gen
erate an MLQ. Clearly, T(1)=1. If n>O 
T(4") is the total number of steps us~d 
in the four calls of ARR-TO-LMQ on an 
array of size 4"-1, plus approximately 
the four steps in checking through 
color[O] to color[3]. That is, 

n>O 
T (4" ) 

n=O . 

The Theorem follows by solving the 
recurrence. 

Q.E.D. 

4. BASIC ALGORITHMS 

4.1. Neighbor finding 

Neighbor finding for regions repre
sented by an MLQ is a fundamental 
operation. It is the cornerstone for many 
applications such as labeling connected 
components, computing perimeters, and 
others, which will be discussed in [11]. 
Neighbor finding using MLQs involves es
sent~ally two steps. The first step 
obta1ns the two-tuple representation of 
the desired neighboring block from that 
of a given block. The second step then 
determines the color of the neighboring 
block by consulting the MLQ under consid
eration. These two steps will now be 
described more precisely. 

4.1.1. Neighbor determination 

Let each node in an MLQ be stored as 
a record containing two fields. The first 
field, named KEY, contains the key of the 
node. The second field, named RES, 
contains the resolution parameter of the 
node. The use of OD and EV functions on 
the key of the node will provide the 
coordinate information of the node. This 
coordinate information is sufficient to 
obtain the coordinates of a neighboring 
block in a specified direction. Then the 
two-tuple form of the neighboring block 
c~n be constructed by using the SH func
t10n. 

Let P be a given node, its neighbor 
o~ equal size in a , direction specified by 
slde can be determlned by the following 
procedure termed EQ-NEIGHBOR using the 
4-adjacent criterion. Note that 
determining a neighbor of different size 
or using other adjacency criterion can be 
done similarly. 
Procedure EQ-NEIGHBOR(P side) 

begin ' 
I:=OD(P.KEY); 
J: =EV( P. KEY) ; 
case of side 

'N': J:=J + 2**P.RES; 
'E': 1:=1 + 2**P.RES; 
'S': J:=J - 2**P.RES; 
, W' : I: = I - 2 * * P • RES; 

end; 
neighbor.KEY:=SH(I,J); 
neighbor.RES:=P.RES; 
return(neighbor); 

end; 
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Theorem 2: The time complexity of 
constructing a neighboring node in any of 
the principal directions is O(n}. 
Proof: The time complexities of the func
tions SB, EV and OD are all of O(n). 

Q.E.D. 

4.1.2. Color determination 

To determine the color of the 
neighboring nooe necessitates searching 
the MLQ, since only BLACK nodes are ex
plicitly stored there. Let X be the 
neighboring node which is to be compared 
with a node Y of the MLQ in the course of 
the binary search. The color of X can 
then be found as one of the following 
cases according to Lemma 2: 

1. If X.KEY and X.RES are identical 
to Y.KEY and Y.RES, respectively, then 
X=Y and X is BLACK. 

2. If both of the following 
conditions are satisfied: 

a) X.RES<Y.RES, 
b) Y.KEY~X.KEY<Y.KEY+4**Y.RES, 

then X is contained in Y, and therefore X 
is BLACK. 

3. If both of the following 
conditions are satisfied: 

a) X.RES>Y.RES, 
b) X.KEYSY.KEY<X.KEY+4**X.RES, 

then Y is contained in X, and therefore X 
is GREY. 

4. If none of the above cases holds, 
then it follows that X is WHITE. 

Theorem 3: Determining the color of a 
given node can be done in O(log N) steps, 
where N is the number of BLACK nodes in 
the MLQ. 
Proof: Due to the time complexity of the 
binary search. 

Q.E.D. 

4.2. Complement 

This section describes an O(n "N) 
method to complement a region represented 
by an MLQ. The complement of the reg i on 
of a binary image is the logical 
complement of the binary image. In other 
words, the complement of a region is the 
background of the region. In an MLQ 
region representation, such an operation 
is useful because WHITE nodes comprising 
the background are not explicitly stored . 
In what follows, an algorithm is given, 
which is capable of infering all maximal 

WHITE nodes · in ascending key order from 
two given consecutive BLACK nodes. 
Therefore, no further sorting and 
condensing are necessary. 

The algorthm consists of four parts 
corresponding to four procedures called 
GREYNODE, WHITE1, WHITE2 and WHITE3. Let 
E represent the entire image, i.e., 
E.KEY=O and E.RES=n. Procedure GREYNODE 
takes, as input, two BLACK nodes A, Band 
the entire image E to locate a GREY node 
Q recursively such that AeQI, BeQj, for 
i*j, and returns the value of QI and Qj 
to C and D, respectively, as output. 

Procedure WHITE1 takes, as input, a 
BLACK node B and a node Q, which is 
either GREY or BLACK, with BeQ, and re
cursively generates all maximal WHITE 
nodes within Q in ascending key order ex
cept those whose keys are less than that 
of B. 

Procedure WHITE2 takes, as input, 
two nodes Qi and Qj for some Q, and 
generates, as output, WHITE nodes Qk for 
all i<k<j in ascending key order . 

Procedure WHITE3 takes, as input , a 
BLACK node B and a node Q, which i s 
either GREY or BLACK, with BeQ , and 
generates recursively all maximal WHITE 
nodes within Q in ascending key order ex
cept those whose keys are greater than 
that of B. . 

The algorithm is given as procedure 
WHITENODES. The input of the algorithm is 
two BLACK nodes bl and b2 with b1.KEY < 
b2.KEY. The output of the algorithm is a 
list containing all maximal WHITE nodes 
generated by WHITE1, followed by those 
generated by WHITE2, followed by those 
generated by WHITE3. By lemma 1, the ob
tained sequence of WHITE nodes between b1 
and b2 is in ascendinq key order . 

Procedure GREYNODE(A , B,E,C,D) 
begin 

determine i and j 
such that AeE; and BeE j ; 

if i=j then GREYNODE(A,B,E ; ,C, D) 
else begin 

C=E 1 ; 

D=E j; 
end : 

end: 
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Procedure WHITE1(B,Q) 
begin 

if Band Q are different 
then begin 

end; 

determine i such that BeQ;; 
WHITEl (B,Q;); 
for k=i+1 to 3 do 

add Qk to list; 
end; 

Procedure WHITE2(Q; ,Qj) 
begin 

for k=i+1 to j-1 do 
add Qk to list; 

end; 

Procedure WHITE3(B,Q) 
begin 

if Band Q are different 
then begin 

end; 

determine j such that BeQj; 
for k=O to j-1 do 

add Qk to list; 
WHITE3(B,Qj) ; 

end; 

Procedure WHITENODES(b1,b2) 
begin 

GREYNODE(b1,b2,E,Q1,Q2); 
WH I TE 1 (b 1 , Q 1 ) ; 
WHITE2 (Q 1 ,Q2) ; 
WHITE3(b2,Q2); 

end. 

Theorem 4: The time complexity of 
Algorithm WHITENODES is O(n). 
Proof: The purpose of procedure GREYNODE 
is to locate a GREY node Q such that b1 
and b2 belong to two different quadrants 
of Q. Such a Q in conjunction with b1 and 
b2 will be sufficient to infer all 
maximal WHITE nodes between b1 and b2. 
The order in which WHITE1, WHITE2 and 
WHITE3 appear in the algorithm is the 
consequence of lemma 1. 

Let no be the depth of recursion of 
GREYNODE, then 

1 ~ no ~ n - m, where 
m=max {b 1 . RES, b2 . RES} . ( 1 ) 

no is bounded from below by 1, simply 
because the Q located can be just the 
entire image E itself, while no is 
bounded from above bOy n - m due to the 
following reasons. When GREYNODE is to be 
recursively called for the (n - m)-th 
time, a node of size 2m +' is being taken 
as the Q which is so far the smallest 
GREY node to which both bl and b2 belonq. 

However, the sizes of b1 and b2 require 
that they now must belong to two 
different quadrants of Q. Therefore no 
further recursion is necessary. 

Let n, be the depth of recursion of 
WHITE1, then 

n, = n - no - SI, where 
s,=b1.RES. 

In fact, the node Q1 obtained from 
GREYNODE is of size 2**(n-no), and when 
this Ql is recursively subdivided by 
WHITEl into a node of size 2**s" the 
recursion will terminate. This explains 
( 2 ) • 

Similarly, let n3 be the depth of 
recursion of WHITE3, then 

n3 = n - no - S2, 
s2=b2.RES. 

where 
(3 ) 

The total cost T in terms of the depth of 
recursion required is, therefore, 
no + n, + 1 + n3, where 1 originates from 
WHITE2. Thus 

T = 2n - no - (S,+S2) + 1. (4) 

Substituting (1) back into the right 
hand side of (4) yields: 

n+m-(s,+s2)-1 ~T~ 2n-(s,+s2). (5) 

Since the total number of recursion 
required is less than 2n, according to 
(5), and each recursion takes only con
stant time. Theorem 4 then follows. 

Q.E.D. 

With algorithm WHITENODES, it is now 
possible to generate all maximal WHITE 
nodes comprising the background of the 
region in ascending key order when 
traversing the MLQ. 

The following procedure termed 
COMPLEMENT takes, as input, M and N cor
responding to the MLQ and the number of 
BLACK nodes in MLQ, respectively. The 
output of the algorithm is a list 
containing the maximal WHITE nodes in 
ascending key order. 

In procedure COMPLEMENT, 
WHITE3(M[l],E) enumerates all WHITE nodes 
in E whose keys are less than M[l].KEY, 
while WHITE3(M[N],E) enumerates all WHITE 
nodes in E whose keys are greater than 
M[N).KEY. The for loop generates WHITE 
nodes between every two consecutive BLACK 
nodes of the MLQ. 
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Procedure COMPLEMENT(M,N) 
begin 

WH I TE 3 (M [ 1 ] , E) ; 
for i:=l to N-l do 

WHITENODES(M[i],M[i+l]); 
WH I TE 1 (M [ N] , E) ; 

end; 

The following result follows directly 
from Theorem 4. . 
Theorem 5: The time complexity of 
COMPLEMENT is O(n·N). 

5. CONCLUSIONS 

A data structure called MLQ for 
region representations has been presented 
in this paper. Basic operations on images 
for an MLQ have been developed to support 
the proposed data structure. It has been 
shown that the MLQ approach requires less 
storage than the linear quadtree 
approach. The results in [11] will 
demonstrate that an MLQ is more efficient 
than a linear quadtree in terms of time 
complexities. 
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