
- 195 -

A NEW APPROACH TO LINEAR QUADTREES

WAYNE A. DAVIS and XIAONING WANG
Department of Computing Science

The University of Alberta
Edmonton, Alberta T6G 2Hl

ABSTRACT'

This paper introduces a modified
version of the linear quadtree [8] for
region representations. The modified
linear quadtree (MLQ) uses only
(2n+log n)/3n of the memory space re
quired by the linear quadtree to repre
sent the same region, where n is the res
olution parameter of the image. The fol
lowing results will be presented.
An MLQ can be constructed, given the ar
ray description of the image, in time
proportional to the number of pixels in
the image . Computing a neighbor node and
determining its color can be done in time
O(n) and O(log N) respectively, where N
is the number of nodes in the MLQ. Final
ly , an O(n ' N) algorithm is given to gen
erate the background of the region .

1. INTRODUCTION

Region representation is an
important issue in image processing,
cartography, computer graphics,
geographic information system, and
robotics . There are a variety of
approaches in use. The success of such an
approach to region representations
depends on how easy to implement it in
terms of computational complexity, memory
space requirements, and extensibility.

Recently, quadtrees have received
increasing attention. The quadtree region
representation is based on the principle
of recursive decomposition of an image
proposed by Klinger [2]. It is relatively
compact, and well-suited to operations
such as complement, union and
intersection [3], as well as the
detection of various region properties
[4,5,6,7).

, This research was supported in part by
the Nat~ral Sc i ences and Engineering
Research Council of Canada under Grant
NSERC A7634.

Efforts to further reduce the space
requirements of quadtrees have led to the
concept of linear quadtrees [8]. In
linear quadtrees, the use of a locational
code or key provides a unique
identification of the BLACK node
associated with that key, and the
quadtree topology can be obtained from
the keys. As a result, a linear quadtree
can represent a quadtree as a sequence of
terminal nodes in a specific key order,
while nonterminal nodes, or even WHITE
nodes of the quadtree are omitted,
achieving space efficiency.

In this direction, linear quadtrees
proposed by Mark and Lauzon [10] stores
both BLACK and WHITE nodes in a
compressed form that only the key of the
last terminal node in a sequence of
consecutive terminal nodes of the same
color is stored. The linear quadtree of
Gargantini [8] stores only BLACK nodes
comprising the region, and generates
WHITE nodes when required, where each
BLACK node is associated with an n digit
quaternary code whose digits reflect the
successive decomposition of a 2" by 2"
image. As reported in [8], such a repre
sentation introduces a saving of at least
66 percent of the memory space required
by a quadtree.

The purpose of this paper is to
present a modified version of
Gargantini ' s linear quadtree to achieve
further efficiency in terms of storage
requirements and execution time. The re
cursive decomposition of images is
briefly reviewed in Section 2 along with
quadtree and linear quadtree representa
tions in preparation for the dev~lopment
and discussion of an alternative repre
sentation. The modified linear quadtree
(MLQ) is introduced in Section 3, and is
shown to be more efficient than a linear
quadtree spacewise. Section 4
investigates some basic operations on
images using the proposed structure.

Graphics Interface '85

2. BACKGROUND

Definition 1: A binary image is a 2" by
2" array of unit square pixels each of
which can assume either BLACK or WHITE
values, where n is called the resolution
parameter of the image.

Definition 2: The region of an binary
image is composed 6f all BLACK pixels,
and the background of the region is
composed of all WHITE pixels.

Example: The region shown in Fig. 1 is
represented by the 2 3 by 2 3 binary array
in Fig. 2, where 1 and 0 correspond to
BLACK and WHITE pixels, respectively.

7

6

5

4

3

2

o

I

Fig. 1. A region.

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0

0 0 1 1 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

o 2 3 4 5 6 7

Fig. 2. The reg i on in binary
array representation.

- 196 -

Definition 3: Let (i,j) be a pixel of a
given image. Then (i,j) has four
horizontal and vertical neighbors:
(i - 1 , j), (i, j - 1), (i, j + 1) and (i + 1 , j) •
These pixels are called the neighbors ef
(i,j).

There has been considerable interest
in region representations based on the
principle of a recursive decomposition.
An image is decomposed in the following
manner: if the region does not cover the
entire binary array, the array will be
subdivided into four equal-sized square
blocks, this process will be applied re
cursively to each block, till blocks are
obtained that are totally contained in
the region or totally disjoint from it.
As an example, Fig . 3 is the
decomposition of the region shown in
Fig. 1.

E

D
B C

A

Fi g. 3 . Block decomposit i on of
the region in Fig. 1.

The recursive decomposi t ion of the
i mage results in blocks that must have
standard sizes and positions. Sim i lar de
finitions can be formulated in terms of
blocks . For example, a block is said
BLACK if it contains only BLACK pixels,
WHITE if it contains only WHITE pixe l s,
and GREY if it contains both BLACK and
WHITE pixels .

A quadtree is an ordered tree of
degree four . The root represents the
e nt i re image , and each o t he r node
represents one of the four subbloc ks i n
order NW, NE, SW, SE of i ts father ' s
block. No father node can have al l its
descendant terminal nodes wi th the same

Graphics Interface '85

- 197 -

color. Fig. 4 demonstrates the quadtree
representation for the region in Fig. 1,

where the symbols 0, 0 and • represent

GREY, WHITE and BLACK nodes, respective
ly. The terms block and node will be used
interchangeably throughout.

SE

B C

Fig. 4. The quadtree representation
for the region in Fig 1.

Each node in the quadtree has five
pointers: one to its father and four to
its sons. Terminal nodes have color BLACK
or WHITE while nonterminal nodes have
color GREY.

The distinct feature of the linear
quadtree is pointerless and stores only
BLACK nodes. To encode BLACK nodes, the
NW quadrant is encoded with 0, the NE
with 1, the SW with 2, and the SE with 3.
Each BLACK pixel is then encoded by a se
quence of n integers (i.e., quaternary
code): q" - I, q"-2, "', qo, where
qje{0,1,2,3} for O~i<n.

Each successive integer represents the
block decomposition from which it
originates. Thus, q"_j, l~i~n, identifies
the subblock to which the pixel belongs
at the ith decomposition. A BLACK node
corresponding to a 2k by 2k block is
encoded by q"-I, q" - 2, ... , qo, with
q j=X, X~0,1,2,3, for O~i<k. X is called a
don't care sign. A linear quadtree is an
array of BLACK nodes comprising the
region sorted in the quaternary code
order. As an example, the liner quadtree
representation for the reg i on in Fig. 1
is given by the following sequence:

032,033, 10X, l2X, 2XX
which correspond to the BLACK nodes B, C,
E, D, and A in Fig 3.

A number of algorithms supporting
the linear quadtree have been reported in
[8,9], and they suffer, in speed, from
the above quaternary code encoding of the
BLACK nodes.

3. THE MODIFIED LINEAR QUADTREE

The following conventions will be
adopted throughout.

Definition 4: For integers I and J given
by

n-l
1= 1:

i=O

n-l
(I I . 2 I) and J= 1:

i=O

where 1 1, J , e{O,l},

n-l
SHUFFLE(I,J) = 1: (1 1 ·2+J i) '4 1

,

i=O

Definition 5: For an integer S
s 2" _ 1 ... so , where S I e {O, 1 } ,

n-l
EVEN(S) = 1: S2i ' 2 1

, and
i=O

n-l
ODD(S) = 1: S21.1 ' 21.

i=O
Hereafter, SH, EV and OD will be

used as abbreviated versions of SHUFFLE,
EVEN and ODD, respectively.

There are a number of ways to assign
consecutive integers to the pixels of a
2" by 2" image. A method which is now
known as a Morton matrix [1] , is the best
to capture the nature of the recursive
decomposition process. A Morton matrix is
an array of 2" by 2" pixels each of which
is assigned an integer as follows. For a
pixel p with coordinates (r,J), where I
and J are the column and row position,
respectively, the integer assigned to p
is given by SH(I,J}.

The integer assigned to a pixel is
termed the key of the pixel. To represent
a block obtained by the recursive
decomposition method discussed in
Section ~ requires:

Definition 6: The key of a block or node
is the key of its left lower pixel, and
the resolution parameter of the block is
an integer s such that the size of the
block is 2'.

Graphics Interface '85

- 198 -

Example: Fig. 5 shows a 2' by 2' Morton
matrix.

7

6

5

4

3

2

o

21

20

17

16

5

4

.1

0

o

23 29

22 2B

19 25

1 B 24

7 13

6 12

3 9

2 B

2

31 53 55 61 63

30 52 54 60 62

27 49 51 57 59

26 4B 50 56 58

15 37 39 45 47

14 36 3B 44 46

1 1 33 35 41 43

10 32 34 40 42

3 4 5 6 7

Fig . 5. A 2' by 2' Morton matrix.

The two-tuple <K,s> will uniquely
represent a block, where K and s respec
tively are the key and the resolution pa
rameter of the block. For a given block
Q, its quadrant with label i is called
the ith quadrant of Q and denoted as QI,
where ie{0,1,2,3}. The quadrant labeling
shown in Fig. 6 will be assumed .

~
~

Fi g. 6. Quadrant Labeling .

The following two lemmas are useful
in developing successive algorithms.

Lemma 1: For any two nodes <KI,SI> and
<K 2,S2> where <K I ,SI> e Qi and
<Kz,sz> f Qj for some node Q, if i<j then
KI<K z .

Lemma 2: For any two nodes <KI,SI> and
<K Z ,S2> where SI>S2, then either <K I ,S I>
contains <K 2,s2>, or the intersection of
<Kt,sl> and <K z ,s2> is empty.

3.1. An encoding scheme

A BLACK node can now be encoded by a
two- t uple <K , s>, where K uniquely
i dentifies the position of the node i n
the image, and s specifies the size of
the node. A modified linear quadtree is

defined as a sorted sequence -of BLACK
nodes in their two-tuple form in
ascending key order. This differs from
the linear quadtree in that, firstly, the
key of the node is stored as a single in
teger rather than an n digit quaternary
code, and, secondly, the resolution pa
rameter of the node is explicitly
expressed rather than implied by the num
ber of don't cares in the quaternary
code.

Such a modification results in two
advantages: space efficiency and improved
execution time. The second advantage will
become clear in [1']. To see the first
advantage necessitates the comparison be
tween the storage requirements of the two
encoding methods. As reported in [B),
each BLACK node needs 3n bits. By
contrast, the proposed encoding scheme
requires (2n+log n) bits for each BLACK
node, where 2n bits are used for storing
the key and (log n) bits for the
resolution parameter of the node. As an
example, when n=12, ' the MLQ can save
approximately 22 percent of the memory
space required by the linear quadtree .

3 . 2. Constructing an MLQ

A recurs i ve algorithm to be intro
duced in this section constructs an MLQ ,
given the array description of an image .
An optimal algorithm will be presented in
[1'] for obtaining an MLQ, given the
quadtree description of the image. Such
an algorithm is useful because obtaining
an MLQ from a quadtree description of an
image costs much less both in time and
space than generating an MLQ from an
array description of the same i mage.

The algorithm for generating an MLQ
from the array description of a 2" by 2"
b i nary image is presented below as a
procedure termed ARR-TO-MLQ. It takes
three input parameters E, key and s,
where E is a 2' by 2' binary array , key
and s initially correspond to zero and n
respectively. The output of the algor i th~
is a globle variable called LIST
containing the desired MLQ.

The algorithm examines each pixel
element of the binary image in Morton se
quence order . If a pixel is BLACK then
i ts two-tuple representation is f~rmed
and added to LIST. One of the key fea
tures is that the algorithm merges the
four small BLACK nodes corresponding to
the last four two-tuples in LIST to yield

Graphics Interface '85

- 199 -

a bigger BLACK node whenever it is possi
ble by replacing the four two-tuples by
one repre~ent~ng the bigger BLACK node.
Upon term1nat10n of the algorithm LIST
~ontains all maximal BLACK nodes.'This is
1n constrast with the algorithm that
first builds a list containing all BLACK
p~xels"and the~ at~empts to merge the
p1xels 1n the llSt 1nto maximal BLACK
nodes [8].

As an example, if the algorithm is
applied to the binary image in Fig. 2,
the MLQ representing the region in Fig.
is obtained:

<0,2>, <24,0>, <26,0>, <48,1>, <52 1>
which corresponds to the BLACK nodes'A '
B, C, D, E of Fig. 3, respectively. '

Procedure ARR-TO-MLQ(E,key,s)
begin

if s=o then
begin
if E is a BLACK pixel then
begin

add pair <key,s> to LIST;
return(BLACK) ;

end
else return (NONBLACK)

end
else

begin
for i:=O to 3 do
color[i] : =
ARR-TO-MLQ(E j ,key+i*4**(s-1) s-1)'

if color[i] is BLACK, 0~i~3, then'
begin
:eplace the last 4 pairs
1n LIST by <key,s>;
return(BLACK);

end
else return(NONBLACK);

end;
end;

Theorem 1: The above method constructs an
~LQ, gi~en ~he a:ray description of the
lmage, 1n tlme Ilnear to the number of
pixels in the image.
Proof: Let T(4") be the number of steps
required by procedure ARR-TO-MLQ to gen
erate an MLQ. Clearly, T(1)=1. If n>O
T(4") is the total number of steps us~d
in the four calls of ARR-TO-LMQ on an
array of size 4"-1, plus approximately
the four steps in checking through
color[O] to color[3]. That is,

n>O
T (4")

n=O .

The Theorem follows by solving the
recurrence.

Q.E.D.

4. BASIC ALGORITHMS

4.1. Neighbor finding

Neighbor finding for regions repre
sented by an MLQ is a fundamental
operation. It is the cornerstone for many
applications such as labeling connected
components, computing perimeters, and
others, which will be discussed in [11].
Neighbor finding using MLQs involves es
sent~ally two steps. The first step
obta1ns the two-tuple representation of
the desired neighboring block from that
of a given block. The second step then
determines the color of the neighboring
block by consulting the MLQ under consid
eration. These two steps will now be
described more precisely.

4.1.1. Neighbor determination

Let each node in an MLQ be stored as
a record containing two fields. The first
field, named KEY, contains the key of the
node. The second field, named RES,
contains the resolution parameter of the
node. The use of OD and EV functions on
the key of the node will provide the
coordinate information of the node. This
coordinate information is sufficient to
obtain the coordinates of a neighboring
block in a specified direction. Then the
two-tuple form of the neighboring block
c~n be constructed by using the SH func
t10n.

Let P be a given node, its neighbor
o~ equal size in a , direction specified by
slde can be determlned by the following
procedure termed EQ-NEIGHBOR using the
4-adjacent criterion. Note that
determining a neighbor of different size
or using other adjacency criterion can be
done similarly.
Procedure EQ-NEIGHBOR(P side)

begin '
I:=OD(P.KEY);
J: =EV(P. KEY) ;
case of side

'N': J:=J + 2**P.RES;
'E': 1:=1 + 2**P.RES;
'S': J:=J - 2**P.RES;
, W' : I: = I - 2 * * P • RES;

end;
neighbor.KEY:=SH(I,J);
neighbor.RES:=P.RES;
return(neighbor);

end;

Graphics Interface '85

- 200 -

Theorem 2: The time complexity of
constructing a neighboring node in any of
the principal directions is O(n}.
Proof: The time complexities of the func
tions SB, EV and OD are all of O(n).

Q.E.D.

4.1.2. Color determination

To determine the color of the
neighboring nooe necessitates searching
the MLQ, since only BLACK nodes are ex
plicitly stored there. Let X be the
neighboring node which is to be compared
with a node Y of the MLQ in the course of
the binary search. The color of X can
then be found as one of the following
cases according to Lemma 2:

1. If X.KEY and X.RES are identical
to Y.KEY and Y.RES, respectively, then
X=Y and X is BLACK.

2. If both of the following
conditions are satisfied:

a) X.RES<Y.RES,
b) Y.KEY~X.KEY<Y.KEY+4**Y.RES,

then X is contained in Y, and therefore X
is BLACK.

3. If both of the following
conditions are satisfied:

a) X.RES>Y.RES,
b) X.KEYSY.KEY<X.KEY+4**X.RES,

then Y is contained in X, and therefore X
is GREY.

4. If none of the above cases holds,
then it follows that X is WHITE.

Theorem 3: Determining the color of a
given node can be done in O(log N) steps,
where N is the number of BLACK nodes in
the MLQ.
Proof: Due to the time complexity of the
binary search.

Q.E.D.

4.2. Complement

This section describes an O(n "N)
method to complement a region represented
by an MLQ. The complement of the reg i on
of a binary image is the logical
complement of the binary image. In other
words, the complement of a region is the
background of the region. In an MLQ
region representation, such an operation
is useful because WHITE nodes comprising
the background are not explicitly stored .
In what follows, an algorithm is given,
which is capable of infering all maximal

WHITE nodes · in ascending key order from
two given consecutive BLACK nodes.
Therefore, no further sorting and
condensing are necessary.

The algorthm consists of four parts
corresponding to four procedures called
GREYNODE, WHITE1, WHITE2 and WHITE3. Let
E represent the entire image, i.e.,
E.KEY=O and E.RES=n. Procedure GREYNODE
takes, as input, two BLACK nodes A, Band
the entire image E to locate a GREY node
Q recursively such that AeQI, BeQj, for
i*j, and returns the value of QI and Qj
to C and D, respectively, as output.

Procedure WHITE1 takes, as input, a
BLACK node B and a node Q, which is
either GREY or BLACK, with BeQ, and re
cursively generates all maximal WHITE
nodes within Q in ascending key order ex
cept those whose keys are less than that
of B.

Procedure WHITE2 takes, as input,
two nodes Qi and Qj for some Q, and
generates, as output, WHITE nodes Qk for
all i<k<j in ascending key order .

Procedure WHITE3 takes, as input , a
BLACK node B and a node Q, which i s
either GREY or BLACK, with BeQ , and
generates recursively all maximal WHITE
nodes within Q in ascending key order ex
cept those whose keys are greater than
that of B. .

The algorithm is given as procedure
WHITENODES. The input of the algorithm is
two BLACK nodes bl and b2 with b1.KEY <
b2.KEY. The output of the algorithm is a
list containing all maximal WHITE nodes
generated by WHITE1, followed by those
generated by WHITE2, followed by those
generated by WHITE3. By lemma 1, the ob
tained sequence of WHITE nodes between b1
and b2 is in ascendinq key order .

Procedure GREYNODE(A , B,E,C,D)
begin

determine i and j
such that AeE; and BeE j ;

if i=j then GREYNODE(A,B,E ; ,C, D)
else begin

C=E 1 ;

D=E j;
end :

end:

Graphics Interface '85

- 201 -

Procedure WHITE1(B,Q)
begin

if Band Q are different
then begin

end;

determine i such that BeQ;;
WHITEl (B,Q;);
for k=i+1 to 3 do

add Qk to list;
end;

Procedure WHITE2(Q; ,Qj)
begin

for k=i+1 to j-1 do
add Qk to list;

end;

Procedure WHITE3(B,Q)
begin

if Band Q are different
then begin

end;

determine j such that BeQj;
for k=O to j-1 do

add Qk to list;
WHITE3(B,Qj) ;

end;

Procedure WHITENODES(b1,b2)
begin

GREYNODE(b1,b2,E,Q1,Q2);
WH I TE 1 (b 1 , Q 1) ;
WHITE2 (Q 1 ,Q2) ;
WHITE3(b2,Q2);

end.

Theorem 4: The time complexity of
Algorithm WHITENODES is O(n).
Proof: The purpose of procedure GREYNODE
is to locate a GREY node Q such that b1
and b2 belong to two different quadrants
of Q. Such a Q in conjunction with b1 and
b2 will be sufficient to infer all
maximal WHITE nodes between b1 and b2.
The order in which WHITE1, WHITE2 and
WHITE3 appear in the algorithm is the
consequence of lemma 1.

Let no be the depth of recursion of
GREYNODE, then

1 ~ no ~ n - m, where
m=max {b 1 . RES, b2 . RES} . (1)

no is bounded from below by 1, simply
because the Q located can be just the
entire image E itself, while no is
bounded from above bOy n - m due to the
following reasons. When GREYNODE is to be
recursively called for the (n - m)-th
time, a node of size 2m +' is being taken
as the Q which is so far the smallest
GREY node to which both bl and b2 belonq.

However, the sizes of b1 and b2 require
that they now must belong to two
different quadrants of Q. Therefore no
further recursion is necessary.

Let n, be the depth of recursion of
WHITE1, then

n, = n - no - SI, where
s,=b1.RES.

In fact, the node Q1 obtained from
GREYNODE is of size 2**(n-no), and when
this Ql is recursively subdivided by
WHITEl into a node of size 2**s" the
recursion will terminate. This explains
(2) •

Similarly, let n3 be the depth of
recursion of WHITE3, then

n3 = n - no - S2,
s2=b2.RES.

where
(3)

The total cost T in terms of the depth of
recursion required is, therefore,
no + n, + 1 + n3, where 1 originates from
WHITE2. Thus

T = 2n - no - (S,+S2) + 1. (4)

Substituting (1) back into the right
hand side of (4) yields:

n+m-(s,+s2)-1 ~T~ 2n-(s,+s2). (5)

Since the total number of recursion
required is less than 2n, according to
(5), and each recursion takes only con
stant time. Theorem 4 then follows.

Q.E.D.

With algorithm WHITENODES, it is now
possible to generate all maximal WHITE
nodes comprising the background of the
region in ascending key order when
traversing the MLQ.

The following procedure termed
COMPLEMENT takes, as input, M and N cor
responding to the MLQ and the number of
BLACK nodes in MLQ, respectively. The
output of the algorithm is a list
containing the maximal WHITE nodes in
ascending key order.

In procedure COMPLEMENT,
WHITE3(M[l],E) enumerates all WHITE nodes
in E whose keys are less than M[l].KEY,
while WHITE3(M[N],E) enumerates all WHITE
nodes in E whose keys are greater than
M[N).KEY. The for loop generates WHITE
nodes between every two consecutive BLACK
nodes of the MLQ.

Graphics Interface '85

- 202 -

Procedure COMPLEMENT(M,N)
begin

WH I TE 3 (M [1] , E) ;
for i:=l to N-l do

WHITENODES(M[i],M[i+l]);
WH I TE 1 (M [N] , E) ;

end;

The following result follows directly
from Theorem 4. .
Theorem 5: The time complexity of
COMPLEMENT is O(n·N).

5. CONCLUSIONS

A data structure called MLQ for
region representations has been presented
in this paper. Basic operations on images
for an MLQ have been developed to support
the proposed data structure. It has been
shown that the MLQ approach requires less
storage than the linear quadtree
approach. The results in [11] will
demonstrate that an MLQ is more efficient
than a linear quadtree in terms of time
complexities.

REFERENCES

1. Morton, G.M. "A Computer Oriented
Geodetic Data Base, and a New
Technique in File Sequencing", IBM
Canada Limited, unpublished report,
March 1, 1966.

2. Klinger, A. and Dyer, C.R.
"Experiments in Picture
Representation Using Regular
Decomposition", Comput . Graphics and
Image Process., Vol. 5, pp. 68-105,
1976.

3. Hunter, G.M. and Steiglitz, K.
"Operations on Images Using Quad
Trees", IEEE Trans. Pattern Analy. &
Mach. Inte"., vol PAMI-l, pp.
145-153, 1979.

4 . Dyer, C.R., Rosenfeld, A. and Samet,
H. "Region Representation: Boundary
Codes from Quadtrees", Comm. ACM,
VO 1. 23, pp . 1 7 1 - 1 79, Ma r c h 1 980 .

5 . Shne i er, M. "Note: Calculat i ons of
Geome t r i c Properties Us i ng
Quadtrees" , Comput . Graphics and
Image Process ., Vol . 16 , pp . 296 - 302
1981. '

6. Samet, H. "Connected Component
Labeling Using Quadtrees", J . ACM,
Vol. 20, pp. 487-501, 1981.

7. Samet, H. "Neighbor Finding
Techniques fo~ Images Represented by
Quadtr~es", Comput. Graphics and
Image Process., Vol. 18, pp. 3 7-57,
1982.

8. Gargantini, I. "An efficient way to
represent properties of quadtrees",
Comm . ACM, Vol. 25, pp. 905-910, Dec.
1982.

9. Gargantini, I. "Translation, rotation
and superposition of linear
quadtrees", Int. J. Man-Mach. Stud.,
Vol. 18, pp. 253-263, March 1983.

10. Mark, D.M. and Lauzon, J.P. "Linear
Quadtrees for Geographic Information
Systems", Proc. of the Internationa l
Symposiom on Spatial Data Handl ing,
Vol. 2, pp. 412-430, Zurich,
Switzerland, Aug. 20 - 24, 1984.

11. Wang, X. "Some New Approaches f o r
Linear Quadtrees" , M.Sc. Thes i s, in
preparation.

Graphics Interface '85

