
- 17 -

Specifying Stochastic Objects in a Hierarchical Graphics System

Brian Wyvill, Craig McPheeters, Milan Novacek

Department of Computer Science, University of Calgary.
2500 University Drive N.W.

Calgary, Alberta, Canada, T2N IN4

Abstract.
Many graphics systems allow a user to describe three

dimensional objects with polygon meshes or surface patches.
However to achieve realistic scenes for making animated
film some objects are better described with stochastic
techniques. Some examples would be clouds. tire and
mountains. We describe here a hierarchical graphics system
consisting of objects which contain geometrical
transformations of other objects or primitives. Each object
is treated in a consistent fashion whatever the types of
primitives that are ultimately called. for example an object
may consist of polygon mesh sub-objects and stochastic
objects. The system has been designed so that it may easily
be extended to include new primitive types. so far a sub
system for generating particles (fire. volcanos etc.) and a
sub-system for generating fractal polygons have been
implemented Examples are given of the results obtained
with this technique.

Overview
In designing a 3D graphics system one of the problems

is to decide what classes of primitives will be used for
constructing the objects. The end user may wish to define
solid objects of a deterministic nature such as a building and
also define a cloud which is perhaps best defined in terms of
some stochastic function. Graphicsland is a system which
has been designed to include different types of primitives
and offers a consistent way of handling them. The system
stores 3D objects as a hierarchy of geometric
transformations. each object may refer to a number of other
objects which in turn refer to objects and so on. At the
leaves of this tree hierarchy are the primitives which may be
geometrical primitives such as polygons or procedures for
generating fractal surfaces or particle systems. We have
tried to design the system in an extensible way so that other
primitiVes such as beta-spline surfaces may be added later.
Figure 1 shows a diagram of the system. It is layered with
the data-structure and associated editing and traversal
routines as the central core. A user interacts via a control
interface and invokes one of a series of specialised user
interface modules.

Hierarchicol Dolo Structure.

Renderen

figure I lirophicslond Oueruiew

Each of the user interface modules produces an
intermediate command language which is interpreted by the
system controlling the object hierarchies. Various graphical
editors are being designed. so far only the polygon editor
has been implemented with a graphical interface. Currently
fractal and particle descriptions can be made via the
intermediate command language. The design of this language
is such that Graphicsland can be extended by writing special
purpose interfaces which will interact with the language
layer of the system. For example an interactive fractal
mountain package is being written which uses contours
drawn by the user. Currently landforms such as mountains
may be defined in the intermediate language. by entering
specifications for a number of parameters such as height of
snow line. density of snow. angle of slope to which the
snow will stick. and so on.

This approach also has the advantage that new ideas
may be tried out very quickly by implementing commands
in the intermediate language. Thus Graphicsland is a
research oriented system which provides a test bed for new
techniques.

Graphics Interface '85

It is useful to compare our approach to other methods.
Porter & Duff [Porter 84] describe an image compositor
which allows pictures to be composed from a series of
images. These images are calculated for a particular
viewpoint and can be combined as parts of different pictures
reducing the overhead of having to render common parts
between like frames. Once the view point is moved the
component images would have to be re-rendered. We are
providing a facility for composing pictures in object space
which has the advantage that a view point can be moved
and the correct view rendered. Thus image compositing will
have an advantage when there are few camera moves. Object
composing has the advantage of working in true 3D as
compared to a 21hD approach.

The Hierarchical Data Structure
Figure 2 shows how the object hierarchy is stored as a

series of geometric transformations. Each node contains a
transformation matrix and a reference to the hierarchy to be
transformed. To show a view of the object the structure is
traversed as described in [Wyvill 84] in which each new
node transforms the current set of coordinates until a
primitive is encountered. In the current work the scheme
has been generalised in that the polygon primitive has been
substituted for a Procedural Image Generator (PIG in the
diagram). So far three PIGs have been implemented to
generate polygons. particles and fractals. We are currently
working on this approach to extend the system to beta
spline surfaces.

The particle sub-system
A particle system based on the work of Reeves

described in [Reeves 83] has been implemented with some
extensions. For 'example. Gauss filtering of particles has been
included. this has the effect of defocusing the particles
which reduces the number required to represent certain
special effects. The user has the option of having particles
rendered as simple points . or as fuzzy balls. The former case
allows very fast rendering on raster devices. Particles are
assumed to be pixel sized. and the colour of the affected
pixel is simply increased by the particles' own colour
intensity. In the latter case a Gauss function is applied as
discussed under rendering.

Figure 2 shows the information stored in the object
hierarchy node and the PIG node for a particle generator.
These specifications differ from Reeves' in that two
parameters which control Gauss filtering are associated with
each particle generator along with a third parameter which
controls the probability that a given particle will become a
generator. It has been found that Gauss filtering particles
produces some realistic effects with considerably fewer
particles than previously used. this is discussed in the
section on rendering.

- 18 -

Particle
Generator

~ __ J!lla:llI1tllIl'tJ!il1D 1i:!(!)!l.I:lIIL...-__
Colour Translucency Smooth
Reflection Refraction Diffusion
Graulty Force Cen tre
limit Generations Decay

life] Origin
Ueloclty
Rcceleration
Colour
Decay

Number]
Gauss
Grauity

! e:, for each parllcle

Global 10 a generator

Fractal Skeleton Polygons
land forms Roughness Coefficients

Colour Change Rules
Recursion limit

Figure 2 Hierarchical Data Structure

The fraetal sub-system
The method fo r generating fractals in the fractal

mountain package is lar!;.ely based on the work of
Mandelbrot [Mandelbrot 83J and Fournier et al (Fournier
82]. A recursive algorithm is employed to subdivide a set of
intermediate polygons. After each subdivision the
coordinates of the vertices are modified by a random value
constrained by a roughness factor. The intermediate
polygons determine the gross overall shape of the mountain.
They may have been generated by hand or by any other
suitable method . for example by a preprocessing program
that accepts a set of contour polygons and converts these to
a set of tiles covering the requisite surface.

Such a scheme need not be excessively restrictive nor
need it require a detailed contour specification in order to
yield a pleasing result. The mountains in our examples have
each been generated from a single input polygon. A
mountain range is simply a number of instances of the one
mountain with different geometric transformations applied.

The controlling parameters are summarised in Figure 2.
Output from this package is a polygon list in the
intermediate command language.

Graphics Interface '85

Rendering
The rendering of polygons is well understood. but

special attention should be paid to particles. Unlike Reeves
system we assume that particles do interact with other
surface-based modeling primitives. We have implemented
two methods of rendering. Z-buffer and Ray Tracing. In
both cases the particles are fully integrated into the
algorithm as a primitive.

Several options are available for the interaction of
particles with other primitives. for example particles may
may act as luminous entities and be added into the image
(as in Reeves' system). A weighted replacement option is
also available. Note that particles are not proper light
sources in that they do not illuminate other objects.

Particles may also be be single points or fuzzy balls. as
noted in the particle subsystem description. In the latter
case. fuzzy balls are particles with a radius of infiuence (r)
assigned by the user at the definition stage. At the
rendering stage a particle is treated as a sphere of radius r.
with varying translucency. The edge of the sphere is nearly
perfectly translucent. contributing almost nothing to the
image. while at the centre the full colour intensity of the
particle is added to the pixel value. A negative exponential
function is used to provide a smooth transition between the
two extremes:

This gives the fraction of the intensity to add to the image
at a distance d from the centre of the particle.

er
is proportional to the radius of infiuence. r.

In the z-buffer algorithm we first render all polygons.
and then do the particles. Particle intensities are added into
the frame buffer according to f. In the case of non
transparent particles a weighted partial replacement is done.
with the replacement weight again given by f.

Work on ray tracing is still in the experimental stage.
but in general particles are treated in a similar manner as
spheres. and the simple point-particles discussed above are
simply assigned a small radius.

Examples
A few examples are shown of combined fractal.

particle and polygonal figures. Slides Castle and Martian
show two particle systems combined with some objects built
from polygons. Slide Road shows some high quality fractal
mountains consisting of 128k polygons for each of six
mountains. The road and fields are defined by plain
polygons. Slide Saturn shows two types of particle
rendering. the Gauss filter has been used for the super nova
and point rendering for the rings of Saturn. The planet is in
fact from polygons. The first two slides represent frames
from a short film sequence currently under production to
show the application of these techniques to animation.

- 19 -

ConclUSion
We have presented a way of combining some different

primitives in a 3D animation system. These include
particles. fractals and polygons. We are planning to expand
this set and to implement new user interfaces to allow
animators easy access to these facilities.

Acknowledgements
The JADE project at the University of Calgary has

been particularly supportive of our work in distributed
graphics. This work and JADE is supported by the Natural
Science and Engineering Research Council of Canada. Special
mention is also given to Andrew Pearce. who not only built
the castle. but also made it explode.

References

Fournier. A. Fussel. D. and Carpenter. L (June 1982)
• Computer Rendering of Stochastic models' Commun. ACM.
25 6. 371-384.

Mandelbrot. Benoit (1983) 'The fractal geometry of nature"
W.H. Freeman and company.

Porter. T. and Duff. T (July 1984) 'Compositing Digital
Images' Proc. ACM SIGGRAPH '84. pp. 253-259

Reeves. William. (Apr 1983) • Particle systems- A technique
for modeling a class of fuzzy objects' ACM Transactions on
Graphics. 2. 91-108.

Wyvill. B.L.M .. Liblong. B. and Hutchinson. N. (June 1984)
'Using Recursion to Describe Polygonal Surfaces" Proc.
Graphics Interface 84. Ottowa.

, Graphics Interface '85

- 20 -

1. Cast l e 2. Mart i an

3. Road 4. Sa t urn

Please note considerable contrast has been
lost on transferring from colour to black and white .

Graphics Interface '85

