259

DESIGN AND IMPLEMENTATION OF AN INTERACTIVE ROUTE EDITOR

Guy Lapalme

Département d'informatique et de rech. opér.

and

Michel Cormier

Centre de recherche sur les transports

Université de Montréal, C.P. 6128, Succ. "A", Montréal, Québec, Canada, H3C 3J7

Abstract

We present an interactive color
graphic system designed for pickup and delivery
route modification. We identify three fundamen—
tal types of commands and show that they cor-
respond to those of a typical text editor.

Résumé

Nous présentons un systéme graphique
avec un écran couleur pour effectuer la
modification de parcours de véhicules de trans-
port. Nous identifions trois types fondamentaux
de commandes et montrons qu’elles correspondent
avec celles d’un é&diteur de texte habituel.

INTRODUCT LON

Operations Research techniques now
provide us with many algorithms for real life
routing problems [(1,2,3]. Unfortunately, being
often heuristic in nature, their results must be
evaluated by hand (by eye would be a more
appropriate term). This evaluation must take
into account not only the usual constraints
(capacity, length, time duration, etc) but also
other unwritten ones (overall shape of the
route, going back on one self, certain types of
vehicle might not be able to go over certain
roads, etc). This process usually prompts some
more modifications who then in turn must be
evaluated.

The best way to appraise such routes
is their drawing on a road map; usually many of
them are on a single territory and we are inter—
ested in having a more global improvement than
one route at a time; to differentiate them, we
give a distinct color to each route. Hand draw-
ing thosc results is very slow and tedious, so
the gencerated routes are accepted as they are or
worse they are rejected as a whole. So what we
need is an automatic draughting tool who
display both the road network and the routes in
color. This high resolution so that

can

implies 2

the drawing appears as it would on a real map.
For that purpose, we can think of two kinds of
hardware: color plotters and color graphic
screens. The first tool gives a very good
resolution and beautiful drawings but does not
allow easy interactions to achieve the fast
modifications that we plan to implement. This
paper describes a tool to answer that need: a
route editor which displays the routes and per-—
mits easy and fast changes in them.

We will show that this system has
essentially the same structure as any text
editor found in computer systems today [4]. As
those editors have been in use for many years
now,we can expect that they are now on solid
grounds and that their main commands correspond
to the needs of a user changing a text already
in machine-readable form. So if our commands
parallel those of to the editor, we are confi-
dent that our foundamental needs will be ful-
filled~

2. Structure of a text editor

We first give a brief overview of the
fundamental structure of a typical interactive
text editor. Its commands can be classified in
three major categories:

- file reading and writing commands to choose
the file to be modified and to keep it for
future use

- modification commands to change the contents
of the file: we can insert new lines, delete
lines, move lines, change only a few charac-
ters in a line. We need also a way to indi-
cate which lines are affected by the changes

- display commands to list the contents of
lines before or after the modifications

Graphics Interface '85



3. Structure of the route editor

We think that a route editor should
accomplish the same modification tasks on a file
describing stops in routes a text editor does on
a text file. If we consider the following
analogies: a route corresponds to a line of
text, a stop in a route corresponds to a charac-
ter in a line. So we can create new routes and
delete old ones; we want also to remove, add or
reorder stops in a route. The main difference
will be in the display commands where on one
side, a text editor works on a linear basis
(characters in a line) but on the other side,
the stops in a route are given by coordinates in
a 2-D space; this implies a more elaborate set
of display commands not found in a typical text
editor.

The overall scenario of an editing
session is as follows: we first choose the
routes to worked on; they are displayed over the
road network, they are modified on line and are
then written back to the file storage system.
Table 1 lists the main commands.

EDITOR COMMANDS

Modification
add route or stop
delete route or stop
move stop(s) to a route
reorder stops within a route
Display

visibility on/off of a route

colorswap between two routes
zoom in/out of a region
Others
option settings
undo
help
Table 1

4, Display commands

Those commands are very straightfor-
ward in text editors but are less so in our
context because of the many variations that can

occur: for example, we can display the whole
network (see figure | were 1000 nodes and ...
arcs are displayed) or just enough to display
the chosen routes, the stops can be Llinked

either with the shortest path on the network or
as the crow flies (sce figure 1| where stops are
indicated by dots over the network). In back

260

and white they are difficult to distinguish from
the base network, but that only contributes to
make our point that color graphic are essentials
in these kinds of application.

Once the routes are displayed, we may
need to clear up the situation for a better
evaluation: for example, by changing colors of
the routes, by removing a few ones from the
display or even zooming in on a particular area
of interest (figure 2 was obtained by zooming on
a region of figure 1). Once we have a satisfac—
tory display, we can start the modifications
themselves.

The implementation of these commands
is quite straightforward once we have the basic
informations about the network: for each arc
representing a portion of a street between two
corners, we keep the node numbers of its ends
and its length; for each node representing the
street intersections we have their x-y coor—
dinates and pointers to the arcs coming in and
out of this node; the routes are lists of stops
each comprising a node number and other problem
specific informations: stop number, number of
persons to pick up, time of pickup, etc.

We see that we have all the informa-
tion needed for drawing the network lines to be
drawn (possibly clipped) between coordinates.
The routes also follow the same pattern except
when the exact path between each stop has to be
drawn. Memory limitations do not allow keeping
constantly in memory these paths which can
involve hundreds of arcs, a typical route being
30km long. So before drawing that path, we
first compute it using a classical Dijkstra
shortest-path algorithm stopping as soon as the
destination has been permanently labelled and
keeping in each node the number of the preceding
node in the path. We then follow the pointers
to draw the whole path. This whole procedure is
usually quite fast (1 to 10 seconds) between
each stop and gives the user a very good feeling
about the shape of the route; this is much bet-—
ter than the "crow fly" approach and so it is
worth it.

Changing the colors of the routes or
making them visible or invisible is done almost
instantly because it only involves
few bytes in the color look-up table.

changing a

Graphics Interface 85




5. Modification commands

We have three levels of modification:

- route level: we can create or delete new

routes

- stop level: we can add, remove stops from a
route; reordering of stops within a route has
proven itself very useful in our context. It
is also possible to move stops from one route
to another. When the modifications are made
the result is immediately reflected on the
screen.

- within a stop: a number of attributes charac—
terize a stop; for example, the quantity of
goods to pick up of deliver, the time window
for servicing, the names of the people to
pickup, etc. Updating that information does
not involve 2-D spatial information and can
be done with the usual text editing func-
tions. But care must be taken to update the
global attributes of the route accordingly:

for example, total quantity, total time
length, total number of people, etc.

It is very important that the
modifications be done almost instantly, but

some of them may require a certain amount of
time and memory, for example to find the
shortest path between each stop in a route.
To be effective, we must have a very fast
computer and a high transmission rate. We
have chosen to implement this system on a
dedicated work station composed of a high
resolution bitmap color screen with a MC68000

based microcomputer running an UNIX 1like
operating system. This 1is surely a very
expensive piece of equipment but we must
realize that the operations we want to

optimize are very costly ones where a small
part of the expected savings can pay off the
investment.

The implementation of the commands
involves processing the 1lists of stops:
removing stops from one list and moving them

to another, reordering of lists, deleting
items from lists, etc. When lists are
modified, the old version of the route is

redrawn using the background color and the

new modified route is redisplayed.

261

6. Interaction aspects

The fact that we have a dedicated
computer is very important to achieve a coastant
interaction rate. The user is not slowed down by
the works of others like in a time-sharing mode.
So simple commands are done almost immediately
and more complicated ones take a longer time;
the user expects this and can appreciate that it
is his command which ties up the system.

We have also implemented a very simple

interface consisting of menus and cursor
positioning with a joystick, the keyboard is
almost never needed. This allows direct

manipulation of the objects (in our case the
stops and the routes) which is recognized as one
of the easiest way to interact with a system

[s].

Another important aspect of the system
is the possibility of undoing commands. If we
realize that we made an error in specifying the
nodes involved in a command or that a command
did not give the expected improvements then, by
touching one key, we can go back to the situa-
tion before that command. This feature is very
important because in this way, one can freely
experiment with the system without having to
find the inverse of an erroneous command. In our
system, we can currently go back over the last
five commands; before that, the modifications
are committed, but there is always the pos-—
sibility of not saving those modificatiomns in
the case of an earlier error. The implementation
of that feature is quite intricate because we
have to execute the inverse of each command; 1in
the case of reordering of stops, this inverse is
almost impossible to find so the original order
is kept in heap memory in case of backing up.

As it is very difficult to give a real
feeling of such an interactive system by writ-
ing, we have produced an eight minute Super-8
film which shows how modifications can be made
in a real context.

This system is closely related to the
works of Cullen [6], Fisher [7] and Babin [3]
but these systems are not as much oriented
towards the interactive route editing approach
as ours. Cullen and Fisher wuse color graphic
microcomputers mainly for the display, the main
computiations being made on a remote mainframe
linked by a telephone line. Babin features a
transit planning system running on a stand alone
power ful microcomputer. [t aims more at display-—

Graphics Interface ’85



ing analytical results in form of tables and
graphs than at showing routes over a network;
this system also includes an interactive network
editing module but not a route editing one.

7. Conclusion

tool has
easy to

Our experience with this

proven that it is very user-friendly,
use and very cost effective. It has allowed
users to evaluate and modify more than 150
routes in two days. We have focused here on the
modification aspects of the editor but it can
also be used to create new routes from scratch.
We are currently involved in other works to
improve the editor by integrating the notion of
time and other basic algorithms for example:
clustering, traveling salesman, insertion, etc..

Acknowlegments

We would like to thank Serge Lafrance,
Claude Mallette and Alain Choquette for bearing
with us in the many program modifications which
have been going on for the last two years.
Special thanks also to Jacques Ferland and
Jean-Marc Rousseau for believing in this project
and putting much time and money into this inter-—
active approach to routing and scheduling.

Bibliography

1) Bodin,L., Golden B., Assad A., Ball M.,
"Routing and Scheduling of Buses and Crews",

Computers and Operations Research, Vol 10,
no 2, p 69-211, 1983.
2) Chapleau L., Ferland J., Lapalme G., Rous-

seau J-M., "A Parallel Insert Method for the
Capacitated Arc Routing Problem", Operations
Research Letters, Vol 3, no 2, June 1984, p.
95-100.

3) Chapleau L., Ferland J., Rousseau J-M.,
"Clustering for Routing in Dense Area",
European Journal of Operational Research,
Vol 20, nol 1, 1985.

4) Meyrowitz N., Van Dam A., "Interactive

Editing Systems'", Computing Surveys, Vol l4,
no 3, Sept 1982, p 321-415.

262

5)

6)

7)

8)

Shneiderman B., "Direct manipulation: A Step
beyond Programming Languages', Computer, Vol
16, no 8, p 57-69, august 1983.

Cullen F.H., Jarvis J.J., Ratlif H.D.,
"Interactive Optimization in Distribution
Analysis", ORSA/TIMS Joint National Meeting,
San Diego, October 1982.

Fisher M., Greefield A., Thomson K., '"Real
World Experience with an Interactive Color
Graphic Interface for Vehicle Routing
Models", ORSA/TIMS Joint National Meeting,

Orlando, November 1983.

Babin A., Florian M., James L., Spiess H.,
"EMME/2: Interactive Graphic Method for Road
and Transit Planning", Transportation
Research Record, 866, p 1-9, 1982.

Graphics Interface '85



263

7 2an314

T @2an3tg

198} (= daed ing

Graphics Interface 85



