PROJECT MANAGEMENT USING GRAPHICS

Fabio Pettinati

Electrical Engineering Department
Politechnic School
University of Sao Paulo
Sao Paulo - Brazil

ABSTRACT

This paper addresses the problem of lack of
visualization most managers face when using
computer-based project control systems: although
highly relevant information is generated, usually
no graphical output is produced. This paper
presents a system called UniPert that
automatically produces high quality drawings
showing all activities present in a project and
the relationship among them. A detailed
description of UniPert's major components and
algorithms is presented as well as examples of
its actual use. The main contribution of this
paper is the integration of many different
techniques and concepts that led to the
development of the UniPert system.

RESUME

Cet article se rapporte au probleme du manque de
visualization que 1la plupart des entrepeneurs
rencontrent lors de 1'usage de systemes de
controle de projet assisté par ordinateur: bien
que des informations de haute importance sont
fournies, normalment aucunne sortie graphique est
prévue. Cet article présente le systeme denomme
UniPert qui produit automatiquement des
diagrammes indiquant toutes les activités prenant
part d'un projet et leurs correspondantes
relations. Nous presentons ainsi une description
détaillée de 1'UniPert suivant ses principaux
eléments et respectifs algorithmes, de meme que
quelques examples de son emploi reel. La
principale contribution de cet article consiste
de 1'intégration de plusieurs theories et
techniques qui menerent au developpement du
systeme UniPert.

KEYWORDS: business graphics, project management,
parsing, data structures.

INTRODUCTION

The last twenty years have seen a tremendous
growth in the use of computer-based project
control systems. The increased availability of
such systems 1is mainly due to the following
facts:

. The expanding familiarity of project
management personnel with this tool;
. The pressure to complete work quickly before

inflation takes a large share of the budget;

. Management hope that an investment in
computerized project tracking will shorten
project time and decrease costs.

A project control system consists of computer
programs that analyze the activities present in a
project, as well as the topological relationship
among them. Inside the computer, a project is
represented as a network composed of activities
that have to be completed and a set of
relationships that have to be observed.

The two most common types of network notations
are:

o ACTIVITY ON NODE or PRECEDENCE NOTATION

In this notation, each activity is
considered to be a node in the network and
relationships between two activities are
called precedences and represented as edges
connecting the nodes associated to the
activities. Different types of precedences
are allowed and, for each type, a minimum
time span (referred to as a lag) must
separate the beginning or the completion of
both activities (referred to as predecessor
and successor).

Graphics Interface ’85

. ACTIVITY ON ARROW or ARROW DIAGRAM

In this notation, each activity is
designated in the network by an edge (arrow)
that starts at a predecessor node and ends
at a successor node; both nodes are called
events and have time values associated with
them.

Project control systems using any of the above
notations will calculate start and finish dates
for all activities, indicate how 1long each
activity can be delayed (referred to as float)
without delaying the whole project and highlight
the set of activities with critical float values.

In spite of the power and extended usage of
project control systems, even today project
management is sometimes considered to be an art
which involves skills for dealing with a great
number of concurrent and resource sharing
activities. This 1is due to the fact that those
involved in this sort of activity often rely on
their own previous experience and intuition
rather than on objective conclusions.

Part of the problem is caused by the project
control systems available in the market today. In
spite of being widely used, these systems usually
provide wusers with just lengthy user-specified
printed reports. To overcome this lack of
visualization and also to enhance comprehension,
several companies started offering systems that
provided users with graphical output more suited
to their needs. Another solution that 1is also
available in the market today acts as a
post-processor to existent project control
systems and generates the desired drawings.

Both approaches were not readily available in
Brazil in 1982, a time when several companies
started looking for this kind of graphical
output. Due to the restrictions posed by the
Brazilian government for companies to import
software, it was felt that a locally developed
system acting as a post-processor to available
project control systems should be the solution.
That was the start of the research that led to
the development of the UniPert system.

THE UNIPERT SYSTEM

The UniPert system comprises a control program
that accepts user input parameters, reads in
project data and produces the desired drawings.
UniPert can be interfaced to project control
systems using the precedence notation for
networks and will produce both precedence
diagrams with activities sorted in topological or
chronological order and Cannt barcharts.

UniPert was

develbped with the following

objectives in mind:

These

Drawings produced by the system should have
the same quality as those produced by
draftsmen;

System portability and graphics device

independence should be enforced;

The system should expend as little computer
resources as possible;

The system should be user oriented,
requiring neither extensive training nor
excessive data input.

objectives were attained by designing

UniPert as shown in (Fig. 1). As it can be seen,
UniPert can be divided into five major components

or

routines:

subsystems, each one comprising several
CONTROL PROGRAM
This subsystem coordinates the proper

operation of UniPert's remaining subsystems
while ensuring correct data flow.

DATA ACQUISITION

This subsystem is responsible for
interfacing UniPert to various project
control systems such as PROJACS, CIPREC or
MAPPS. This interface consists of a file
produced by the project control system
containing all activities and precedence
information present in the network used for
project analysis.

COMMAND INTERPRETER

This subsystem is responsible for reading
and parsing all free-form commands provided
by users. These commands are keyword
oriented, can be abbreviated or written in
full and their syntax is extremely flexible.
Parsing is accomplished by a non-recursive
top-down command syntax analysis, error
reporting and by calling action routines
associated with the commands.

GRAPHICAL OUTPUT

This subsystem is responsible for drawing
all charts produced by UniPert and it
consists of a suite of routines patterned
after the GKS standard (strict adherence to
CKS is not enforced, but all important
concepts and functions are present).
Although the 1list of available device
drivers includes both raster terminals and
pen plotters, only the latter are used by

Graphics Interface ’'85

- 267 -

UniPert; the reason 1is that users usually THE DATA ACQUISITION SUBSYSTEM

take copies of the drawings for distribution

and further analysis. UniPert can be interfaced to various project
control systems by means of a file containing

ALGORITHMS AND DATA STRUCTURES selected activities and precedences comprising a
network.

The algorithms and data structures employed
play a vital role in UniPert: both are
responsible for enhancing system overall
performance. From holding project data to
positioning activities and routing
precedences accross the network, these are
only a few examples of algorithm and data
structure usage in UniPert.

Although the format of this interface file may
change according to the system in use, 1its
structure must remain the same: activities have
to be sorted in lexicographic order and after
each activity there must be a list (possibly
empty) of its precedences. Besides activity and
precedence data, an interface file contains
several header records that allow UniPert to

identify the incoming network, its work breakdown
structure or run date; this general information
Data is used afterwards to properly place legends in
Acquisition the charts to be drawn.
JL The format of the interface file to be wused by
UniPert can be found in a master file which
Command Control |=D> describes the attributes associated with
interpreter || Program = Algorithms activities and precedences. For activities, the
minimum set of attributes includes identification
iL code, float and a start date; for precedences,
the minimum set includes preceding activity code,
Grapnhlcal precedence type and lag. In addition to a
Output flexible interface file format, users may specify
which information will be displayed in the charts
l produced by UniPert; this option allows users to
FIG. | effectivelz taylor UniPert's output to suit their
needs.
Almost all UniPert's routines were coded in . ; . .
Since interface files may contailn several

BLOKFOR, a structured language based upon
FORTRAN-77; the only exceptions to this rule are
some low level routines for address manipulation
that in some machines (e.g. IBM) have to be coded
in assembly language.

networks, each one with an unknown number of
activities and precedences, data acquisition is
performed by a two-pass procedure repeated for
each network present: the first pass writes the
next network in the interface file into an
intermediate file and allocates enough virtual
memory to hold all activities and precedences;
the second pass completes the process by reading
the intermediate file and storing activities and
precedences into the virtual memory data
structures.

The BLOKFOR language can itself be translated
into machine code by a two-pass procedure: the
first pass generates an intermediate program by
translating each BLOKFOR statement into
equivalent FORTRAN-77 statement(s) and the second
pass inputs this intermediate program to the
FORTRAN-77 compiler.

UniPert can be run on computers providing virtual THE COMMAND INTERPRETER
memory allocation that can be directly controlled
by an application program. At present there are
two UniPert releases running on IBM computers
under 0S/VS1, MVS and CMS and on VAX computers
under UMS. Although there are some minor
differences between both versions, source code
management is easily handled by the BLOKFOR
compiler itself.

The command interpreter used by UniPert can be
classified as a 'one-symbol-lookahead without
backtracking top-down parser' [WIRT76], [WIRT77].
The parser 1is similar to ‘a recursive-descent
parser except that recursion is removed by using
an internal stack. Grammars accepted by the
command interpreter are of class LL(1) [LEWI76]
and they are represented inside the parser as a
syntax graph. This syntax graph consists of nodes
that correspond to the terminal and non-terminal
symbols present in the grammar to be parsed.

The following sections will provide readers with
aditional information about the preceding
subsystems.

Graphics Interface '85

Command parsing is performed by traversing the
syntax graph in response to the tokens recognized
by a scanner. The scanner recognizes identifiers,
keywords, literals, numbers (both integer and
real), symbols, indirect command files [DEDO80]
and passes these tokens to the parser that will
compare them to the syntax graph node contents.
Graph traverse is aided by a stack which holds
pointers to the nodes that have yet to be
recognized. A pointer to the successor of a node
is pushed-down into the stack whenever this node
corresponds to a non-terminal symbol. Upon a
non-terminal symbol identification, a pointer is
popped-up from the stack and the analysis
proceeds with the pointed node.

Every node in the syntax graph has attached to it
the number of a 'semantic' routine that
corresponds to the action one has to take upon
node recognition; this scheme provides great
flexibility since it allows for a complete
separation of syntax and semantics [SETZ79].

To make interaction with UniPert easier, the
command interpreter allows users to input
commands with keywords in abbreviated form or
with extra words to improve readability. (Fig. 2)
gives an example of a command used by UniPert to
identify the company which is running the system;
(a) shows the command definitiom, (b) shows how
the command 1is represented in the syntax graph
and (c) shows some alternate forms of its use.

a) Command Definition:
COMPANY_COMMAND = ‘COMP.ANY’ ‘$LITERAL’.
[company_comman | o |

b)

COMP.ANY SLITERAL

COMPANY ‘ACME ENGINEERING CO’
COMPANY NAME IS ‘ACME ENGINEERING CO’

c) COMP = "ACME ENGINEERING CO
COMP ‘ACME ENGINEERING CO’

FiG. 2

268

GRAPHICAL OUTPUT PRODUCED BY UNIPERT

output:
sorted in
(Fig. 4)

UniPert produces two types of graphical
precedence diagrams with activities
topological (Fig. 3) or chronological
order and Gannt barcharts.

The main difference between both precedence
diagrams is how the activities are placed: in the
topological order, activities are sorted so that
each activity is placed to the right of all its
preceding activities; in the chronological order,
activities are sorted so that all activities to
the left have lower start date values than those
to the right. Another way of showing the
difference between both placement methods is to
notice that in topological order precedence flow
is always to the right; in chronological order
some precedences may turn back, thus flowing to
the left.

Gannt barcharts show no precedence information at
all but clearly indicate how long each activity
will take to be completed or how fast is work
being done. Since drawing barcharts do not pose
many challenges to UniPert, this paper will
concentrate just upon precedence diagrams.

diagrams, activity
important role: it
final chart will be
to route precedences

When drawing precedence
placement plays a trully
determines how aesthetic the
and how long it will take
through the set of rows and columns activities
had been placed into. As it can be seen in
(Fig. 5), activities are placed as boxes into the
rows and columns of a matrix. The distance
between rows is constant, allowing up to six
horizontal precedence segments to be routed
through. The distance between columns, on the
contrary, is not fixed and varies according to
the number of activities placed into them; this
scheme garantees that no two vertical precedence
segments will overlap each other.

Associated with every activity, there are two
points called leading (to the left) and trailing
(to the right) connectors. These points collect
all precedences so that arrivals are always made
at the left side and departures are always made
from the right side. This rule works perfectly
for activities sorted in topological order, since
preceding activities are placed to the left. For
chronologically sorted activities, there may be
some precedences in which the predecessor
activity comes to the right of the successor one;
in this case, the reversed precedence is drawn as
a dashed line (Fig. 6).

four different

Project management allows up to

types of precedences:

Graphics Interface ’85

FIG. 3 l

FiG.4 |

[T & I 1Vd -1]

QTXTEN

[Fas v Rruyey

LG R)

269

I
I

6§04M§gK71 _Qfﬁ:%‘%_s@.L
MNS”;UHF_N'I ELE‘TI:'CAS

1 TNOY 86 T4 1 TNOVEE Ta
L L 60 }
_______ B o i o o s s

FlG. 6 I

° FINISH TO START (FS) where the beginning of
an activity depends on the completion of its
predecessor;

° START TO START (SS) where the beginning of
an activity depends on the beginning of its
predecessor;

. FINISH TO FINISH (FF) where the completion
of an activity depends on the completion of
its predecessor;

° START TO FINISH (SF) where the completion
of an activity depends on the beginning of
its predecessors.

To make clear which type of precedence is
connecting two activities, UniPert draws along
the precedence's horizontal segment its type and
lag value. UniPert always draws this information
between activity columns in a position where no
precedence will ever cross it (Fig. 7).

As it was stated before, users can specify which
information will be posted inside activity boxes.
Up to fifty user-specified formats can be
accomodated and UniPert provides a default format
that includes: activity code and description,
early start and finish dates, duration, float and
a milestone flag (Fig. 8).

Graphics Interface '85

270 -

L&ifﬂ'i;lil‘iﬁl

FiG. 7 I

Actlivity Code Description

6504E 10K11
FABR/TR.* V
3%05 (075/8

18MARB3 | 180
Early S'rmr‘r/v 135€783 | 905 V\ Duration

Early Finish Float

FlG 81

Activities with critical float values are
properly highlighted so as to reflect their
importance. Highlighting is accomplished by
drawing critical activities and precedences with
a different linewidth (Fig. 9).

[6204MTOL 41] [epQ0440L01 }

- - owmar
[sam o] o]

FIG. 9|

All charts produced by UniPert are framed inside
four different but standard page sizes, ranging
from AO (118.8x84.0cm) to A3 (42.0x29.7cm). When
charts are divided into pages, there are some
precedences which cross page boundaries. UniPert
interrupts each crossing precedence and places at
interrupt points arrows indicating flow direction
and activity codes giving 'from-to' information
(Fig. 10).

L
o 'y
=

FIG. IOI

Each page is identified by a legend placed at the
lower-right corner; this legend gives the name of
the company using UniPert, displays the structure
of the network submitted, run date and page
number and also identifies the fields posted
inside activity boxes (Fig. 11).

Legend Describing Actlivity Box Contents

Legend Describing Company and
Network Data

DEMONSTRACAQO DO SISTEMA UNIPERT
et G

ALCA - ALCANGATE-ALCALIS DO M0 GRANDE 00 NORTC
68 -COMPRESSAO OC CO2

[T I FOLHA 1
SISTEMA UNIPERT

FVG.//I

ALGORITHMS AND DATA STRUCTURES

The main data structures used by UniPert comprise
a table for storing activities, a queue to be
used for sorting activities in topological order
and several linked lists for storing precedences
and also for precedence routing. All these data
structures are considered to be dynamic since
they only exist in virtual memory at run time.

Graphics Interface '85

As it was seen before, activities are placed as
boxes into the rows and columns of a matrix.
Column placing is accomplished by first sorting
activities in topological or chromological order;
this new ordering will be wused afterwards to
assign activities to the columns in a
left-to-right process. It may happen that some
rows have no enough space to accomodate all
assigned activities; in this case, the extra
activities are transferred to next columns until
all columns are properly filled.

Row assignment is accomplished by distributing
activities so that for each activity the sum of
the vertical distances to all preceding
activities 1is minimized. Activities sharing the
same predecessors will be placed into the same
row; to avoid this collision, activities are
evenly spread around their assigned rows.

Precedences are routed through channels placed
like a grid over the drawing; grid dimension is
set to 0.25cm (about 1/10in) and users have no
control about it. To easy the routing process,
activity boxes with leading and trailing
connectors are transformed into channel obstacles
(Fig. 12); using this approach, the router's only
task is to find pathes that avoid channel
obstacles and join activity connectors.

|
T+
1
T

1
e

1
!
1
I

|
|

l

|

i
!

;l:»i

!

!
|

t

&
\

i
|

|
|

l

*

fVG./Zl

accomplished by
through both connectors and by
horizontal segment that goes
from one line to the other without hitting any
channel obstacles (Fig. 13). If such segment is
ever found, 1t 1s 1inserted into the list of
channel obstacles with a tag identifying it as
being part of a precedence.

Path finding is extending two
vertical lines

searching for an

271

Final Solution

Successlive Trles

3

:
;

F/G./JI

After the routing process finishes, tagged
channel obstacles and their associated vertical
lines are drawn thus completing the algorithm.
Precedences not routed by this procedure are
printed in a report and left to be completed by
hand; except for just one extremely dense
network, where it attained a score of 977,

UniPert never failed to route all precedences.

The algorithm used for precedence routing is very
efficient and although routing time accounts for
up to 407 of total running time, overall
performance is very high. A network generated by
PROJACS consisting of 77 activities, 110
precedences took 23s of CPU time to be completed

in an IBM 4341 running under MVS; running time

was observed to be roughly proportional to both

the number of activities and precedences.

EXAMPLES OF UNIPERT'S USAGE

UniPert has been used for the last two years by

several companies as an aid to solve their

project management problems. Among these

companies one can find:

o A major civil construction company that used
UniPert to manage the building of an

international airport in Brazil;

@ A state railroad company that used UniPert
to manage its expansion program;

Graphics Interface '85

o An engineering company that used UniPert to
manage the construction of a chemical
processing plant.

Almost all companies employing UniPert use

PROJACS as their project control system, one

company uses CIPREC and another one will start

using MAPPS.

CONCLUDING REMARKS

This paper presented the UniPert system for

drawing charts that complement the output

produced by current project control systems. The

precedence diagrams and Gannt barcharts produced
by UniPert enhance project comprehension and
provide wusers with a new tool for project
analysis.

Looking at the software modules that comprise
UniPert, one can see the fusion of several
computer science techniques that led to the
production of a system that is not only modular
in nature but also easy to use, understand and
modify.

BIBLIOGRAPHY

REFERENCES MENTIONED IN THE TEXT
[DEDO80] Scanner Design

Dedourek, J. M.; Gujar, U. G.
Software-Practice and Experience
Vol. 10, 959-972 (1980)

[LEWI76] Compiler Design Theory

Lewis II, P. M.; et al
Addison-Wesley Publishing Co.
1976

[SETZ79] Non-recursive Top-down Syntax Analysis
Setzer, V. W.

Software-Practice and Experience

Vol. 9, 237-245 (1979)

[WIRT76] Algorithms + Data Structures =
Wirth, N.

Prentice-Hall

1976

Programs

[WIRT77] Compilerbau (in german)
Wirth, N.
B. G. Teubner

1977

(ed)

272

REFERENCES NOT MENTIONED IN THE TEXT

PROJACS Reference Manual
CIPREC Reference Manual available from:
International Business Machines Co.

MAPPS Reference Manual, available from:
Structural Programming, Inc.
83 Boston Post Road
Sudbury, MA 01776
U.S.A.

E-Z-PERT Reference Manual available from:

Systonetics, Inc.

801 E. Chapman Avenue
Fullerton, CA 92631
U.S.A.

UniPert Reference Manual available from:
Tecninger Sistemas Ltda
Av. Rouxinol,200 Cj71
Sao Paulo 04516
BRAZIL

Graphics Interface '85

(IBM)

