
- 21 -

THE INTERACTIVE PLANNING WORK STATION: A GRAPHICS-BASED
UNIXrM TOOL FOR APPLICATION USERS AND DEVELOPERS

Richard Bournique, AT&T Bell Laboratories, Holmdel, New Jersey 07733
Ronald Candrea, AT&T Bell Laboratories, Holmdel, New Jeney 07733

Don Hartman, MLC Inc., 150 E.Rivenide Drive, #400, Austin, Texas 78704

ABSTRACT

The Interactive Planning Work Station (IPWS) is a
UNIX-based system intended to support planning
and other complex decision-making tasks. IPWS
addresses the needs of at least two classes of users:
end users of an application (including both basic
and sophisticated) and application developers.
IPWS software provides for a meDu-oricnted user
interface, interactive database management
capabilities, and graphical input and output. The
work station capabilities, how they support cnd
usen, and how they simplify the dcvclopmcnt of
DCW applications, is the topic of this paper.

, ,
RESUME

L'Intcractive Planning Work Station (IPWS - Poste
de travail 1 planification interacti.f) est un syst~me
bas~ sur UNIX, co~ pour soutenir la planification
ct autres taches complexes dc prise de d«ision.
IPWS r~pond aux besoins des dcux classes
d'utilisateurs au moins: les utilisateurs finals d'UDe
application (fondamentale et compliqu~e inclus) et
lcs d~velopcurs d'application. Le logiciellPWS fait
provision pour une interface d'utilisateur li~e au
menu, dcs capacit~s pour la gestion des bases de
donn~cs intcractive, et pour l'entr" et la sortie
graphiques. Le sujet de ca travail comprcnd les
capaciti~s du poste de travail, la mani~rc dans
laquclle eUes souticnnent les utilisatcurs finals, et
commcnt cUes simplificnt le d~vcloppement des
nouvelles applications.

KEYWORDS: graphics workstations, user
interfacc, Corc, GKS, network planning

ne Trademark of AT&T Bell Laboratories.

I. INTRODUCTION

The Interactive Planning Work Station (IPWS) is a
UNIXrM-based system intended to support planning
and other complex decision-making tasks. Network
planning at AT &T has always becn supported by a
wide variety of edp systems. A typical planning
systcm includes a collection of algorithms that
produce large amounts of data to produce a
network plan. The primary user interface was, for
many years, a set of voluminous printouts. If the
system contained an interactive component it was
usually in the form of a single package for editing
data files or submitting batch runs.

As part of AT &T's Bell Laboratories responsibility
to design planning methods and tools to support
facility planning within AT &T Communications
(formerly Long Lines), a study was undertaken in
1978 to review the software architecture of the
existing gcneration of AT&T facility planning
systems and proposc an architecturc for ncxt
gencration systems. Onc of thc principal
conclusions of the study was that ncxt generation
systcms require a much better uscr interface than
the currcnt ones, and the only reasonable way to
provide the required interface is to build a scparate
system that can be adapted to mect the needs of a
variety of applications. It was out of this study that
work on IPWS grcw. IPWS design began in early
1979; at that time the intcnt was to demonstratc thc
feasibility of thc concept and provide a tcstbed for
furthcr devclopmcnt.

As IPWS has cvolved, morc uscrs and applications
havc bccn idcntified and thc nced for a complctc sct
of undcrlying tools, reaching bcyond thosc nceded
simply for nctwork planning, has becomc cvcn
greatcr. A ncxt gcncration low-cost work station
has sincc evolved in both hardwarc and softwarc
with potcntial applications cxtcnding into othcr
areas including markcting, opcrations rcsearch
studies, and statistical analysis.

ne Trademark of AT&T Bell Laboratories .

Graphics Interface '85

ll. WHAT IS IPWS7 WHO USES IT?

IPWS can best be 'fiewed as a collection of software
capabilities along with a control structure that ties
these capabilities together. The IPWS philOlOphy is
distinguished from other work station philosophies
in its emphasis upon software. That is, IPWS
should not be 'fiewed as a SpecUlC hardware device
but, rather, as a software architecture that can be
implemented on a variety of hardware devices. A
typical work station -terminal- coDlistl of an
alphanumeric terminal for displaying menus and
entering text, a color ruter graphics monitor for
displaying pictures, and a pointing device such as a
tablet or mouse for direct interaction with the
graphics screen. One configuration is an AT &:T
6300 PC with a high resolution color board and
monitor and a Microsoft mouse (Fig. 1).

Fig. l·The Interactive P1aDniDg Work Station hardware.

IPWS addresses the needs of at least two classes of
users: eTUl IISf!TS 0/ all applicatiOll (both basic and
sophisticated) and applicatioll developers [1]. Both
classes of users have different but overlapping
requirements.

2.1 End users of an application

The basic users of an application are typically non
programmers who have little interest in learning
about software or an underlying database structure.
Normally they work in a highly structured and
tightly controlled environment. To assist these

- 22 -

users, IPWS provides the ability to display
information graphically and add, delete, or modify
the display by pointing at various items on the
screen. Typically, these users want to interact
through a set of menus which define alternatives
available at each step of the application process.

More sophisticated users are those who use the
system on a regular basis to manipulate data to, for
eumple, perform special studies and uk one·time
-what-if" questions. The tasks to be performed
change frequently and the eDCt functions required
are often not known prior to performing the task.
These' users typically have some programming
experience and are frequently motivated to
understand an underlying database. The tools
needed by sophisticated users are those that
generate graphics displays to aid in understanding
the data (and to help locate data enon) as well as
tools that help users edit, synthesize, and
manipulate the data.

2.2 Application developers

Application developen design algorithms and
software packages for other users. They require
the same capabilities 81 sophisticated users plus
tools to assist in building application packages.
Software provided by IPWS here includes •
langauge for building application menus, a database
management system, an interactive graphics
package, and some general purpose: software
development packages.

2.3 IPWS features

Both end users and application developers see
IPWS 81 a system with three major features:

(i) A menu-oriented user interface
(ii) Interactive database management

capabilities
(ill) Graphical input and output.

These three features are e%panded upon in the
sections below.

m. nm MENU-ORIENTED USER INTERFACE

The question of whether it is better to provide users
with a command-oriented or menu-oriented user
interface to their applications is a difficult one. That
issue is resolved in the IPWS environment by
essentially providing both.

Graphics Interface ' 85

- 23 -

3.1 IPWS menus

Fig. 2 is an enmple of a work station menu. The
menu is displayed at the top of the alphanumeric
screen in an applicatiolJ programmer-defined
format. (See Section 3.2 below.) The remajnjng
bottom portion of the screen is used u a scrolling
region.

IPWS - GRAPHICS MENU FEATURING GRAOIAL - plots

I Input file - IInkdata
, nlter - bar. (options: bars curve atepaatata youra)
x x-axla field - ?
Y y-axla field - ?

a autO-8Xea: on
A 8Xes·eettJng menu

K clear whole saeen
k clear Just vlewport
a eeleet (using cursor)

IlIst~lr
rrun

> IlInkdata
> 'bars
>r
>

d dlaplay-lmt
a axlt

U user command file:
u user parama: none

w window: (d) 0 1 0 1
Y vlewport: (d) 0 1 0 1
c color: 1

p prInt..tJ R Runft:
G Global. I tutorial

Fig. 2-P1otJ is one of the basic menus on the Interactive
Planning Work Station. Users type the desired option in the
ac:rolling region below the menu. Online belp information and
tutorials L"C available for aD the basic work station menus.

Whenever the prompt character, ">", is displayed,
the user may select either an option from the
current menu (a one-character entry) or any built-in
or UNIX command (a multiple-character entry). To
UNIX system users, this appears in practice to be a
menu-oriented shell. Menu options may spawn
application programs, update entries in the current
menu, or invoke other menu pages.

IPWS provides a tree structure of basic work
station menus [2]. These menus include basic
capabilities m:my users want, including database
manipulation and graphical display. (See Sections
IV and V.) The basic menus may be run stand
alone or may be linked with application-specific
menus.

3.2 The menu language

To facilitate application developen in the creation
of menu interfaces for their applicatioDS, a menu
language [3] wu developed for IPWS. In many
ways the Menu Language looks like a subset of C
along with some additional functioDS. Fig. 3 is an
enmple of a menu language program.

page sortmenu()
{

}

atatlc char Int, ouff;

dlsplay(O, "Sorting Menu")
{

r "I" monu opllon at row 1, col 1 0'
:1, 1, 1; "Input file = ",Inf;

(
Inf = getfld();
update;
}

r "0" menu option at row 2, col 1 0'
:0,2, 1; "Output file = ",ouff;

{
ouff = getfld();
update;
}

r "R" menu opllon at row 3, col 1 0'
:R, 3, 1; "Run 8ort";

}

{
If (Ont 1= "") && (ouff 1= ""»

exec(BIN. "sort", Int, ouff);
else

prlnt("Mlsslng file nar.le(s)");
}

Fig. 3·A Menu Language program.

The most noticeable addition to the Menu Language
is the dbplay statement which lets users create their
own menus. To define a menu entry, the
programmer provides in the dl$play statement:

(i) The pick character, i.e., the character
typed to choose this menu option

Graphics Interface 'S5

- 24 -

(ll) The location of the entry using a row
column format (the top of the screen
is row zero; the lcft-hand side of the
screen is column zcro)

(ill) The explanatory tcxt to be displayed
beside the menu entry

(iv) The action(s) to be performed when
the menu option is chosen.

In addition to dbplay, other built-in fUDCtions, like
getjld and updat~ in Fig. 3, are provided as part of
the language for inputting data and updating the
menu information on thc scrccn.

IV. INTERACTIVE DATABASE MANAGEMENT

The interactive database management capabilities
on IPWS is a relational database managemcnt
system (DBMS) [4]. Much of the design of the
DBMS borrows from other database systcms,
notably mM's Systcm R.

IPWS database softwarc has becn designed in two
lcvels (Fig. 4). On the bottom lie the low-level
database access routines and the C language
interface. This level includes record and page
managen and an indexed access (B-tree) manager.
On top are numerous higher-level tools. They
includc database menus, some basic database
management utilities, a database editor, and a
graphical database language. An interactive query
interpreter is also in the works.

Database
Menus

Interactive
Query Language Database Graphical
and Utilities Database
DB Editor Languago

Low~evelaccesarouUnes(Clanguagelnbwface)

Record Manager Index Manager Concurrency
Page Manager Control

PhyalcalJLoglcal Fllea

Fig. 4-Levels of IPWS database software.

4.1 Low-level database management

IPWS supports both logical UNIX databases and
physical UNIX databases. Logical UNIX databases,
in which relations are stored as plain UNIX flIes, arc
intended primarily for penonal use where
concurrent access and crash recovery arc not
required. Physical UNIX databases, in which
relations arc stored in a UNIX physical flIe system,
are intended for applications that require largc
shared databases.

Usen may process databases sequentially or
through indexed access provided through the usc of
B-trees. Indices may be on a single ficld or on the
concatenation of several fields. Usen can also
create databascs made up of a collection of
interdependcnt relations.

The C language interface consists of a set of low
level C subroutines that are used for processing the
database on a record-at-a-time basis. Record-at-a-

. time access is useful for operations that arc
inherently procedural. In addition to accessing the
database, subroutines have also been provided that
support transaction control.

4.2 Higher level database tools

4.2.1 Database utilities

Many database functions are so frequently needed
that a set of database utilities has been provided for
quick and easy access. These utilities include the
ability to:

(i) Convert an ASCn file to a database file
(ii) Sclect and/or join database files

(ill) Print a database file
(iv) Concatenate, sort, and/or summarize

database files
(v) Index a database file .

Most of thesc utilities arc accessible either through
an IPWS command or through one of the basic
work station menus.

4.2.2 Interactive query language and editor

A database query language is in the works. The
fourth generation interactive query language will
allow usen to query a database and browse through
the results using the database editor.

Graphics Interface '85

- 25 -

The database editor,qde (query, display, and edit)
is a screen-oriented interactive program that allows
a user to browse through a relation in a database.
The editor appean much like the vi ten editor in
that a user can easily move around in a relation and
add, delete, or modify records. Format files can
optionally be provided that define the screen layout
for records being displayed. The format file can
also make certain fields invisible or protected.

4.2.3 Graphical database language

GRADIAL (Graphics and Database Interpreter and
Language) is a high-level procedural language that
marries database access and graphical display. It
has been mentioned here for completeness, since it
is both a database as well as graphic language.
More is said about GRADIAL in Section 5.3.2
after a more complete discussion of graphical input
and output is presented.

v. GRAPIDCAL INPUT AND OUTPUT

Like the database management software, there are
distinct levels of graphical functionality [6] to
consider (Fig. 5).

Graphics Menus

Graphics Graphical Picture
Utilities Database Editor

Language

Device-Independent Graphics Routines

VIrtual Device Interface
and

Device Drivers

Fig. 5-layors of IPWS graphics software.

At the lowest level are the hardware device drivers
and a virtual device interface (VDI) that controls
and invokes those low-level functions. The Den
level of software is a set of device-independent
routines that permits programmers to develop their
own graphical applications in C. Higher-level
software, built on top of the device-independent
routines, resides at the topmost level. A basic set of
graphics utilities are available as well as a graphical
database language and an interactive picture editor.

5.1 Device driven and the VDI

From the beginning, the intent was to allow users to
configure their IPWS work stations with the
hardware that their particular application dictated.
Consequently, many different graphics drivers
running under IPWS were anticipated. In the
authors' work environment alone, output drivers
have been written for the AT &T Teletype 5620
bit-mapped terminal, the Ramtek 9351, the Ramtek
6211, the Printacolor ink jet color printer, the
Hewlett-Packard 7221S plotter, the Bausch l'nd
Lomb DMP HIPLOT-29 and DMP-9 plotters, tbe
Epson FX-80 black and white printer, and the
Matrox, NEC, and Heurikon graphics boards; input
drivers exist for the Summagraphics bitpad, the
GTCO and CalComp Wedge tablets, and the
Microsoft and Logitech mice.

The highly repetitive and generally well understood
task of writing a device driver led to the definition
and implementation of a standard set of routines
and data structures that must be provided to drive
the device. The result is a device
independentldevice-dependent (DIIDD) interface [7]
or VDI. The concept of a DIIDD interface is
nothing new; but without the prospect of an
industry standard soon, it was thought necessary to
go ahead and define a standard IPWS interface.

The DIIDD interface allows the inclusion of not
only hardwar~ devices but so called ps~udo devices
as well. In particular, a device driver was written
that stores the graphics calls in an application
independent metafilc, thus allowing for the saving
and retrieving of images in a picturc library.

5.2 The device-independent graphics routines

The device-independcnt graphics routines comprise
the mid-level graphics softwarc of IPWS. In
ac:tuality there are two packages. One package is a
C implementation of Core, the ACM SIGGRAPH

Graphics Interface '85

r

Graphics Standards Planning Committcc's industry
standard for graphics functions [8]. The second
package is a C implementation of the newer,
internationally popular Graphical Kernel System
(GKS) standard [9]. Newer applications tend to use
the more complete GKS package.

Both packages consist of hundreds of user-callable
functions [10] and have, presently, the ability to:

(i) Draw two-dimensional line, marker, text,
or polygon primitives

(ll) Perform clipping, viewing, and image
transformations

(ill) Group the primitives into higher-level
nested segments

(iv) Set and inquire about various graphical
attributes

(v) Read input from different virtual input
devices.

5.3 Higber-level graphics software

5.3.1 Graphics utilities

Many graphics functions are rather basic and are
regularly used in an interactive session, regardless
of the particular application. Some of these basic
functions include:

(i) Automatic scaling and drawing of axes
for charts and graphs

(ii) Definition of colors to be used in drawing
the picture elements

(ill) Definition of the special marken (icons)
to be used as picture symbols

(iv) Interactive windowing and viewporting

(v) Production of panels (iconic menus) for
the graphics screen.

A set of about a dozen graphics utilities have been
provided on IPWS for easy access to these
frequently used operations. From the user's

- 26 -

viewpoint, these utilities appear to be UNIX-like
commands that can be invoked directly or through
basic menu options.

5.3.2 Graphical database language

The IPWS graphical database language, GRADIAL
(Graphics and Database Interpreter and Language)
[11] is a high-level language for desctibing a picture
to be drawn,-using the information in the records of
a database file. The GRADIAL interpreter
translates these higher-level constructs into the
appropriate lower-level graphics function calls.

Fig. 6 is a simple GRADIAL program that displays
LATAs (Local Access and Transport Areas).

atrtplck
ue

read
If lata It 800

color lcolcr
marker x y 14

endlf
endue

.. save LA TAs for picking

.. continue Until End of file

.. read the next database record

.. AT&T LATAa are < 800

.. eet LATA color

.. place marker #14 on point

.. end of If

.. end of loop

Fig. 6-A GRADIAL program.

The database file from which the picture was
constructed includes the fields lata (LATA
number), lcolor (LATA color), and (x, y) (location
of LATA) . With the appropriate database file and
GRADIAL program, the interpreter will generate
Lbe graphics that, equivalently, would require a C
program about fifty lines long. Fig. 7 is a black
and white rendition of the color display generated
by this program.

In addition to producing the picture, the interpreter
can also store the indices to the database records
from which the items in the picture were generated.
A later application process can let a user point to an
item on the scrccn causing the database record on
that item to be displayed on the alphanumeric
screen. The strtpid; statement in Fig. 6 tells the
interpreter to store the database records for later
picking.

Graphics Interface '85

- 27 -

Fia. 7-The display produced by the program in Fia. 6.

6.3.3 Interactive picture editor

In the same way that GRADIAL allows post
inquiry of the picture elements, it was also thought
important to provide users with the ability to post
edit a picture, independent of the particular
application that produced it. An interactive picture
editor [12] has been provided within the work
station for that purpose.

Most of the interaction takes place on the graphics
screen, using a tablet and cunor (or mouse). The
windows of control information, superimposed on
top of the picture, can be shuffled around like
sheets of paper on a desk (Fig. 8).

The picture editor allows a user to perform a wide
variety of tasks interactively that normally would
require some kind of programming effort. Users
can, for enmple, mix new colors, create new
marker symbols, stylize networks, and design
flowcharts, all interactively.

VI. SUMMARY

The Interactive Planning Work Station is a UNIX
based software architecture addressing the needs
many different users. Both end users and
application developers see IPWS as a system with a
menu-oriented user interface, interactive database
management capabilities, and graphical input and

Fig. 8-Pic:ture editor panels are superimposed OD top
of the picture to be edited. Users can move the panels
and make them visible or invisible u needed.

output. The numerous applications developed and
running on IPWS have demonstrated its potential
for becoming a valuable decision-maker's assistant
in the workplace.

Future IPWS plans include the evolution of the next
generation of hardware, movement toward a
single-screen multiple-window environment, and
the development of other higher-level software
tools such as a graphical database editor. Work on
IPWS should continue to be challenging and
exciting for some time to come.

REFERENCES

1. D. Hartman, S.l. Russo, and S. Udovic, "The
Interactive Planning Work Station- an
Introduction," lrateractiv~ Pla1Uli1lg Work
Statio1l User's Manual- VoluIM 2, Version 2.

2. H. Witting, "A Design Tutorial Using Basic
IPWS Menus," lrat~ractiv~ Pla1Uling Work
Station Uur's Manual- VoluIM 2, Version 2.

Graphics Interface '85

- 28 -

3. D. Hartman, "Menu Language for the
Interactive Planning Work Station," Int~ractiv~
Planni1lg Work Statlo1l Us~r's Ma,."al- VolurM
2, Version 2.

4. D. Hartman and S. Kashdan, "The IPWS
Database Management System," Intuactiv~
Pla1l1li1lg Work Statio1l Uur's Ma,."al- VolurM
2, Version 2.

5. S. Kashdan, "The Database Editor, qde
(Version 1.1)," Intuactiv~ Pla1l1li1lg Work
Statio1l Uur's Ma,."al- VolurM 2, Version 2.

6. R. Bournique, "Graphics Software Tools on
the Interactive Planning Work Station,"
Proc~edi1lgs 0/ th~ Applicatio1l Dev~loprMnt
Syst~m.r Symposium (April 1983), pp. 89-95.

7. R. Bournique and N. Mowatt, "IPWS General
Driver Interface," Int~ractive Pla1l1li1lg Work
Station User's Ma,."al- VolurM 3, Version.

8. "Status Report of the Graphics Standards
Planning Committee," Computer Graphics,
13, No. 2 (August 1979).

9. "Graphics Kernel System (GKS) - Functional
Description," ISO Draft Proposal ISOrre
97ISe 5 N 728 (December 1982).

10. R. Bournique, "The Definitive Guide to the
IPWS Graphics Package," Intuactiv~ Pla1l1li1lg
Work Statlo1l Uur's Ma,."al- VolurM 2,
Version 2) .

11. K. Kretsch, "GRADIAL Language
Specification", Int~ractive Pla1l1li1lg Work
Statlo1l Us~r'l Manual- VolurM 2, Version 2.

12. R. Bournique, "Picture Editing Made Easier:
A Guide to the IPWS Picture Editor,"
IlIt~ractiv~ Pla1l1li1lg Work Statioll U s~r' s
Ma,."al-VolurM 2, Version 2 .

Graphics Interface '85

