ABSTRACT

The Bezier formulation for parametric
curves has many qualities, among them the
intuitive relationship between the shape of
the control polygon and the shape of the
curve, and the casc of computation and sub-
division. Other formulations, however, have
become more popular because they offer
local control, or because they are interpo-
lating, or even more recently because they
provide the added flexibility of shape
parameters.

We present here techniques to use the Bezier
formulation to interpolate the two-
dimensional points given by a uscr with
cubic piecewise Bezier curves, while main-
taining up to G® continuity, and to interac-
tively manipulate the bias and tension of
each span, with gcometric entities clearly
rclated to the curve, while preserving the
degrece of geometric continuity prescribed
by the user.

RESUME

lLa meéthode de Bezier pour définir des
courbes parameétriques a dc nombreuses
gualiles, parmi lesquclles la relation intui-
Live cntre la forme de la courbe ct la forme
du palygone de controle, ct la facilite avec
lnquelle  les courbes  sont calcultes et
subdivistes. D'autres inelhodes, cependant,

sont devenus plus populaires parce qu'clles.

permettent le controle local, parce qu’clles
interpolent, ou bien plus récemment parce
qu'elles permettent dc plus la possibilite de
parameires de formes.
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Nous presentons ici des techniques pour
utiliser la meéthode de Beézier pour inter-
poler les points en deux dimensions donnes
par l'utilisateur avec des arcs de courbes dc
Bezier, tout en maintenant la continuité
géemetrique jusqu'a GRl Le systeme permel
aussi a l'utilisateur de manipuler de facon
interactive par l'intermédaire d'objects
géometriques intuitivement relies  aux
propriétées dsirees le biais et la tension de la
courbe obtenue.
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1. Bezicr Curves

The usc of piecewise spans of paramctric
polynomial curves joined together under
some continuity constraints to design
curves (and surfaces) goes back to Coons
and Bezier. Later, Ricsenfeld uscd B-splines
for the same purposc. Each of the various
formulations used have qualities and draw-
backs, but behind all is the dcsire to provide
the uscr (the designer) with a morc direct
and more intuitive control of the shape of
the curves.

Beézier curves use a simple and efficient for-
mulation where the curve is defined solely
in terms of a scl of points called conirol vei
lices connected in a sc.quence to forim a corn-
irol polygon (Kigure 1). 'l'he curve mimics
the overall shane of the control polveon bl
interpolates only the first and last verlices
of the control polygon. The curve is dcfined
by a polynomial whosc degrec is equal Lo the
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geometric characteristics of the Bézier for-
mulation.

3. Parametric and Geometric Continuity in
Bézier Curves
The relationships between the parametric
derivatives curves and the control vertices
are simple and well known [Faux79]. For
example, for cubic curves, and the first two
derivatives, assuming the spans defined
above have the control vertices {#;{ and {V;}
(Figure 3):
R M(t )=3(W3-W,)
Q M(u 0)=3(V -Vy)
(L Dt ,)=6(W ,~2W 3+ W q)
Q ®)Nu g)=8(V =2V 1 +V )

To ensure geometric continuity (G[@) the
preceding relationships together with the
beta constraints given above give the follow-
ing relationships for the vertices of span Q
as a function of the vertices of span R:

V°=W3
Vi=(1+8)W3—B, W2

)

&‘I\% V=B W, —(287+26,+ Ezz-)W2+(plz+2ﬂl+1+ E;—) W3

In other words, only Vg3 can be freely chosen
if we insist on G[R geometric continuity
once ! and g? are chosen. The crucial point
is that the relaxation of the continuity con-
straints gives us two more degrees of free-
dom. In particular, we can adjust 8, and 8; to
be able to ensure G[? on both sides of the
span. The usefulness of the Bézier formula-
tion is in the fact that the control vertices
and the shape parameters are directly and
simply related. [Rams85] discusses the
issues of parametrizations, geometric con-
tinuity and geometric constructions in
Bézier formulations.

4. The Interactive System

The user first interactively inputs a set of
two-dimensional points. These are the points
that will be interpolated by the system, and
the points the user will see most of the time
and use to modify the basic shape of the
curve. The system then draws a smooth
interpolating curve through the points. The
default method is to fit the cubic interpolat-
ing version of Catmull-Rom splines [Catm74].
In order to accomplish this while interpolat-

ing the end points, more information (two
values per end point) has to be provided.
One solution is to ask the user for "phantom’
vertices. But it is better to have the system
provide ''reasonable” extra vertices on its
own. A gcod solution when the inteided
curves have definite symmetries is to iake
the mirror image of the third point through
the perpendicular bisector to the first seg-
ment (and similarly at the end; see Figure 4).

The curve obtained is only Clll continuous at
the joints. More continuity could be provided
(actually the curve could be made G con-
tinuous everywhere) but that would be, in
general, at the price of undesirable varia-
tions between the joints. Note also that cli
continuous means Gl continuous with g,=1.0.

The next step is to create the extra control
vertices that define Bézier spans identical
with the spans already computed. It is a
straighforward change of basis. To simplify
the terminology, we will call points the
points originally defined by the user. Note
that they are also joints between the spans.
We will call control vertices the added ver-
tices of the Beézier control polygons. Of
course the joints are also control vertices.
We will mention them explicitly if need be
(Figure 5).

Now the user has available two kinds of con-
trol: shape and shape parameters. Shape is
controlled through the points (joints) and
shape parameters through the control ver-
tices. The system maintains the continuity
required by default or as specified by the
user. We will illustrate some possibilities.

The original points given can be manipulated
to change the overall shape of the curve.
These changes can be made while respecting
the local continuity that the user wants
respected. Note that these changes are only
local, since they affect only a small number
of spans. Four spans are affected for c(l
continuity, two for cll or G© continuity. Of
course the user can choose to split the curve
at this joint. While acting on the original
points, in general the control vertices are
not even displayed. They are automatically
updated by the system to maintain the
required constraints.

The other group of options is to manipulate
the control vertices to influence the shape
parameters of the curve at a joint. In this
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number of edges in the control polygon (that
is the number of control vertices minus
one). It follows immediately from this
definition that the formulation has global
not local control; that is the motion of a con-
trol vertex affects the shape of the entire
curve. Likewise the curve is infinitely
differentiable by virtue of being a polyno-
mial. A Bezier curve Q (u) defined by a set of
control vertices {V; ] is given by:

Q) =1Z::°v,9.(u)

where d is the degree of the curve and B
are the binomial coefficients:

By (u)= [?}u‘(l—u yt i=0.d

The Bézier formulation has numerous advan-
tages: the shape is better related to the con-
trol points than in others, there is an easy
geometric construction for the curves, and
splitting a curve into two spans is also
geometrically easy.

It is frequently desirable to decouple the
number of control vertices from the degree
of the curve, and to have local control as
well. In the Bezier formulation it is easy to
raise the degree of the curve, by creating a
new set of vertices that generate the exact
same curve with a (degenerate) polynomial
of higher order (Figure 2). If we have the set
{v,} with i =0,...d, the following formula
gives the set {W;] of control vertices with

i i .
wi=(E";T)vl—1+(1—m)vj i =0,...d +1

To obtain local control, we use a piecewise
representation of the curve. The entire
curve is composed of curve segments, each
of which is a Bézier polynomial. The common
point between them is called a joint. The
problem we face now is to maintain some
amount of continuity at the joints.

2. Parametric and Geometric Continuity

The smoothness of a piecewise curve has
traditionally been measured by maintaining
parametric continuity at the joints; that is,
a continuity in the parametric derivatives
on both sides of the joint. Parametric con-
tinuity is usually noted ci*! where n is the
order of the parametric derivative which is
equal on both sides of the joint. Recent work

has shown that parametric continuity is
overly restrictive; more relaxed constraints
of geometric continuity have recently been
proposed [Bars81, Bars83, DeRo85]. The key
insight is that the traditional measure of
continuity is affected by reparametrization.
Geometric continuity provides a metric
which is independant of the parametriza-
tion. The use of geometric continuity entails
the use of shape parameters which provide
further control of shape above and beyond
that of control vertices. 8, is known as bias
and measures the relative influence of the
tangent direction at a joint on each span. 8,
is called tension and controls the sharpness
or flatness of the curve. These parameters
appear in the equations of geometric con-
tinuity which are hence referred to as beta
constraints. When two shape parameters are
used, the continuity is denoted G@? con-
tinuity. The reader is referred to [DeRo85]
for a generalization of geometric continuity
to any order G[] and for the principle to
construct the beta constraints of any order
based on the chain rule of calculus. There
are domains of application where
parametric continuity is important, since
the parametrization is directly related to
the speed along the curve. But in other
applications, only the shape is important,
and this is where geometric continuity is the
relevant concept.

For geometric continuity up to G{, the
necessary relationships are, given that the
span R (t ) has a common joint with the span
Q(u) for the values of the parameters ¢, and
ug:

R Ot 1)=Q ©(uy)
R M(t )=6,Q M(u,)
R @(t ,)=82Q ®(ug)+B2Q (u,)
R @)t ,)=82Q @(u)+38,82Q ®(u ) +BsQ N(u,)

The formulations to which geometric con-
tinuity has been applied so far, besides being
somewhat expensive to compute, suffer [rom
another problem: the extra freedom given by
the new parameters g; and B, is not intui-
tively related to some geometric entity to be
manipulated by the user, but is controlled
by sctling some dials provided by Lhe pro-
gram [Koch84]. This is counter to the general
philosophy of parametric curves. We propose
here to remedy this by the use of the
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case, the vertices are visible, but move only
according to the continuity constraints
required. For instance, to manipulate the
bias at a joint, while respecting Gl con-
tinuity, the user only has to slide the con-
trol vertex along the line defined by the
tangent. The program automatically main-
tains the vertex on this line (Figure 8). To
adjust the tension, while for example keep-
ing tangent continuity at each end of the
span, the user grabs the segment defined by
the two middle control vertices, and moves
it closer to or farther from the segment
defined by the two original points (Figure 7).

The fact that the shape and the shape
parameters are locally controlled, and that
they are controlled through geometric enti-
ties visibly related to their effects is a great.
help in the interaction. The problem with
local control of shape parameters is the
often undesirable behaviour of the curves
between the joints. By having a "visible" con-
trol of shape, the user is better able to avoid
these problems, and to understand them if
they occur.

5. Conclusions

Bezier curves are easier to compute and to
subdivide than most formulations. They also
allow easy control over geometric con-
tinuity by the manipulation of the control
vertices. The scheme we prescented here
exploits these properties to give the user
explicit and intuitive control over bias and
tension with interpolating curves.

The scheme is currently limited to planar
curves. There are many areas of applica-
tions where good shape control in the plane
is useful. One of the most important ones is
font design. Some systems have already
becen implemented using parametric curves
[Plas83, Knut79, Pavl84]. It is our intention
to implement a prototypical system to apply
the techniques described in this paper to
that particular task.
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Figure 1. Bézier curve and its control po-
lygon.

Figure 2. Raising the degree of a Bezier
curve from cubic to quartic.
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Figure 3.Continuity constraints at the joints.
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I"igure 4.Crealing the phantom vertex by
syminetry.
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Figure 5.Interpolated points and control ver-
tices.
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Figure 6.Controlling the bias at a joint.

Figure 7.Controlling the tension.
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