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Parametric spline curves and surfaces are typically 
construded so that 80me number of derivatives matcb 
wbere tbe curve segments or surface patcbes abut. If 
derivativel up to order n are continuous, tbe segment. 
or patcbes are said to meet with C", or nUl order pG

nundric continuity. It ha. been shown previously that 
parametric continuity;' suJficient, but not necessary, for 
geometric smootbnea. 

Tbe geometric measures of .nit tangent aDd cur
vature vectors for curves, and tangent plane and Dupin 
indictltri: for surfacell, have been u.ed to define fim and 
second order geometric continuit,. III tb;' paper, we 
extend tbe notion of geometric continuity to arbitrary 
order n (a") for curves and surfaces, and present an 
intuitive development of constraint equatiou tbat are 
nece!IBary and sufficient for it, The constraints (bown 
as tbe Beta corutruint,) result from a direct application 
of tbe univariate cbain rule for CUTVell and tbe bivariate 
cbain rule for surface.. For fiBt and second order con
tinuity, tbe Beta cOllBtraints are equivalent to requiring 
continuity of tbe geometric measures detJCribed above. 

Tbe Beta COllBtraillt. provide for tbe introduction 
of quantities bown a. ,luapc parumeter,. If two curve 
segmeDts are to meet witb G" continuity, n shape pa--

Thia .ork ... aupponeci iD pan bJ the Defeaae Advuaceci 

R.eaearch Projeda Areoey UDder contrad uumber NOOO3~82-

C·02S&, tbe National Sc~nce POUDdation UDder If1UIt number 

EC8-8204:181, the State of California under a MicroeledroD~a 

IDnovation aDd Computer R.eaearcb OpponUDitiea If1UIt, aDd .. 

Shell Dodoral Pello •• hip. 

U.S.A. 

rameter. may be introduced. For surfaces, the UH of 
tbe collBtraints for G" continuity providel for tbe int~ 
dudion of n(n + 3) sbape fUlldiollB, defined along tbe 
boundary between two surface patcbes. For polynomial 
splines, tbe UH of tbe Beta COllBtraints allows greater 
flexibility tbrougb tbe sbape parameter. witbout rai. 
ing tbe polynomial degree. 

Tbe approacb we take;' important for lJeVeral 
rea8OllB: Firri, it geIJeran.es geometric continuity to 
arbitrary order for both curves and surfaces. Second, 
it shows the fundamental connection between geometric 
continuity of curvell and that of surfaces. Third, due to 
the cbain rule derivation, cOllBtraint. of any order can 
be determined more easily tban using derivatiollB based 
exclusively on geometric mea.ures. 

Ri8umt 

Les courbes et surfaces parametriques A base de 
splines sont generaJement construitell de f~on Ace qu 'un 
certain nombre de deriveet coincident aux raccorde
ment. entre les ara de courbe ou lell carreaux de sur
face. LorBqu'additionnellemeDt les n premiUell deriv~ 
sont continues, les ara ou lell carreaux se rencontrent 
avec continuiU p4ramltrique C", ou d'ordre n. n a dejA 
eM etabli que la continuiM parametrique est suJfisante A 
l'obteDtion d'un Iissage geometrique, mai8 qU'elle n'est 
pa. nece!IBaire. 

Les premier et deuxi~me ordres de continuite 
geometrique sont generalement definis A l'aide de 
mesures geometriques teu le vecteur tangent unitaire 
et le vecteur de courbure dans le ca. des courbell, ainsi 
que le pla.n tangent et l',ndictltri% de Dupin dan. le ca. 
del surfaces. Dans eet article, no us generalisons la no-
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tion de continuit~ ~m~trique a n'importe queJ ordre n 
(0") aussi bien pour lefJ courbefJ que pour lefJ surfacelJ. 
NolU presentons ~galement un d~veJoppemeld hdum! 
defJ equatiolJ5 de contrairlte n&:es.airefJ et su1!UaIltefJ. 
Ces contraintefJ, que nolU appelolJ5 lefJ contruinte.-beto, 
dkoulelJt directement defJ reglefJ de clJaJile a UlJe vari
able pour les courbefJ et a deux variablefJ pour lefJ sur
!ace& Pour les premier et second ordretJ de contilluit~, 
lefJ contraintetJ-beta sont equivaJenter a la contilluiM defJ 
mesures gkm~triquefJ dkritefJ ci-deJ8lU. 

Les con train tee-beta otf'relJt l'occa.ion d'izltroduire 
certainefJ qUalltite. COJUJUefJ 800. le nom de pGrurnAtre. 
tk forme.. Si deux ara de courbe doiveJ1t ., raccorder 
avec continuiM (;Y', n parametres de formefJ peuvent etre 
illtroduits. Pour lefJ surfaceJJ, l'utiIiaation defJ contrairltefJ 
de continuiM (;Y' permet d'izltroduire n( n + 3) fondioftl 
tk fonnu, lesqueUes sont d~fi.rJiefJ le long des limites 
communes elJtre les surfacefJ de deux carreaux mitoyen.. 
DaIl8 le ca. des splinefJ polynomiaux, l'utiIiaation des 
contraintes-beta permet une 8exibilitcf accrue grace awe 
parametres de former, Sail. pour autallt augmelJter le 
degre du polynome. 

Cette approclJe efJt importallte pour mailltee 
raisons. PremieremelJt, eUe ~eraJise la notion de conU
nuiM gkm~triquefJ awe ordl'efJ queJconquefJ, autallt pour 
lefJ courbes que pour lefJ surfacelJ. Dewdemement, eUe 
met en evidence la similarit~ fondamentale elJtre la con
tinuit~ gkm~trique defJ courbefJ et ceUe defJ surfacefJ. Fi
nalement, les regIes de clJalzJe fadlitent la determination 
de contraintes d'ordre queJconque, comparativement a 
ce qu'auraient permis dell derivatiolJ5 ba.ee. uniquemelJt 
sur de1J me1Jures gkm~trique& 

KEYWORDS: geometric modelling, continuity, param
etric curvell, parametric IUrfaces, Ihape parameters. 

1. Introduction 

Curves are defined or generated by par4metriZGtioftl 
(surface1J will be addressed in Section 3). A Unitl4ri
tlte (one variable) parametrization is a function IUch a. 
q(u) = (X(u), Y(u», where the dom4in pGrumder u is 
allowed to range aver aome interval ["0, UI)' For a given 
value of u, the function q(u) Call be thought of a.locat
ing a particle in Euclidean two-Ipace. ~ u is increased 
over the interval, the particle traverae8 a path defined 
by q, tracing out a curve in the proceaa (see Figure 1). 
If ["0, ud is thought of as an oriented line .egment, then 

q can be thought of a. a tkformtltion producing an ori
ented C:UrtI4!. The find derivative vector q(l) represents 
the tlelocityof the particle (in general, we denote the .oth 

derivative of a univariate function by superscript (i». 
The velocity is a vector quantity and, as such, conta.in.a 
information about orientation and rute, or speed. The 
second derivative vector q(2) repr~nb the tJCulerution 
of the particle, so it too contailJ5 information about the 
(change of) rate. Thus, a parametrintion contains in
formation about the geomdrJ (the shape or image of 
the curve), the orientation, and the rate. 

.. .. 

Plgure 1. TIu unitl4ritlte parumdrimtion q genertJtu 
4n oriented C:Un7e by deform4tion of tlu oriented line 
.egment ["o,ud. 

Figure 2 show the curves generated by three differ
ent parametrisations. The shape of the curve1J is identi
cal; they differ only in orientation and rate. Curves (a) 
and (b) have the same orientation at each point, but the 
rates differ. The curve labelled (c) differs from (a) and 
(b) in orientation aIld rate. If a curve is defined to be 
simply the geometry properly of a parametrization, one 
would conclude that figures (a), (b), and (c) represent 
equitl41ent curves. We will refer to this as the G mockl 
of a curve. Another pouibility is to consider the geom
etry and orientation, which we will call the GO mockL 
Using the GO model, one would say that (a) and (b) 
are equivalent, but (c) is different. The last possibil
ity we will consider is the GOR mock4 where geometry, 
orientation, and rate are all relevant to the definition 
of a curve. Using this model, no pair of the curve1J is 
equivalent. 

In recent years, heavy use has been made of piece
wise parametric functions known as parametric: .pline •• 
Spline curves are typically constructed by stitching to
gether univariate parametric functions, requiring that 
some number of derivatives match at each joint (the 
points where the curve segments meet). If n derivatives 
agree at a given joint, the parametrilations there are 
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(a) (b) (c) 

Pigure l. E"h 0/ tM C:UrN. doN Nu tM .4me 

imtu}ej tMY onl, dil/er i" one"tlltin G"d rate. one,,
tatio" u il'ldicllted b, GfTOWM4tU GI'Id rate u ir&dicllted 
b, vectorl tar&geRl to tM C:UrN,. 

said ~o mee~ wi~h "tla onkr pcaramdric c:oRli".it, (C
con~inuity for short). 

We main~ain ~ha~ the choice of a parlicular model 
for a curve, and hence ~he choice of how ~he curve seg
ments are s~itched together, should be application de
penden~. For ins~ance, if a spline it being used to define 
the motion of an objed in an animation I)'s~em, ~he 
GOR model iI mOll~ appropria~e .ince ~he orienb~ion 
and rate are of importance. In ~hia ~e of applica
~ion, parametric con~inui~y iI required ~o maintain the 
smoothness of the rate properties. In o~her wom, pa
rame~ric continuity will ensure tha~ ~he objec~ will moN 

smoo~hly. 

However, in CAGD ~he rate aapect of a parame
~risa~ion is often unimportan~. Consider for example 
~he use of splines to describe numerically-con~rolled cu~
ters. It may be necessary to specify uniquely ~he dire<:
~ion of the cutler a~ each point on ~he path, but the 
speed of the cuUer may depend upon ~he hardne1!8 of 
~he material being cut. For thil type of application, ~he 
GO model is moe~ suitable, bu~ parame~ric continuity iI 
overly restrictive since i~ places emphaait on irrelevan~ 
ra~e information. Many o~her applica~ions in CAGD 
require only ~he G model, bu~ i~ aeema difiicul~ \0 de
velop a useful formalism wi~hou~ ~he drudure provided 
by orientation. We will ~herefore adop~ ~he GO model, 
and develop an appropria~e meaaure of con~inuity, one 
based based only on ~he geome~zy and orien~a~ion pro~ 
ertiesj we refer to ~hil aa geomdric co"t'I'I.",. 

It has recen~ly come ~o our attention ~hat many 
authors have independently defined thia kind of con
tinuity of first and second order (which we denote by 
Gl and (Il, respectively) for curvea and/or .urfacea \la-
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ing geome~ric meana. For curves, Fowler & Wilaon10 • 

Sabin 1', Manning13, Faux & PraUD, and Barskyl each 
independently defined firs~ order continuity by requir
ing ~ha~ ~he ul'lit ta"ge"t flUtOrl agree at the join~s. To 
achieve second order continuity, bo~h the uni~ tangent 
and c:urvature vec~ors were required to ma~ch. Niel
IOn's v-spline" p08lletllle8 a .imilar kind of continuity. 
Theae geome~ric measurea eaen~ially ignore ~he rate in
formation by -norma1i.in~ the parametrisation before 
de~ermining smoothness. 

For surlacea, it iI common to require matching of 
tar&geRl plarae, for first order geometric continuity (cf. 
Sabin" and Veron e~ al20). For surfaces of second or
der geometric continuity, Veron e~ al and Kahmann12 

require continuity of n.orm41 c:uMlGture in every direc
~ion, a~ every poin~ on ~he boundary shared by the con
s~ituent surface pa~ches. As Veron e~ al and Kahmann 
each show, ~his iI equiva1en~ to requiring that ~he Du,"" 
il'ldic:lltri: (cf. DoCarmo' ) of each patch agree a~ the 
boundary curve. The Dupin indicatrix iI a measure of 
curvature, bu~ ~he curvature properties of surfaCes are 
sufficiently complex ~ha~ they canno~ be characterized 
by IOmething as simple aB a scalar or a vector. 

Although the geometric approaches described 
above are convenient and in~uitive for first and second 
order continuity, a more algebraic development iI bet
ter sui~ed for ~he extension to continuity of higher order. 
The approach we ~ake iI based on repcarametrizlltiol'l
the process of ob~aining a new parametrization given an 
old one. Under the GO model, reparametrization may 
change rate, but not geometry or orientation. By allow
ing reparametriza~ion before making a determination of 
continuity, the rate aspects of parametriza~ions may be 
ignored. Alterna~ely stated, our approach is based on 
the following simple idea: 

PJ: Don't base continuity on tbe parametrintion. at 
band; reparametn.e, it neceuary, fo obtain param
etmatiou tbat meet "itb parametric continuity. 
11 tbi. can be done, tbe original parametrintiou 
mu.d aJ.o meet .mootbly, at lea.t iD a geometric 
1JelL8e. 

The above concept iI no~ a new onej similar prin
ciples have been diacuased by Farin' and Veron e~ al20 • 

Wha~ iI new iI ~he use of the principle ~o construd con
.~raiD~ equa~ions (known aB ~he Beta c:ofUtrain.u) tha~ 
are necessary and sufficient for geometric continuity of 
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arbitrary order for both curves and surfaces. • 

The Beta constrainb generalise the parametric con
tinuity constrainb through the introduction of freely 
variable quantities called 'Mpe pclnlmete". Once the 
Beta constrainb are determined for a given order of con
tinuity, they may be used in place of the parametric con
tinuity constrainb when building Bpline., thereby ob
taining increased flexibility. For instance, if the (J2 con
straints are replaced with the (/J constrainb in the uni
form cubic B-splineH1 , the cubic Beta-spline resuUsI,2. 

The cubic Beta-Bpline is an approzimGti"f spline tech
nique that poaaesaea two shape parameters; an i"ter
polating technique is described in DeRoae & Banky&. 
Faux && PraU" and Farins use the extra freedom allowed 
by geometric continuity to place Blaer control flerliu •. 

All important aspect of theN techniques is that the 
additional flexibility of geometric continuity is added 
without increasing the degree of the polynomiala. This 
is pariicularly important for algorithm. that manipulate 
the spline. For instance, the complexity of Sederberg's 
algorithmlll to intersect two polynomial curves of degree 
d grows at least as fast as tP. Substantial savings 
can therefore be had by minimising the degree of the 
polynomials involved. 

In the remainder of this paper, we extend the 
notion of geometric continuity to arbitrary order" (0") 
and show (in a non rigorous way) that the derivation 
of the Beta constrainb resulb from a straightforward 
use of the univariate chain rule for curves and the 
bivariate (two variable) chain rule for surfaces. For 
a more complete treatment, the reader is referred to 
Banky & DeRoae3 and DeRoae6 • 

2. Geometric Continuity for Curves 

We begin the study of geometric continuity for 
curves by examining the reparametrisation proceaa. 
Two parametrizations are said to be GO-equitHJIent if 
they have the same geometry and orientation in the 
neighborhood of each point. Given a parametrisation 
q, all GO-equivalent paramebuationa may be obtained 
by fu"ctioR4l compo"itioft. More specifically, if q(u) 
and Ci(U) are GO-equivalent, then they are related by 
Ci(U) = q( u(U), for some appropriately chosen CM",. 

• Goodman" and Ramahawl6 haft iDdependent.y derived 

the uuivariate Beaa eonatraina. fJoom the univariate chain rule. 

0/ pclrumdu u(U) (see Figure 3). Since q and Ci musi 
have the same orientation, u must be an increasing func
tion of U, implying that u must satisfy the orientatio" 
pre"ervi"f co"ditio" U(I) > o. Intuitively, u(U) deforms 
the interval [U'o, ut! into the interval ["0, UI! without re
versing the orientation of the segment [U'o, UI!' Thia in 
turn implies that q and Ci will have the same geometry 
and orientation, but they may differ in rate. 

I .. 

u(u) 

I .. 

Ul 

Pigure 3. The equivalent pclnlmdriz4tioM q a"d Ci 
are related by the cM",e 0/ pclnlmder u(U). 

A univariate parametrilation is regular if the first 
derivative vector does not vanish. It is well known from 
differential geometry? that regularity is, in general, es
sential for the smoothness of the resulting curve. We 
will therefore restrict the diacuaaion to regular parame
trisations. We now give a more precise definition of 0" 
continuity: 

DetbdtloD 1: Let r(t), t E [to, t l ! and q( u), u E ["0, ut! 
be two parametriutiolUl .ucb tbat r(tJ) = q(Uo) (t1ee 
Figure 4). Tbese parametriutiolUl meet witb 0" COJlti
Jluity at J if and OJlly if tbere exist GO-equivaleJlt pa
rametrintiolUl i(t) and Ci(U) tbat meet witb era COJlti
Jluity. 

Definition 1 is simply a restatement of priJJciple PI, 
but in practice one cannot examine all GO-equivalent 
parametrisations iD an effort to find two that meet with 
parametric continuity. However, it is pouible to find 
conditions on r and q that are necessary and sufficient 
for the u:utence of GO-equivalent parametrisations that 
meet with parametric continuity. 

Although Definition 1 suggest. that both r and q 
Deed to be reparametrized, it is p08lible to show that 
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q 

Figure 4. TM panamet,utJtioM 1'(') GM q(v) meet tJt 
the common poiftt J. 

Definition 1 holds if and only if there exisb a q that 
meeb l' with parametric continuity. In other words, oo1y 
one of the paramehuatioll8 needa to be reparametrlsed 
to determine smoothneu. 

We will ultimately be interested in the derivative 
properties of q. The .mvaritJte cMin rule allows us to 
exprel!lll derivatives of q in terms of the derivatives of q 
and u. For example, the first derivative is given by 

-(I) _ dCi _ dq(u(U) 
q -ru- ru 

civ dq 
= ru civ 
= v(I) q(I). 

(2.1) 

In general, the i,b derivative of q can be written aa some 
function, call it CRi, of the first i derivatives of v and 
q. That is, 

q(i) = CRi(q(I), ... ,q(i), 

V(I), •• • , ~(i). 
(2.2) 

We are actually interested in q(i) evaluated at it. kft 
parametric eMpoint iio. Thus, derivatives of q and v 
must al80 be evaluated at their left endpoinb: 

q(i)(tio) = CRi(q(I)("o), ... ,q(i)("o), 

v(')(iio),···, V(i) (UO». 
(2.3) 

Since v is a eealar fundion, evaluating one of ib 
derivatives resulb in a real number. In parlicular, let 
vIi) (UO) = Pi, j = I, .•. , i. Equation (2.3) then becomes 

q(i)(UO) = CRi(q(I)("o)" ", q(i)(Uo), 
(2.4) 

PI, " ., Pi). 

The orientation preserving quality of v implies that 
PI > O. 

We are now in a position to state the primary result 
of geometric continuity for curves. Recall that l' and q 
meet with G" continuity if q can be reparametrised to q 
so that derivatives of l' and q agree. That is, we require 
that 

i = I, ... , n. (2.5) 

Positional continuity is implicitly auumed (see Fig
ure 4). Substituting equation (2.4) into (2.5) yields 

r(i)(ttl = CRi(q(l)("o)," .,q(i)("o), . • = I, ... , ft. 
PI,'" , Pi) 

(2.6) 
The coll8traiots resulting from equation (2.6) are the 
.ni"Griate Beta corutnairat. and the numbers PI, ••. , p" 
are the ,"a~ paramete,.,. The above discussion is not 
a proof that the Beta cOll8traiob are necessary and 
sufficient conditions for geometric continuity, but such 
a proof can be coostruded3.&. Thus, if equations (2.6) 
are satisfied for any choice of the ps, subject to PI > 0, 
then the coincident curve segmenb will meet with G" 
continuity. For instance, the Beta constrainb for G" 
continuity between l' and q are 

1'(1)(,.) = PI q(1)("o) 

r(2)(t.) = p~ q(2)("o) + P2 q(l)("o) 

r(3)(t.) = P: q(3)("o) + 3PlfJ2 q(2)("o) 

+ P3 q(l)( '(0) 

r(4)(t.) = Pt q(4)("o) + 6P~fJ2 q(3)( '(0) 

+ ("PlP3 + 3Pi) q(2)( '(0) + P4 q(I) ("0). 

(2.7) 

Although equatioll8 (2.7) were derived using the 
chain rule, the first two are identical to the constrainb 
resulting from a geometric derivation of unit tangent 
and curvature vector continuity2.l3. Thus, our approach 
reducea to previous definitioll8 of Cl and G2 continuity 
for curves. It can also be shown that Beta constraints 
for "tla order continuity are equivalent to requiring 
continuity of the first" derivatives with respect to an: 
length 3,&. 

When cOll8truding a spline technique, if the Beta 
constraints are used in place of the parametric conti
nuity coll8trainb, new freedom is introduced through 
the shape parameters. These parameters may be made 
available to a designer in a CAGD environment to 
change the shape of the target curve, as the following 
example shows. 
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Example 2.1: To demonatrate the use of the Beb 
conairainb, we will sketch the conatruction of the ge
ometric conUnuoua analogue of the uniform quarlic B
spline called (naturally enough) the quarlic Beta-spline. 

The ;'Ia segment of the quarlic B-spline ia generated 
by 

2 

«Ii(u) = L ViHB.(u), "e [0,11 (2.8) 
• =-2 

where the bui8 function. B.(u) are quariic polynomiala 
that satisfy 

• = 0, 1,2,3, 

le = -2, ••• ,1. 

(2.9) 

The sequence of control "mu. V i+" comprise a control 
polygon. 

Since the derivative properli~ of the basil fundioDl 
are inherited by q,', equation (2.9) impli~ that the curve 
segments meet with CS continuity • . The quarlic Beta
spline ia conatructed by building qUarlic polynomiala 
b.( u) that satisfy the (]3 conatraintl instead of the ~ 
conairainta of equation (2.9). That is, 

b(i) (1) = CR '(b(I)(O) . .. b(i)(O) 
.+1 ' ' '''.'. = 0, 1,2,3. 

/11t ... ,/1i) 
(2.10) 

Equation (2.10) impli~ that the basil functiona are 
dependent upon the shape parameter valu~. Changing 
a shape parameter therefore chan~ the shape of the 
resulting curve (see Figure 5). • 

3. Geometric Continuity for Surfaces 

In thia section, we extend the notioDl of geometric 
continuity to surfaces. Since care was taken in Section 2 
not to base the development of geometric continuity on 
conceptI (such as arc length) that don't apply to Iur
fac~, the machinery developed for univariate parame
triutions can be readily extended to bivariate parame
trisationa. 

A •• rfaa ptlkl& il defined by a bivariate function 
IUch as G(u,v) = (X(u,v),Y(u, v),Z(u,v)), where" 
and v are allowed to range over some region D of the 
uv plane (see Figure 6). Looeely lpeaking, a .. rfaa ia 
a collection of surface patch~. We ue the notation 
G(i,j)(u,v) to denote the ,'ila parlial derivative with 

..... •. 

.' . 

.. 
Plgue 5. The c:urve. caboft .UN Ulc .catftC control 
polygon, caM call M" /11 = 1 caM /13 = 0; tAe, differ 
onl, in tAc tICIluc of /12' The top c:vvc I&cu /12 = 0, Ulc 
middle C:UnNI I&cu fJ2 = 20, cand tI&. 6ottom C:UnNI M. 
/12 = 100. 

respect to U, and the ;'Ia parlial with respect to v. In 
general, a luperacript (i,;) denot~ the ,'ill partial with 
respect to the first variable, and the ;'11 partial with 
respect to the second. A bivariate parametrisation IUch 
as G ia rcgultJr if the fint order parliala (G(I ,O) and 
G(O,I) are linearly independent; we will deal excluaively 
with regular parametrisationa. 

In Section 1, we saw that univariate parametrisa
tionl contain information about geometry, orientation, 
and rate. The same ia true of bivariate parametrisatioDl. 
Orientation can be defined by treating D as an oricnUtl 
pltJf&C having a ~op aide- and a -bottom aide.- G can 
then be thought of as deforming the oriented plane to 
produce an oriented, or two-sided, IUnace patch. The 
rate information enters through the partial derivativ~ 
of the parametrilation. We can therefore speak of the 
G, GO, and GOR models of surfaces. Juat as for curves, 
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Pigure 8. The bif/4riate pGrtlmdrimtio" G deJo,..".. 
the orie"ted domtJi" D to ge..erate 4" orieftted ,.rloa 
pGtch. 

the I18e of a parlicular model should be application de
pendent. We will adopt the GO model for two reaIOna: 
first, orienbtion is necessary in applications, such as 
rendering, where the two-sidedne. of surfaces is impor
tant, and second. it seema difficult to develop a useful 
formalism without the structure provided by orienta
tion, especially when surfaces are allowed to intersed 
themselves. 

We now examine the repa.ra.metriution process for 
surface pakhes. Two bivariate pa.ra.metrisatioD.l are 
GO-equivalent if they have the aame geometry and 
orientation in the neighborhood of each point on the 
surface patch. If G( u, tI) and G(u, V) are GO-equivalent, 
then they are related by 

G(u,V) = G(u(u,V),tI(u,V)) (3.1) 

where the funcUons u and tI satisfy the orientation 
preserving condition ** 

We now examine how surface patches are stitched 
together with parametric continuity. Referring to Fig
ure 7, PC'"~ t) and G( u, tI) meet with "tla order param
etric continuity if and only if all like parlial derivatives 
of order up to " agree for each point of the boundary 
curve. That is, 

i + i = I .... ,". (3.3) 

where evaluaUon at , is to be interpreted as evaluation 
at all points P of ,. 

* * Readen familW with multivaria&e calculua may rccop1iae 

equation (3.2) .. the Jacobiau of the chance of parametriJaaion 

(cf. DoCum01 ). 

p 
F 

G 

Plgure 7. The ,.rf4U pGtCM' ge..erated by tM 
pGrtlmdriztltio ... P 4M G med at tI&.e bourul4,., CUrfIC ,. 

Just as for curves. parametric continuity is appro
priate for the GOR model of a surface, but it is not 
suitable for I18e with the GO model since it places em
phasis on irrelevant rate information. The determina
tion of continuity can be made insensitive to rate by 
allowing reparametrization. Thus, we say that P and G 
meet with G" continuity if and only if there exist GO
equivalent parametrizationa j and G that meet with c
continuity. 

u( u,v') 

V(ii'V~ 

~ 
,....." 

G 

,....." 

D 
Plgure I. G flM G fin: GO·equitHJIeftt pGrtlmetriztJ
tio... n:lflted b, tM ch4"ge 0/ pGrumdriztltio" tkter
mi..ed by u(u, V) 4M tI(u. U). 

In complete analogy with curves. only one of the 
parametrisations achally needs to be reparametrized, 
implying that P and G meet with G- continuity if and 
only if there exists a G such that 

i +i = I, ... ,'" (3.4) 

Once again, in complete analogy with curves, the bivari
ate chain rule can be used to express derivatives of G 
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in terms of G. In general, the i,itia parlial of G can be 
expreued as some fundion, call it CR.i,;, of the parliala 
of G, u, and v, up to order i + i. Stated mathematically, 

where the indices (k, I) are to take OD all poeitive value. 
.uch that k+l=i+i. 

We may DOW obtain the MfHJritJtC Bdo cOfUtraintl 
by evaluating (3.5) along the boundary curve, followed 
by .ubstitution into equation (3.4) to get 

p(i';)(1) = CR.i,j(G(··I'(1), 

.( •. 1)(1), t(·,I'(1» 
(3.6) 

for k + 1 = i + i and i + i = 1, ... , n. 
The equation. resuUing from (3.6) are the bivariate 

Beta constraints, and the lICalar fundiolll U(·,I)(1) and 
v(·,I)( 7) are the .hape fundiolll. A simple counting 
argument showlI that it is pOllllible to introduce n( n + 3) 
IIhape fundiolll when two patches are It itched together 
with Gift continuity. 

Just as the univariate Beta COllltraints can .up
plant the parametric continuity constraint. when build· 
ing .pline curves, the bivariate Beta constraints can re
place the parametric coutraintl w heD building .pline 
IUrfaces. It can be .hown that the Beta cOllltraintl for 
first and second order are equivalent to requiring con· 
tinuity of tangent planes and Dupin incatrices of the 
patches match along the boundary curve6 • Thu., the 
chain rule approach agrees with geometric intuition for 
both Gl and (J'J continuity. Moreover, the chain rule 
approach yields the second order collltraints with leas 
effort than the geometric approach. For higher order 
continuity, geometric intuition becomes more feeble, but 
the chain rule approach still applies. 

4. Conclusion 

We have defined n'ia order geometric continuity for 
parametric 'curves and surfaces, and derived the Beta 
constraint. that are necessary and lufficient for it. The 
derivation of the Beta cOllltrainta is based on a .imple 
principle of reparametruation in conjundion with the 
univariate chain rule for curves, and the bivariate chain 
rule for IUrfaces. This approach therefore uncovers the 
connection between geometric continuity for curves and 
geometric continuity for surfaces, provides new insight 
into the nature of geometric continuity in general, and 

allow. the determination of the Beta constraints with 
lellS effort than previously required. 

The use of the Beta collltrainta for G" continuity 
allowlI the introduction of n .hape parameters for curves, 
and n(n + 3) .hape functiou for lurfaces. The IIhape 
parameters and shape fundiolll may be used to modify 
the shape of a geometrically continuous curve or surface, 
respectively. However, geometric continuity is only 
appropriate for applicatiolll where rate aspects of the 
parametrisatiolll are unimportant since diacontinuities 
in rate are allowed. 

Aa a final comment, the approach we have taken 
is not based on measures that are inherent to curves 
and IUrfaces, 80 the generalisation to k·variate objects 
(volumes, hyper·volumes, etc.) can be made very sim· 
ply: two k·variate parametruatiolll are GO-equivalent 
if they are related by a change of parametruation with 
positive Jacobian; the corresponding Beta constraints 
may be derived in complete analogy to the development 
of Section 3, using the k-variate chain rule· in place of 
the bivariate chain rule. 
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