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Abstract

Parametric spline curves and surfaces are typically
constructed so that some number of derivatives match
where the curve segments or surface patches abut. If
derivatives up to order n are continuous, the segments
or patches are said to meet with C™, or ntd order pa-
rametric continuity. It has been shown previously that
parametric continuity is sufficient, but not necessary, for
geometric smoothness.

The geometric measures of unit tangent and cur-
vature vectors for curves, and tangent plane and Dupin
indicatriz for surfaces, have been used to define first and
second order geometric continusty. In this paper, we
extend the notion of geometric continuity to arbitrary
order n (G™) for curves and surfaces, and present an
intuitive development of constraint equations that are
necessary and sufficient for it. The constraints (known
as the Beta constraints) result from a direct application
of the univariate chain rule for curves and the bivariate
chain rule for surfaces. For first and second order con-
tinuity, the Beta constraints are equivalent to requiring
continuity of the geometric measures described above.

The Beta constraints provide for the introduction
of quantities known as shape parameters. If two curve
segments are to meet with G™ continuity, n shape pa-

This work was supported in part by the Defense Advanced
Research Projects Agency under contract number N00039-82-
C-0235, the National Science Foundation under grant number
ECS-8204381, the State of California under a Microelectronics
Innovation and Computer Research Opportunities grant, and a
Shell Doctoral Pellowship.

rameters may be introduced. For surfaces, the use of
the constraints for G® continuity provides for the intro-
duction of n(n + 3) shape functions, defined along the
boundary between two surface patches. For polynomial
splines, the use of the Beta constraints allows greater
flexibility through the shape parameters without rais-
ing the polynomial degree.

The approach we take is important for several
reasons: First, it generalises geometric continuity to
arbitrary order for both curves and surfaces. Second,
it shows the fundamental connection between geometric
continuity of curves and that of surfaces. Third, due to
the chain rule derivation, constraints of any order can
be determined more easily than using derivations based
exclusively on geometric measures.

Résumé

Les courbes et surfaces paramétriques 3 base de
splines sont généralement construites de fagon a ce qu’un
certain nombre de dérivées coincident aux raccorde-
ments entre les arcs de courbe ou les carreaux de sur-
face. Lorsqu’additionnellement les n premiéres dérivées
sont continues, les arcs ou les carreaux se rencontrent
avec continusté paramétrigue C™, ou d’ordre n. Il a déji
été établi que la continuité paramétrique est suffisante 3
Pobtention d’un lissage géométrique, mais qu’elle n’est
pas nécessaire.

Les premier et deuxiéme ordres de continuité
géométrique sont généralement définis 3 I'aide de
mesures géométriques tels le vecteur tangent unitaire
et le vecteur de courbure dans le cas des courbes, ainsi
que le plan tangent et Iindicatriz de Dupin dans le cas
des surfaces. Dans cet article, nous généralisons la no-
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tion de continuité géométrique 3 n’importe quel ordre n
(G™) aussi bien pour les courbes que pour les surfaces.
Nous présentons également un développement intuitif
des équations de contrainte nécessaires et suffisantes.
Ces contraintes, que nous appelons les contraintes-beta,
découlent directement des régles de chaine 3 une vari-
able pour les courbes et 3 deux variables pour les sur-
faces. Pour les premier et second ordres de continuité,
les contraintes-beta sont équivalentes 3 la continuité des
mesures géométriques décrites ci-dessus.

Les contraintes-beta offrent I’occasion d’introduire
certaines quantités connues sous le nom de paraméires
de formes. Si deux arcs de courbe doivent se raccorder
avec continuité G™, n paramétres de formes peuvent étre
introduits. Pour les surfaces, l’utilisation des contraintes
de continuité G™ permet d’introduire n(n + 3) fonctions
de formes, lesquelles sont définies le long des limites
communes entre les surfaces de deux carreaux mitoyens.
Dans le cas des splines polynomiaux, lutilisation des
contraintes-beta permet une flexibilité accrue grice aux
paramétres de formes, sans pour autant augmenter le
degré du polynéme.

Cette approche est importante pour maintes
raisons. Premiérement, elle généralise la notion de conti-
nuité géométriques aux ordres quelconques, autant pour
les courbes que pour les surfaces. Deuxiémement, elle
met en évidence la similarité fondamentale entre la con-
tinuité géométrique des courbes et celle des surfaces. Fi-
nalement, les régles de chaine facilitent la détermination
de contraintes d’ordre quelconque, comparativement 3
ce qu’auraient permis des dérivations basées uniquement
sur des mesures géométriques.

KEYWORDS: geometric modelling, continuity, param-
etric curves, parametric surfaces, shape parameters.

1. Introduction

Curves are defined or generated by parametrizations
(surfaces will be addressed in Section 3). A unsivan-
ate (one variable) parametrisation is a function such as
q(u) = (X(u),Y(u)), where the domain parameter u is
allowed to range over some interval [uo, u;]|. For a given
value of u, the function q(u) can be thought of as locat-
ing a particle in Euclidean two-space. As u is increased
over the interval, the particle traverses a path defined
by q, tracing out a curve in the process (see Figure 1).
If [uo, u1] is thought of as an oriented line segment, then

q can be thought of as a deformation producing an ors-
ented curve. The first derivative vector q(!) represents
the velocity of the particle (in general, we denote the s*b
derivative of a univariate function by superscript (1)).
The velocity is a vector quantity and, as such, contains
information about orientation and rate, or speed. The
second derivative vector q(?) represents the acceleration
of the particle, so it too contains information about the
(change of) rate. Thus, a parametrisation contains in-
formation about the geometry (the shape or image of
the curve), the orientation, and the rate.

]
q

Figure 1. The univariate parametrization q generates
an oriented curve by deformation of the oriented line
segment [ug, u,].

Figure 2 show the curves generated by three differ-
ent parametrisations. The shape of the curves is identi-
cal; they differ only in orientation and rate. Curves (a)
and (b) have the same orientation at each point, but the
rates differ. The curve labelled (c) differs from (a) and
(b) in orientation and rate. If a curve is defined to be
simply the geometry property of a parametrization, one
would conclude that figures (a), (b), and (c) represent
equivalent curves. We will refer to this as the G model
of a curve. Another possibility is to consider the geom-
etry and orientation, which we will call the GO model.
Using the GO model, one would say that (a) and (b)
are equivalent, but (c) is different. The last possibil-
ity we will consider is the GOR model, where geometry,
orientation, and rate are all relevant to the definition
of a curve. Using this model, no pair of the curves is
equivalent.

In recent years, heavy use has been made of piece-
wise parametric functions known as parametric splines.
Spline curves are typically constructed by stitching to-
gether univariate parametric functions, requiring that
some number of derivatives match at each joint (the
points where the curve segments meet). If n derivatives
agree at a given joint, the parametrizations there are

Graphics Interface '85




- 345 -

(a) () ()

Pigure 2. Each of the curves above has the same
image; they only differ in orientation and rate. Orien-
tation is indicated by arrowheads and rate is indicated
by vectors tangent to the curves.

said to meet with n'® order parametric continuity (C™
continuity for short).

We maintain that the choice of a particular model
for a curve, and hence the choice of how the curve seg-
ments are stitched together, should be application de-
pendent. For instance, if a spline is being used to define
the motion of an object in an animation system, the
GOR model is most appropriate since the orientation
and rate are of importance. In this type of applica-
tion, parametric continuity is required to maintain the
smoothness of the rate properties. In other words, pa-
rametric continuity will ensure that the object will move
smoothly.

However, in CAGD the rate aspect of a parame-
trization is often unimportant. Consider for example
the use of splines to describe numerically-controlled cut-
ters. It may be necessary to specify uniquely the direc-
tion of the cutter at each point on the path, but the
speed of the cutter may depend upon the hardness of
the material being cut. For this type of application, the
GO model is most suitable, but parametric continuity is
overly restrictive since it places emphasis on irrelevant
rate information. Many other applications in CAGD
require only the G model, but it seems difficult to de-
velop a useful formalism without the structure provided
by orientation. We will therefore adopt the GO model,
and develop an appropriate measure of continuity, one
based based only on the geometry and orientation prop-
erties; we refer to this as geometric continuity.

It has recently come to our attention that many
authors have independently defined this kind of con-
tinuity of first and second order (which we denote by
G! and G?, respectively) for curves and/or surfaces us-

ing geometric means. For curves, Fowler & Wilson®?,
Sabin!”, Manning'?, Faux & Pratt?, and Barsky® each
independently defined first order continuity by requir-
ing that the unit tangent vectors agree at the joints. To
achieve second order continuity, both the unit tangent
and curvature vectors were required to match. Niel-
son’s v-spline'* possesses a similar kind of continuity.
These geometric measures essentially ignore the rate in-
formation by *normaliging” the parametrization before
determining smoothness.

For surfaces, it is common to require matching of
tangent planes for first order geometric continuity (cf.
Sabin!® and Veron et al?°). For surfaces of second or-
der geometric continuity, Veron et al and Kahmann'?
require continuity of normal curvature in every direc-
tion, at every point on the boundary shared by the con-
stituent surface patches. As Veron et al and Kahmann
each show, this is equivalent to requiring that the Dupin
sndicatriz (cf. DoCarmo’) of each patch agree at the
boundary curve. The Dupin indicatrix is a measure of
curvature, but the curvature properties of surfaces are
sufficiently complex that they cannot be characterized
by something as simple as a scalar or a vector.

Although the geometric approaches described
above are convenient and intuitive for first and second
order continuity, a more algebraic development is bet-
ter suited for the extension to continuity of higher order.
The approach we take is based on reparametrization —
the process of obtaining a new parametrization given an
old one. Under the GO model, reparametrisation may
change rate, but not geometry or orientation. By allow-
ing reparametrization before making a determination of
continuity, the rate aspects of parametrizations may be
ignored. Alternately stated, our approach is based on
the following simple idea:

P1: Don’t base continuity on the parametrisations at
hand; reparametrise, if necessary, to obtain param-
etrisations that meet with parametric continuity.
If this can be done, the original parametrisations
must also meet smoothly, at least in a geometric
sense.

The above concept is not a new one; similar prin-
ciples have been discussed by Farin® and Veron et al?°.
What is new is the use of the principle to construct con-
straint equations (known as the Beta constraints) that
are necessary and sufficient for geometric continuity of
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arbitrary order for both curves and surfaces. *

The Beta constraints generalise the parametric con-
tinuity constraints through the introduction of freely
variable quantities called shape parameters. Once the
Beta constraints are determined for a given order of con-
tinuity, they may be used in place of the parametric con-
tinuity constraints when building splines, thereby ob-
taining increased flexibility. For instance, if the C? con-
straints are replaced with the G2 constraints in the uni-
form cubic B-spline!®, the cubic Beta-spline results'3.
The cubic Beta-spline is an approzimating spline tech-
nique that possesses two shape parameters; an snier-
polating technique is described in DeRose & Barsky®.
Faux & Pratt® and Farin® use the extra freedom allowed
by geometric continuity to place Béxier conirol vertices.

At important aspect of these techniques is that the
additional flexibility of geometric continuity is added
without increasing the degree of the polynomials. This
is particularly important for algorithms that manipulate
the spline. For instance, the complexity of Sederberg’s
algorithm'® to intersect two polynomial curves of degree
d grows at least as fast as d°. Substantial savings
can therefore be had by minimising the degree of the
polynomials involved.

In the remainder of this paper, we extend the
notion of geometric continuity to arbitrary order n (G™)
and show (in a nonrigorous way) that the derivation
of the Beta constraints results from a straightforward
use of the univariate chain rule for curves and the
bivariate (two variable) chain rule for surfaces. For
a more complete treatment, the reader is referred to
Barsky & DeRose® and DeRose®.

2. Geometric Continuity for Curves

We begin the study of geometric continuity for
curves by examining the reparametrisation process.
Two parametrizations are said to be GO-equivalent if
they have the same geometry and orientation in the
neighborhood of each point. Given a parametrisation
q, all GO-equivalent parametrisations may be obtained
by functional composition. More specifically, if q(u)
and q(u) are GO-equivalent, then they are related by
q(u¥) = q(u(u)), for some appropriately chosen change

* Goodman'! and Ramshaw!® have independently derived
the univariate Beta constraints from the univariate chain rule.

of parameter u(u) (see Figure 3). Since q and q must
have the same orientation, u must be an increasing func-
tion of 4, implying that u must satisfy the orentation
preserving condition u(!) > 0. Intuitively, u(u) deforms
the interval [uo, 4, ] into the interval [ug, u,] without re-
versing the orientation of the segment [to, 4,|. This in
turn implies that q and q will have the same geometry
and orientation, but they may differ in rate.

——
Yo

=
ASS
u(u)
q

~ ~

Ug U,

Pigure 8. The equivalent parametrizations q and q
are related by the change of parameter u(u).

A univariate parametrisation is regular if the first
derivative vector does not vanish. It is well known from
differential geometry? that regularity is, in general, es-
sential for the smoothness of the resulting curve. We
will therefore restrict the discussion to regular parame-
trizations. We now give a more precise definition of G™
continuity:

Definition 1: Let r(t),t € [to,t1] and q(u), u € [uo, 4, ]
be two parametrisations such that x(t;) = q(ug) (see
Figure 4). These parametrisations meet with G™ conti-
nuity at J if and only if there exist GO-equivalent pa-
rametrisations ¥(t) and (%) that meet with C™ conti-
nuity.

Definition 1 is simply a restatement of principle P1,
but in practice one cannot examine all GO-equivalent
parametrizations in an effort to find two that meet with
parametric continuity. However, it is possible to find
conditions on r and q that are necessary and sufficient
for the existence of GO-equivalent parametrisations that
meet with parametric continuity.

Although Definition 1 suggests that both r and q
need to be reparametrized, it is possible to show that
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Pigure 4. The parametrizations 2(t) and q(u) meet at
the common posnt J.

Definition 1 holds if and only if there exists a q that
meets r with parametric continuity. In other words, only
one of the parametrisations needs to be reparametrised
to determine smoothness.

We will ultimately be interested in the derivative
properties of . The univariate chasn rule allows us to
express derivatives of q in terms of the derivatives of q
and u. For example, the first derivative is given by

s 2 4 _ da(u(@)
u du
_dudq (2.1)
~ du du
- u(‘)q(”.

In general, the i*® derivative of  can be written as some
function, call it CR;, of the first s derivatives of u and
q. That is,

q¥ =CRi(q™,---,q",

W0y, 32

We are actually interested in q(¥) evaluated at its left
parametric endpoint éy. Thus, derivatives of q and u
must also be evaluated at their left endpoints:

q(T) = CRi(@™ (o), -+, 9 (u0),
(M (), -, ulV (%)).
Since u is a scalar function, evaluating one of its

derivatives results in a real number. In particular, let
ul) (&) = 5, § = 1,..., 5. Equation (2.3) then becomes

6(‘)(?4'0) = Ckl'(q(”(“o)s te .q(‘)("o).
ph tee :ﬂi)-

The orientation preserving quality of u implies that
B >0.

(2.3)

(2.4)

We are now in a position to state the primary result

of geometric continuity for curves. Recall that r and q

meet with G™ continuity if q can be reparametrised to q

g0 that derivatives of r and q agree. That is, we require
that

r(t) =3(%), s=1,..,n. (2.5)

Positional continuity is implicitly assumed (see Fig-
ure 4). Substituting equation (2.4) into (2.5) yields

r(‘)(tl) e Cki(q(l)(“o): ce »q(i)(“o)l

1=1,..,n.
Br,--+,Bi)

(2.6)
The constraints resulting from equation (2.6) are the
unsvariate Beta constrainis and the numbers §,,...,fn
are the shape parameters. The above discussion is not
a proof that the Beta constraints are necessary and
sufficient conditions for geometric continuity, but such
a proof can be constructed®®. Thus, if equations (2.6)
are satisfied for any choice of the fs, subject to 8, > 0,
then the coincident curve segments will meet with G™
continuity. For instance, the Beta constraints for G*
continuity between r and q are

10(t,) = B, 0 (uo)
r@(t,) = 87 ¢ (uo) + P29 (u0)
r®(t1) = 7 9 (o) + 36182 ' (w0)
+ 39" (u)
r9(t,) = A q¥(uo) + 6872 91 (uo)
+ (48185 + 363) 4 (uo) + Baq'") (uo).

2.7)

Although equations (2.7) were derived using the
chain rule, the first two are identical to the constraints
resulting from a geometric derivation of unit tangent
and curvature vector continuity?:!3, Thus, our approach
reduces to previous definitions of G! and G? continuity
for curves. It can also be shown that Beta constraints
for n'® order continuity are equivalent to requiring
continuity of the first n derivatives with respect to arc
length 3-8, .

When constructing a spline technique, if the Beta
constraints are used in place of the parametric conti-
nuity constraints, new freedom is introduced through
the shape parameters. These parameters may be made
available to a designer in a CAGD environment to
change the shape of the target curve, as the following
example shows.
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Example 2.1: To demonstrate the use of the Beta
constraints, we will sketch the construction of the ge-
ometric continuous analogue of the uniform quartic B-
spline called (naturally enough) the quartic Beta-spline.

The j*® segment of the quartic B-spline is generated
by

3
qi(v)= ) ViuxBe(u), u€o,1] (28)

k=-32

where the basis functions By(u) are quartic polynomials
that satisfy
B, (1) = B{(0),
1=0,1,2,3, (2‘9)
k=-2,..,1.

The sequence of control vertices V., comprise a conirol
polygon.

Since the derivative properties of the basis functions
are inherited by q;, equation (2.9) implies that the curve
segments meet with C° continuity. The quartic Beta-
spline is constructed by building quartic polynomials
bx(u) that satisfy the G® constraints instead of the C°
constraints of equation (2.9). That is,

8, (1) = CR:(b{(0), -+, 5{(0),
ph e lpi)
(2.10)

Equation (2.10) implies that the basis functions are
dependent upon the shape parameter values. Changing
a shape parameter therefore changes the shape of the
resulting curve (see Figure 5). °

i=0,1,2,3.

3. Geometric Continuity for Surfaces

In this section, we extend the notions of geometric
continuity to surfaces. Since care was taken in Section 2
not to base the development of geometric continuity on
concepts (such as arc length) that don’t apply to sur-
faces, the machinery developed for univariate parame-
trisations can be readily extended to bivariate parame-
trisations.

A surface patch is defined by a bivariate function
such as G(u,v) = (X(yu,v),Y(u,v),2Z(u,v)), where u
and v are allowed to range over some region D of the
uv plane (see Figure 6). Loosely speaking, a swrface is
a collection of surface patches. We use the notation
G("J)(u,v) to denote the i*® partial derivative with

+

Pigure 5. The curves above share the same control
polygon, and all have By = 1 and B3 = 0; they differ
only in the value of f3. The top curve has f3 = 0, the
msddle curve has S = 20, and the bottom curve has
B3 = 100.

respect to u, and the 5*® partial with respect to v. In
general, a superscript (5, §) denotes the §*® partial with
respect to the first variable, and the j*® partial with
respect to the second. A bivariate parametrisation such
as G is regular if the first order partials (G(}%) and
G(°1)) are linearly independent; we will deal exclusively
with regular parametrisations.

In Section 1, we saw that univariate parametrisa-
tions contain information about geometry, orientation,
and rate. The same is true of bivariate parametrisations.
Orientation can be defined by treating D as an oriented
plane having a “top side” and a “bottom side.” G can
then be thought of as deforming the oriented plane to
produce an oriented, or two-sided, surface patch. The
rate information enters through the partial derivatives
of the parametrisation. We can therefore speak of the
G, GO, and GOR models of surfaces. Just as for curves,
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@\Gfé

Pigure 6. The bivariate parametrization G deforms
the oriented domasn D to generale an oriented surface
patch.

the use of a particular model should be application de-
pendent. We will adopt the GO model for two reasons:
first, orientation is necessary in applications, such as
rendering, where the two-sidedness of surfaces is impor-
tant, and second, it seems difficult to develop a useful
formalism without the structure provided by orienta-
tion, especially when surfaces are allowed to intersect
themselves.

We now examine the reparametrisation process for
surface patches. Two bivariate parametrisations are
GO-equivalent if they have the same geometry and
orientation in the neighborhood of each point on the
surface patch. If G(u,v) and é(ﬁ,?f) are GO-equivalent,
then they are related by

G(%,7) = G(u(g, ), (5, 7)) (3.1)

where the functions u and v satisfy the orientation
preserving condition **

u(10)y(0:1) _ (0:1))(1,0) 5 (3.2)

We now examine how surface patches are stitched
together with parametric continuity. Referring to Fig-
ure 7, P(s,t) and G(u,v) meet with n*® order param-
etric continuity if and only if all like partial derivatives
of order up to n agree for each point of the boundary
curve. That is,

POI(9) =GE(q), i+j=1,.,n, (33)
where evaluation at 4 is to be interpreted as evaluation
at all points P of 1.

** Readers familiar with multivariate calculus may recognize
equation (3.2) as the Jacobian of the change of parametrization
(et. DoCumo’).

'

Pigure 7. The surface patches generated by the
parametrizations F and G meet at the boundary curve

7.

Just as for curves, parametric continuity is appro-
priate for the GOR model of a surface, but it is not
suitable for use with the GO model since it places em-
phasis on irrelevant rate information. The determina-
tion of continuity can be made insensitive to rate by
allowing reparametrization. Thus, we say that P and G
meet with G™ continuity if and only if there exist GO-
equivalent parametrizations F and G that meet with C™
continuity.

WEG

u(u,v)

v(u,v)
drh—" €

5

Figure 8. G and G are GO-equsivalent parametriza-
tions related by the change of parametrization deter-
mined by u(4,v) and v(4,v).

In complete analogy with curves, only one of the
parametrisations actually needs to be reparametrizsed,
implying that P and G meet with G™ continuity if and

only if there exists a G such that
PO () =GEI(q), i+j=1,.,n. (34)

Once again, in complete analogy with curves, the bivari-
ate chain rule can be used to express derivatives of G
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in terms of G. In general, the i, j*® partial of G can be
expressed as some function, call it CR; j, of the partials
of G, u, and v, up to order s +5. Stated mathematically,

é("ﬂ = Cki.j(G(k"): ‘(k")s t(b"))v (3‘5)

where the indices (k,!) are to take on all positive values
such that k+1=1+7.

We may now obtain the bsvariate Beta consirainis
by evaluating (3.5) along the boundary curve, followed
by substitution into equation (3.4) to get

PO (q) = CZ.‘,,'(GU"”(”»
o8, 8

fork+l=i+jands+j5=1,..,n.

The equations resulting from (3.6) are the bivariate
Beta constraints, and the scalar functions u(*!)(+) and
y(*/(~) are the shape functions. A simple counting
argument shows that it is possible to introduce n(n +3)
shape functions when two patches are stitched together
with G™ continuity.

Just as the univariate Beta constraints can sup-
plant the parametric continuity constraints when build-
ing spline curves, the bivariate Beta constraints can re-
place the parametric constraints when building spline
surfaces. It can be shown that the Beta constraints for
first and second order are equivalent to requiring con-
tinuity of tangent planes and Dupin incatrices of the
patches match along the boundary curve®. Thus, the
chain rule approach agrees with geometric intuition for
both G! and G? continuity. Moreover, the chain rule
approach yields the second order constraints with less
effort than the geometric approach. For higher order
continuity, geometric intuition becomes more feeble, but
the chain rule approach still applies.

(3.6)

4. Conclusion

We have defined n*® order geometric continuity for
parametric 'curves and surfaces, and derived the Beta
constraints that are necessary and sufficient for it. The
derivation of the Beta constraints is based on a simple
principle of reparametrisation in conjunction with the
univariate chain rule for curves, and the bivariate chain
rule for surfaces. This approach therefore uncovers the
connection between geometric continuity for curves and
geometric continuity for surfaces, provides new insight
into the nature of geometric continuity in general, and

allows the determination of the Beta consiraints with
less effort than previously required.

The use of the Beta constraints for G® continuity
allows the introduction of n shape parameters for curves,
and n(n + 3) shape functions for surfaces. The shape
parameters and shape functions may be used to modify
the shape of a geometrically continuous curve or surface,
respectively. However, geometric continuity is only
appropriate for applications where rate aspects of the
parametrizations are unimportant since discontinuities
in rate are allowed.

As a final comment, the approach we have taken
is not based on measures that are inherent to curves
and surfaces, so the generalisation to k-variate objects
(volumes, hyper-volumes, etc.) can be made very sim-
ply: two k-variate parametrisations are GO-equivalent
if they are related by a change of parametrisation with
positive Jacobian; the corresponding Beta constraints
may be derived in complete analogy to the development
of Section 3, using the k-variate chain rule* in place of
the bivariate chain rule.
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