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ABSTRACT 

We give a novel algorithm for building an 
octree from a set of parallelepipeds 
approximatIng an object. This is an important 
operation in solid modeling systems based on 
octrees. The algorithm is simple to program and 
easy to understand; in fact we give all the 
cooe. It crea te s a minimal octree from the 
given parallelepipeds. It does not lead to an 
intermeoiate storage swell. It is well-suited 
to hano1e very precisely specified objects which 
are made of a large number of parallelepipeds 
since it can work with linear files which are 
accessed in an orderly manner to lessen virtual 
memory page faul ts. 

KEYWORDS: solid modeling, octrees, 
parallelepiped approximatIon. 

INTRODU CT ION 

The vol ume of a sol id obj ect, Q, bounded by 
planar or curved surfaces is easily computed by 
numerical integration. Q is first approximated 
by a set of elements bounded by planes (e.g .. 
rectangular parallelepipeds, or PPs for short). 
These PPs are assumed without loss of general ity 
to be evenly spaced in the xy-plane but to have 
varying length along the z-axis. Then, the sum 
of t~eir volumes gives an approximation of the 
volume of Q. Theoretically, the exact volume of 
Q is t~e limit of this sum as the number of PPs 
approaches to infinity assuming that Q's 
bounoary consists of well-behaving surfaces. 

To compute t~e PPs from Q, one ca st s 
parallel rays t~rough t~e xy-plane . [6]. The 
2-dimenSlonal spacing, g, of rays In the 
xy-plane defines two dimenSlons of the PPs • . The 
t~ird dimension is specified by the entry/exIt 
pOints ot' a ray to/from the object. In this 
paper', we demonstrate t~e usefulness of 
parallelepiped approximation in a different 
context, namely, solidmodelingvia octrees [I, 
3, 4, 5, 10, 12]. 

Octrees are data structures for modeling 
solids by symmetric recursive indexing [8]. 
Assume that Q is inside a cubic universe, W, 
with edge length u = 2 LMAX , UIAX integer 
(typically 10). The universe is divided into u 1 

cubes of unit size called voxels. To obtain the 
octree, 0, W is symmetrically subdivided into 
eIght octants of equal volume. Each of these 
octants will either be homogeneous (fully 
occupied by Q or void) or heterogeneous 
(partially occupied by Q). The heterogeneous 
octa nt s are further div ided int 0 suboctant s. 
ThIs procedure is carried out recursively until 
octants (possibly single voxels) of uniform 
propertIes are Obtained. The approximate nature 
of 0 in modeling Q is inherent in the decision 
step at t~e voxel level; a partial voxel must 
either be labeled as full or empty. It is 
useful to visual ize octrees as a general ization 
of quadtrees [7]. 

In t~is paper we give a novel algorithm 
called STACK for building an octree from a given 
set of PPs approximating an obj ect. The 
advantages of STACK are as follows. It is 
simple to program ana easy to understand. It 
creates a minimal-sized (in a sense to be 

det ined later> octree from the given PPs. It is 
well-suiteo to handle very large (i.e., very 
precisely specified) objects since it can be 
progrmnmeo to work with linear files which are 
always accessed in an orderly fashion. It does 
not lead to an intermediate storage swell. 

Relevant papers on t~is subject are quite 
recent. In [7J, a special case, the conversion 
of 2-dimensional binary arrays to quadtrees has 
been considered. In [13J, an algorithm is given 
for constructIng the tree of ad-dimensional 
binary image from the tree s of it s 
(d - l)-dimenSlonal cross sections. In [9], an 
algorit9 is given for converting from the 
boundary representation of a solid to the 
corresponding octree model util iz ing a connected 
components labeling technique. 
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DATA snmcruRES 

A set, s= (x 1 , x~, ••• , x), is a 
collection of distinct elements~ An interval, 
[j .. k], is a sequence of integers, j, j+l, ... , 
k. A list, q, is a sequence of elements [x 1 , 

x~, ••• , xn ]. Element X1 is the head of q and 

xn is the tail. The empty list is denoted by 
[j. There are three fundamental operations on 
1 ist s: 

i) Access: Given ~ list q = [x1 , x.' 
xn ] and an integer i, return the i-th 

element q(i) - Xi of the list. 

ii) SUblist: Given a list q= [x 1 , x.' 
••• , Xn ] and a pair of integers i and j, 
return the list q[i •• j] = [x. x . 

l' 1+1'···' 

iii) Concatenation: Given two lists 

q = [x 1, X l' ••• , xn ] and r = [y l' Y 1 , 
Ym]' return their concatenation q.r = [X1, 
x., ... , xn ' Y1, Y1' ... , Ym]' If r has 
only one element this operation is called 
append. 

We de note the cardinal i ty, n, of a 1 ist q 
by Iq!. (The same notation is used for sets and 
for the ordinary absolute value function also.) 

An n-tuple, <x 1 , x~, •• • , x ) denotes n elements 
in that order. In general, n the notation of this 
paper closely follows that of [11]. 

We start with a description of our input 
ana output data structures, 11 and ll, 
respectively. It is assumed that u = 2 UlAX and 

K 
g = 2 where K e [O .. UIAX). The elements of 11 

are 4-tuples called PPs: 

11 = «x, y, %1' %1) I x, y, %1' %1 e 
[Ooou-1], %1 <= %.' and x, y, %1' %1+1 are 
all divisible by g}. 

~e elements of 11 will also be denoted by Pi' 
1 = 1, 1111. The x, y, %1' and %1 values of a 
particular p e 11 will be denoted by p(x), p(y), 
p(%~), and p(%.), respectively. It is assamed 
that ul PPs in 11 are mutually disjoint. 

We reter the reaaer to [11] for relevant 
terminoJ.ogy on trees. In a tree, the level of a 
no <le , v, is defined recursively as: 

level (v) 
level (v) 

0, if v is the root, and 
level(f(v» + 1, otherwise. 

Here f(v) denotes the father of v. A node with 
no sons is a leat. The level of a tree is 
unaerstood as the level of its deepest leaf. 
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The outpUt II of our algori thm is an octree (a 
tree in which every nonleaf node has eight sons) 
with the following properties : 

i) the noaes of II are labeled with three 
types: empty, full, and partial, 

ii) the root of II is always partial except 
when 11 is trivially equal to a completely 
full (resp. completely empty) W in which 
case it becomes full (resp. empty), 

Hi) the level of II is LMAX' = log u - log 
g = LMAX - I (In this paper log always 
denote s 1 og:a) , 

iv) the leaves of II are either empty or 
full, and 

v) the nonleaf node s of II are partial. 

Before we describe our main data structure, 
we give a few definitions to make the upcoming 
algorithmic description easier. A row at level 
i is a 3-tuple <x, y, z) where z is divisible by 

UIAX- . h = 2 1; this is a shorthand for PP ( x, y, 
z, z.) where z. = z + h - 1. It is noted that 
the z-length of a row at level i is always h 
units or h/g spacings. Two rows r 1 = (x 1 ' Y1' 
z) and r. = <x.' Y., z) at the same level are 
called adjacent if x 1 = x. and IY1 - y.1 = g. 
(Note t.l1at this definition J;equires that they 
have the same z-length.) 21 (i e [1..LMAX)) 
rows at level UlAX - i are combinable if when 
~orteQ i~ y to be r 1 , r., ... then every 
lntermealate r . in this sequence is adjacent to 
its predecesso~ and successor . 

For example, the rows <0, 0, 0 ) , <0, 1, 0 ) , 
<0, 2, 0), and <0, 3, 0) at level UIAX - I are 
combinable while the rows <0, I, 0). <1, 1. 0 ). 
<2. 1, 0), and <2. 0, 0) at level UIAX - 1 are 
not. 

Let r 1 , r., ... be 2i combinable rows at 
level LMAX - i. A square, s, at level UIAX - i 

f 2U1AX-i UIAX-i o by 2 by 1 voxels is obtained by 
combining them into a single 3-tuple <x, y. %) 

where sty) = min · (r . (y», and s(x) = r 1 (x) and 
J J s(%) = r 1 (z). lWo squares S1 = <x 1 • Y1' z ) and 

'. = <x.' y., %) at the same level are called to 
be adj acent if Y1 = y. and IX1 - x.1 = g. (They 
have the same %-length.) 2 i (i e [1. .UIAX)) 
squares are combinable if when sorted in x to be 

S1, s.. ... then every Sj in this sequence is 
adjacent to its predecessor and successor. 

For example, the squares <0 , O. 0 ) and (1, 

0, 0 ) at level UIAX - 1 are combinable while the 
squares ( 0, O. 0) and <0, 3, 0 ) at level 
UIAX - 1 are not. 
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Let S1, S2' ••• be 2i combinable squares 
at level LJ~X - i. A cube, c, at level ~X - i 
of 2 LMAX- i by 2LJ~X-i by 2 LMAX- i voxels is 
obtained frem their combination as a 3-tuple <x, 
y, z> where c(x) = min . (r.(x», and c(y) = r 1 (y) 
and c (z) = r 1 (z) • J J 

If a row, <x, y, z>, at level i, i < LMAX, 
is spl it in the z di rect ion then two row s, <x, 
y, z> and <x, y, z + h>, are obtained at level 
i + 1. If a square, <x, y, z>, at level i is 
split in x and y directions then four squares, 
<x, y, z>, <x, y + h, z>, <x + h, y, z>, <x + h, 
y + h, z>, are obtained at level i + 1. In both 

cases, h = 2 LMAX- i- I • It should be clear that 
the idea of splitting is generalizable to cubes 
and hypercubes. 

The maximal compo ne nt s of a pp p form a 
1 ist [m1 , m2 , ••• 1 of rows where each mi is a 
component. To find the components, first search 
for t!1e longest (in z) row in p. This is a 
component. Remove it frem p. This either 
reduces p to a shorter (in z) pp or partitions 
it int 0 two PPs which are al so shorter than p. 
In any case, this procedure recurses until a 
created component has z-length g. In this case 
it is not further pa rti tione d. It is noted 
tha t, once the maximal compone nt s are found it 
should be impossible to obtain a longer 
component by combining two components. 

For example, the maximal components of the 
PI' <I, I, 17, 93> are t!1e I ist of rows [<I, I, 
17> at lovel LMAX, <1, 1, 18> at level LMAX - I, 
<I, I, 20> at lovel LMAX - 2, <1, I, 24> at 
level LMAX - 3, <I, I, 32> at lovel LMAX - S, 
<1, I, 64> at lovel U~X - 4, <1, 1, 80> at 
level LJ~X - 3, <1, I, 88> at level LJ~X - 2, 
<1, 1,92> at level U~Xl. 

Our main data structure consists of a set 
of at most DMAX(LJ~X' + 1) - 1 lists that we 
wHI call aA-lists (dimension-level lists). 
Here, OMAX is the maximum dimension of Wand 
L~~X' = LMAX - K, as before. A aA-list at 
dimension D and level L is denoted as tD,L. 

There are LMAX' I-dimens10nal aA-lists, LMAX' 
2-dimens10nal aA-lists, and LMAX' - 1 
3-dimenS1onal aA-lists when 0 = 3. (In general, 
t!1e number of the highest dimensional lists will 
be one less than their predecessors.) The 
elements of to,L are rows if D = I, squares if 
D = 2, cubes if D = 3, and hypercubes if D > 3. 
Although our algorithm will still be correct for 
D > 3, we will not be concerned with this 
anymore since its practical value is 
quest10nable in the absence of affordable 4-D 
di spl ay dev ice s. 

When 1nl is very large it may be 
advantageous to employ linear disk files to hold 
the aA-lists. In this case, only three files 
w111 be open during the execution of our 
al gori thm: to L for read and t and t 

, D+l,L D, L+l 
both for write. Since reads always take place 
sequentially and writes are always carried out 
as appenas the algorithm is on solid ground 
against virtual memory page faults. 

Finally, al though we have a language with 
dynamic da ta structuring facil ities in mind to 
implement this algorithm, for static languages 
(such as Fortran) a 1 ist space to hold 
2(LMAX' + 1) aA-lists would be enough for any 
DMAX > 2. This is due to the fact that once the 
combine/split operation (to be explained later) 
is finished with I-dimensional aA-lists one can 
allocate for the 3-dimensional lists the same 
space occupied by them, and so on. 

ALGORITHM 

In the following, to express our algorithm, 
an Algol-like language combining Oijkstra's 
guarded command language and SE1L is used. This 
language is described in [11] in detail and will 
not be explained here. 

Throughout this paper DMAX will denote the 
maximum dimension which is typically 3; 0 is 
the current dimension. ~X denotes the maximum 
level Which is typically 10 for a spacing value 
g = 1; L is the current level. The universe, 
W, is at level 0 and an LMAX-level full octree 
has 8U~X lowest level nodes. Using a larger 
spacing it is possible to reduce the maximum 
level to LMAX' = ~X - log g. 

A briet· summary of our al gori thm, STACK, is 
as follows. First, STACK tries to combine 
adj acent rows into squares. (Assume that, each 
PI' has been divided into its maximal components 
and these have al ready been inserted into 
relevant I-dimenS1onal aA-list s using MAXCOM 
below. ) If a row cannot be combine d then it is 
split into two smaller (half-size) rows and they 
are triea, until the remaining pieces are at 
level LJ~X'. These are inserted into 0 since 
t!1ere is no way to combine them. 

Then. STACK tries to combine adj acent 
squa re 5 into cube s. Any square tha t ca nnot be 
combined is spl it into four smaller 
(quarter-size) squares and the process is 
repeated until the remaining pieces are at level 
U~X'. and they are added to O. Finally. all 
the cubes that were produced are added to O. We 
wul show in the next section t!1at this builds !2 
in its reauced form. (An octree is in reduced 
form if it has no pa rtial node s hav ing all empty 
or all full sons.) 
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In the following we give the main program 
and the other components of STACK. (This name 
is chosen to conjure up a vision of what this 
al gori t1lm is doing, i. e., stacking up things to 
build larger things.) 

PRoe stack(SET n, TREE a); 
OOMMENT main procedure to create an octree 

from a set of PPs; 
INTEGER L, D, g, K, LMAX, LMAX'; 
nrPLE p; 
LIST tD V 
OOMMENT'1nitialize (assume thatUIAX :=10 

and K := log(g»; 
UIAX' : = LMAX - K; 
FOR D E [1. .3] -) 

FOR L Il [0 •• UIAX'] -) 

tD L := [j 
ROF' 

ROF; 
a := NULL; 
OO&BlliNT read n and insert its maximal components 

into I-D OA.-lists; 
FOR p Il n -) maxcom(p, 0, 2LMAX - I, 0) ROF; 
OOMAlliNT start combine/spl it operation; 
FOR D Il [1 •• 2] -> 

FOR L Il 

IF D 
I D 

FI 
ROF; 

[O •• UIAX'-I] -> 

1 -) SORT tD,L BY y,Z,x; csrow(L) 
2 -) SORT tD,L BY z,x,y; cssqr(L) 

add elements of tD,LMAX' to a 
ROF; 
FOR L Il [O •• LMAX'-I] - > 

add elements of t3 L to a 
ROF; , 
OO&BIENT at this point a is obtained; 
REnJRN 
END stack; 

PRoe maxcom(nrPLE p, INTEGER 10. hi. L. 
IDDIFIES LIST tl,L) ; 

OOMAIENT find and add maximal components of p 
to I-dimensional OA.-lists; 

OOMAlliNT 10 and hi are the initial bounds of 
a maximal component . 

INTEGER nlo. nhi, tmp; 
OOMAIENT nlo and nhi are the running bounds of 

a maximal component. 

IF P(Z1) = 10 AND p(za) = hi -> tI L : = tI.L,[P] 
I P(Z1) >= 10 AND p(za) (= hi - > • 

L : = L + 1; 
nhi , = (hi + 10 + 1)/2 - 1; 
nlo := nhi + 1; 
tmp : = L; 
IF p(zd (= nhi AND p(za) 

maxcom (P. 10. nh i, L) 
P(Z1) >= nlo AND p(za) 
maxcom(p. nlo, hi. L) 

(= 

)= 

)= 

nhi -) 

nlo -) 

nlo -) p ( Z1 ) ( = nh i AND p ( Z a ) 
maxcom«x, y. Z1. nhi >. 
L := tmp; 

10. nhi, 

maxcom«x. y. nlo. za >. 
FI; 
L := tmp 

FI; 
REnJRN 
END maxcom; 

nlo, hi. 

L) ; 

L) 
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PKOC csrow(INTEGER L, 

MODIFIES LISTS ~1, L' t 2 , L' 
OOmlliNT combine/spl it /H.-llst t 1 ,L; 
INTEGER i, j , e, he, n, D; 
TIJPLE r, s, q; 

e : = 2 UIAX- L; he := e/2; D : = 1; n : = 
i := 0; 
00 UNr'IL i = n - ) 

i : = i + 1; 
OOM&mNT let r = (x 1 , Y1' Z1 ) be the i-th 

el ement of t D, L; 
IF mOd(r(x), e) () 0 - ) 

FI 
OD; 

tD L+t := tD L+l·[r, ( x 1 ' Y1 , Z1+he ) ] 
mOd(r x), eJ'= 0 - ) 
j := i + e/g - 1; 
IF j ) n - ) 
FOR m e [i. .n] - ) 

COmmNT let s = ( x, Y, z ) be the m-th 
el ement of t D, L; 

R~~;L+1 := t D,L+1'[s, ( x, y, z+he ) ] 

BREAK. 
FI; 
OOmmNT let q = ( x a , y~, zs ) be the j-th 

element of t . 
IF q(y) <> r(y) OR q?zt' () r(z) - ) 

t D,L+1 : = tD.L±1.[r, ( X1, Y1, Z1+he )] 
! q(y) = r(y) AND q(z) = r(z) - ) 

COMMENT combine; 

tD+1 L : = tD+1 L.[r]; i : = j 
FI' , 

t D, L : = []; 

REnlRN 
END csrow; 
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PROC cssqr(INTEGER L, 

MODIFIES LISTS ~2 , L' t 3 ,L' t 2 ,L+1) ; 
OOMlIENT combine/split OA.-llst t 2 ,L; 
INTEGER i, j , e, he, n, D; 
TIJPLE r, s, q; 

e := 2U1AX
-

L
; he : = e/2; D : = 2; n : = !tD,L!; 

i := 0; 
00 UNTIL i = n - ) 

i : = i + 1; 
OOM&mNT let r = ( x 1 ' Y1' 

element of tD,L; 
IF mod(r(y), e) ( ) 0-) 

FI 
OD; 

t D,L+1 := t D,L+1·[r, 

mOd(r(y), e) 0-) 
j := i + e/g 1; 
IF j ) n -) 
FOR m e [i • . n] - ) 

( x 1 ' Y1' Z1+he ), 
( x 1+he, Y1' Z1 ) ' 
( X 1+he, Y1' Z1+he ) ] 

COMMENT let s = ( x, y, z ) be the m-th 
e1 ement of t D, L; 

t D,L+1 := t D, L+1'[s, ( x, y, z+he ) , 
( x+he, y, z ) , 
( x+he, y, z+he ) ] 

ROF; 
BREAK 

FI; 
OOM&mNT let q = (x a , YS' zs ) be the j-th 

element of t . 
IF q(x) ( ) r(x) OR q?z~' ( ) r(z) - ) 

t D,L+1 := tD,L+l . [r, ( x 1 ' Y1' Z1+he ) , 
<x 1+he, Y1' Z1 ) ' 
<x 1+he, Y1' Z1+ he ) ] 

q(x) = r(x) AND q(z) = r(z) -) 
COMP.mNT combine ; 

tD+1,L := tD+1,L' [rl ; i := j 
FI 

tD,L : = (J; 

REnlRN 
END cssqr; 
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In STACK, the high-level operation "SORT 
1 ist BY key" is lexicographic since key is 
composite. In the same procedure, the "addition 
of a full nOde to 0" is intentionally left as a 
high-level step. This is due to the fact that 
an octree is basically a digital search tree 
(also known as trie) and handling insertion in a 
trie is well-known [2]. 

We state several properties of STACK 
de duce d from the se proce dures. 

Lemma 1: level(O) <= UfAX'. 
Proof: Obvious since the minimum cube must have 
an edge length >- g. 

Lemma 2 : The elements of t 1 ,UfAX' and t2,LJ~' 

cannot be combined and hence are full nodes of 
O. 
Proof: Triv ia.L. 

Lemma 3: Th~re is no need for t3 ,LMAX" 
Proof: Any lnput to t 3 ,LMAX' may come only from 
t 2 ,UfAX' which is [J at that point. 
Additl0nally, the latter cannot send the former 
anything since it cannot combine due to Lemma 2 . 

Lemma 4: 0 is always in reduced form at"ter 
STACK is applied. 
Proof : Ass\lllle that this is not true. Take any 
partia.L nOde of 0 at level L which has eight 
fUll nOdes. (Eight empty nodes are treated 
similarly . ) These certainly imply 2 LMAX- L 

combinable squares at level L + 1 which must 
have been correctly computed by CSROW procedure. 
But then CSSQR woul d correct ly combine them to • 
full cube at level L. 

EFFICIENCY 

To estimate the efficiency of STACK we 
examine its individual steps. Since we are 
trying to see the worst-case complexity ass\mle 
that g = 1, thus LMAX'" UfAX. 

For a given PP there may be as many as 
2(LMAX - 1) maximal components. Therefore, 
)~X~OM initiallzes all the I-dimensional 
bA-list s with rows in O(UfAX In I) operations 
under tlle assUllption that appends take 0(1) 
time. 

Sorting a bA-list is a common operation in 
STACK • . The important point is that for n > 1, 
11Sts tn L will not be completely scrambled 
prior to' sorting. Because of the way that new 
elements are appended into tllem in almost sorted 
order, they wHl have some order in them. (We 
reler tlle reader to CSROW and CSSQR to see this 
clearly.) On the other hand, one can assume 

that tllere wHl be no order in I-dimensional 
bA-list s ini ti ally,; they are in random order. 
This would not be true if the elements of n are 
1 isted in some order,; this may happen if the 
ray-casting is implemented in some methodical 
manner such as via do-loops while computing the 
PPs. It is also noted that I-dimenSional splits 
introduce some order to I-dimensional bA-lists 
also. To exploit the last fact one can use 
Shell sort which is of average-case 0(n1 •2s ). 
It is known that Shell sort has worst-case of 
0(n1 •s } and furthermore does less work when the 
file is partially ordered [2]. 

Finally, it is emphasized that a :fter the 
sorting step, CSROW and CSSQR execnte very 
efficiently since they make a single pass over 
the list and spend Itn,LI time since appends are 

carried out in constant tlme. 

IMPLEMENTATION RESULTS 

We implemented STACK in Ratfor (a 
structured dialect of Fortran). For a 
lIS-sphere, the elapsed CPU time of the 
algorithm is 9.2 seconds on a Prime 750. 
object is built from 833 PPs with LMAX = 
g = 16. The final octree has a total of 
nodes (4090 full, 1664 full with surface 

This 
10 and 
6569 
normal s 

-- see tlle explanation of surface normals 
below). For a paraboloid built from 916 PPs 
wlth LMAX = 10 and g = 32 the final octree has a 
total of 5913 nodes (3248 full, 1832 full with 
surlace normals). This takes 7.4 seconds of CPU 
tlme. In agreement with our predictions, the 
I/O time is low in both cases (0.9 and 0.3 
seconos, respectively). For a precisely 
specified lI8-sphere consisting of 129S5 PPs, 
STACK takes about 3 CPU minutes to build the 
final octree wllich has 106833 node sand 
LMAX = 8 . The nOde distribution is 67570 full 
nooes, 13354 partial nodes, and 25909 empty 
nOdes. This object is larger than many of the 
examples ci ted in [9] and [13]. 

In the sequel we describe an enhancement 
(which we also implemented) of this algorithm. 

Since an octree created by STACK must 
eventually be displayed, most of the time PPs 
wl11 also have surface normal vectors , n1 and 

n., associated with their Zl and z. endpoints. 
respectively. That is, p is a 6-tuple <x, y, 
Z1' z.' n1 , n.> where : 

n 1 = n. (x) i + n
1 

(y) j + n1 (z) k, and 
n. = n.(x)i + n.(y)j + n.(z)k. (Here, i . 
j, and k are the unit vectors in x , y, and 
z directions, respectively . ) 
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In tllis case, to create {) from n, the following 
approach may be used. Create for each p & n 
three PPs Pl, P1, and p' where: 

Pl = (x, y, Z1' Zl + g - I) with implied 
normal n1 , 

P1 = (x, y, Z1 - g + 1, Z1) with implied 
normal n 1 , and 
p' = (x, y, Zl + g, Z1 - g) with no 
normal s, 

assllllling that p = (x, y, Zl, Z1' n
1

, n1), 
Z1 - Zl ) g - 1. (If for a particular p, 
Z1 - zl. .. g - 1 then only Pl is created with 
implied normal~. This happened twice in the 
above 1/8-sp.l1ere as can be seen from the nUlllber 
of fnll nOGes with normals.) Once this 
partltlOnlng is done, the idea is to add Pl and 
P1 along with their normals to 0 directly since 
these must not be combined. Then for n' (which 
is the set including all p') STACK is applied as 
before. Basically, what we are doing can be 
slllllmarized as "pee.llng off tlle Skin" of n to 
obtain n'. 
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