
- 353 -

BUILDING AN OCTREE FROM A SET OF PARALLELEPIPEDS

Wm. Randolph Franklin
Varol Akman

Electrical, Computer, and Systems Engineering Department
Rensselaer Polytechnic Institute
Troy, New York 12180-3590, USA

518-266-6077

ABSTRACT

We give a novel algorithm for building an
octree from a set of parallelepipeds
approximatIng an object. This is an important
operation in solid modeling systems based on
octrees. The algorithm is simple to program and
easy to understand; in fact we give all the
cooe. It crea te s a minimal octree from the
given parallelepipeds. It does not lead to an
intermeoiate storage swell. It is well-suited
to hano1e very precisely specified objects which
are made of a large number of parallelepipeds
since it can work with linear files which are
accessed in an orderly manner to lessen virtual
memory page faul ts.

KEYWORDS: solid modeling, octrees,
parallelepiped approximatIon.

INTRODU CT ION

The vol ume of a sol id obj ect, Q, bounded by
planar or curved surfaces is easily computed by
numerical integration. Q is first approximated
by a set of elements bounded by planes (e.g ..
rectangular parallelepipeds, or PPs for short).
These PPs are assumed without loss of general ity
to be evenly spaced in the xy-plane but to have
varying length along the z-axis. Then, the sum
of t~eir volumes gives an approximation of the
volume of Q. Theoretically, the exact volume of
Q is t~e limit of this sum as the number of PPs
approaches to infinity assuming that Q's
bounoary consists of well-behaving surfaces.

To compute t~e PPs from Q, one ca st s
parallel rays t~rough t~e xy-plane . [6]. The
2-dimenSlonal spacing, g, of rays In the
xy-plane defines two dimenSlons of the PPs • . The
t~ird dimension is specified by the entry/exIt
pOints ot' a ray to/from the object. In this
paper', we demonstrate t~e usefulness of
parallelepiped approximation in a different
context, namely, solidmodelingvia octrees [I,
3, 4, 5, 10, 12].

Octrees are data structures for modeling
solids by symmetric recursive indexing [8].
Assume that Q is inside a cubic universe, W,
with edge length u = 2 LMAX , UIAX integer
(typically 10). The universe is divided into u 1

cubes of unit size called voxels. To obtain the
octree, 0, W is symmetrically subdivided into
eIght octants of equal volume. Each of these
octants will either be homogeneous (fully
occupied by Q or void) or heterogeneous
(partially occupied by Q). The heterogeneous
octa nt s are further div ided int 0 suboctant s.
ThIs procedure is carried out recursively until
octants (possibly single voxels) of uniform
propertIes are Obtained. The approximate nature
of 0 in modeling Q is inherent in the decision
step at t~e voxel level; a partial voxel must
either be labeled as full or empty. It is
useful to visual ize octrees as a general ization
of quadtrees [7].

In t~is paper we give a novel algorithm
called STACK for building an octree from a given
set of PPs approximating an obj ect. The
advantages of STACK are as follows. It is
simple to program ana easy to understand. It
creates a minimal-sized (in a sense to be

det ined later> octree from the given PPs. It is
well-suiteo to handle very large (i.e., very
precisely specified) objects since it can be
progrmnmeo to work with linear files which are
always accessed in an orderly fashion. It does
not lead to an intermediate storage swell.

Relevant papers on t~is subject are quite
recent. In [7J, a special case, the conversion
of 2-dimensional binary arrays to quadtrees has
been considered. In [13J, an algorithm is given
for constructIng the tree of ad-dimensional
binary image from the tree s of it s
(d - l)-dimenSlonal cross sections. In [9], an
algorit9 is given for converting from the
boundary representation of a solid to the
corresponding octree model util iz ing a connected
components labeling technique.

Graphics Interface '85

DATA snmcruRES

A set, s= (x 1 , x~, ••• , x), is a
collection of distinct elements~ An interval,
[j .. k], is a sequence of integers, j, j+l, ... ,
k. A list, q, is a sequence of elements [x 1 ,

x~, ••• , xn]. Element X1 is the head of q and

xn is the tail. The empty list is denoted by
[j. There are three fundamental operations on
1 ist s:

i) Access: Given ~ list q = [x1 , x.'
xn] and an integer i, return the i-th

element q(i) - Xi of the list.

ii) SUblist: Given a list q= [x 1 , x.'
••• , Xn] and a pair of integers i and j,
return the list q[i •• j] = [x. x .

l' 1+1'···'

iii) Concatenation: Given two lists

q = [x 1, X l' ••• , xn] and r = [y l' Y 1 ,
Ym]' return their concatenation q.r = [X1,
x., ... , xn ' Y1, Y1' ... , Ym]' If r has
only one element this operation is called
append.

We de note the cardinal i ty, n, of a 1 ist q
by Iq!. (The same notation is used for sets and
for the ordinary absolute value function also.)

An n-tuple, <x 1 , x~, •• • , x) denotes n elements
in that order. In general, n the notation of this
paper closely follows that of [11].

We start with a description of our input
ana output data structures, 11 and ll,
respectively. It is assumed that u = 2 UlAX and

K
g = 2 where K e [O .. UIAX). The elements of 11

are 4-tuples called PPs:

11 = «x, y, %1' %1) I x, y, %1' %1 e
[Ooou-1], %1 <= %.' and x, y, %1' %1+1 are
all divisible by g}.

~e elements of 11 will also be denoted by Pi'
1 = 1, 1111. The x, y, %1' and %1 values of a
particular p e 11 will be denoted by p(x), p(y),
p(%~), and p(%.), respectively. It is assamed
that ul PPs in 11 are mutually disjoint.

We reter the reaaer to [11] for relevant
terminoJ.ogy on trees. In a tree, the level of a
no <le , v, is defined recursively as:

level (v)
level (v)

0, if v is the root, and
level(f(v» + 1, otherwise.

Here f(v) denotes the father of v. A node with
no sons is a leat. The level of a tree is
unaerstood as the level of its deepest leaf.

- 354 -

The outpUt II of our algori thm is an octree (a
tree in which every nonleaf node has eight sons)
with the following properties :

i) the noaes of II are labeled with three
types: empty, full, and partial,

ii) the root of II is always partial except
when 11 is trivially equal to a completely
full (resp. completely empty) W in which
case it becomes full (resp. empty),

Hi) the level of II is LMAX' = log u - log
g = LMAX - I (In this paper log always
denote s 1 og:a) ,

iv) the leaves of II are either empty or
full, and

v) the nonleaf node s of II are partial.

Before we describe our main data structure,
we give a few definitions to make the upcoming
algorithmic description easier. A row at level
i is a 3-tuple <x, y, z) where z is divisible by

UIAX- . h = 2 1; this is a shorthand for PP (x, y,
z, z.) where z. = z + h - 1. It is noted that
the z-length of a row at level i is always h
units or h/g spacings. Two rows r 1 = (x 1 ' Y1'
z) and r. = <x.' Y., z) at the same level are
called adjacent if x 1 = x. and IY1 - y.1 = g.
(Note t.l1at this definition J;equires that they
have the same z-length.) 21 (i e [1..LMAX))
rows at level UlAX - i are combinable if when
~orteQ i~ y to be r 1 , r., ... then every
lntermealate r . in this sequence is adjacent to
its predecesso~ and successor .

For example, the rows <0, 0, 0) , <0, 1, 0) ,
<0, 2, 0), and <0, 3, 0) at level UIAX - I are
combinable while the rows <0, I, 0). <1, 1. 0).
<2. 1, 0), and <2. 0, 0) at level UIAX - 1 are
not.

Let r 1 , r., ... be 2i combinable rows at
level LMAX - i. A square, s, at level UIAX - i

f 2U1AX-i UIAX-i o by 2 by 1 voxels is obtained by
combining them into a single 3-tuple <x, y. %)

where sty) = min · (r . (y», and s(x) = r 1 (x) and
J J s(%) = r 1 (z). lWo squares S1 = <x 1 • Y1' z) and

'. = <x.' y., %) at the same level are called to
be adj acent if Y1 = y. and IX1 - x.1 = g. (They
have the same %-length.) 2 i (i e [1. .UIAX))
squares are combinable if when sorted in x to be

S1, s.. ... then every Sj in this sequence is
adjacent to its predecessor and successor.

For example, the squares <0 , O. 0) and (1,

0, 0) at level UIAX - 1 are combinable while the
squares (0, O. 0) and <0, 3, 0) at level
UIAX - 1 are not.

Graphics Interface '85

- 355 -

Let S1, S2' ••• be 2i combinable squares
at level LJ~X - i. A cube, c, at level ~X - i
of 2 LMAX- i by 2LJ~X-i by 2 LMAX- i voxels is
obtained frem their combination as a 3-tuple <x,
y, z> where c(x) = min . (r.(x», and c(y) = r 1 (y)
and c (z) = r 1 (z) • J J

If a row, <x, y, z>, at level i, i < LMAX,
is spl it in the z di rect ion then two row s, <x,
y, z> and <x, y, z + h>, are obtained at level
i + 1. If a square, <x, y, z>, at level i is
split in x and y directions then four squares,
<x, y, z>, <x, y + h, z>, <x + h, y, z>, <x + h,
y + h, z>, are obtained at level i + 1. In both

cases, h = 2 LMAX- i- I • It should be clear that
the idea of splitting is generalizable to cubes
and hypercubes.

The maximal compo ne nt s of a pp p form a
1 ist [m1 , m2 , ••• 1 of rows where each mi is a
component. To find the components, first search
for t!1e longest (in z) row in p. This is a
component. Remove it frem p. This either
reduces p to a shorter (in z) pp or partitions
it int 0 two PPs which are al so shorter than p.
In any case, this procedure recurses until a
created component has z-length g. In this case
it is not further pa rti tione d. It is noted
tha t, once the maximal compone nt s are found it
should be impossible to obtain a longer
component by combining two components.

For example, the maximal components of the
PI' <I, I, 17, 93> are t!1e I ist of rows [<I, I,
17> at lovel LMAX, <1, 1, 18> at level LMAX - I,
<I, I, 20> at lovel LMAX - 2, <1, I, 24> at
level LMAX - 3, <I, I, 32> at lovel LMAX - S,
<1, I, 64> at lovel U~X - 4, <1, 1, 80> at
level LJ~X - 3, <1, I, 88> at level LJ~X - 2,
<1, 1,92> at level U~Xl.

Our main data structure consists of a set
of at most DMAX(LJ~X' + 1) - 1 lists that we
wHI call aA-lists (dimension-level lists).
Here, OMAX is the maximum dimension of Wand
L~~X' = LMAX - K, as before. A aA-list at
dimension D and level L is denoted as tD,L.

There are LMAX' I-dimens10nal aA-lists, LMAX'
2-dimens10nal aA-lists, and LMAX' - 1
3-dimenS1onal aA-lists when 0 = 3. (In general,
t!1e number of the highest dimensional lists will
be one less than their predecessors.) The
elements of to,L are rows if D = I, squares if
D = 2, cubes if D = 3, and hypercubes if D > 3.
Although our algorithm will still be correct for
D > 3, we will not be concerned with this
anymore since its practical value is
quest10nable in the absence of affordable 4-D
di spl ay dev ice s.

When 1nl is very large it may be
advantageous to employ linear disk files to hold
the aA-lists. In this case, only three files
w111 be open during the execution of our
al gori thm: to L for read and t and t

, D+l,L D, L+l
both for write. Since reads always take place
sequentially and writes are always carried out
as appenas the algorithm is on solid ground
against virtual memory page faults.

Finally, al though we have a language with
dynamic da ta structuring facil ities in mind to
implement this algorithm, for static languages
(such as Fortran) a 1 ist space to hold
2(LMAX' + 1) aA-lists would be enough for any
DMAX > 2. This is due to the fact that once the
combine/split operation (to be explained later)
is finished with I-dimensional aA-lists one can
allocate for the 3-dimensional lists the same
space occupied by them, and so on.

ALGORITHM

In the following, to express our algorithm,
an Algol-like language combining Oijkstra's
guarded command language and SE1L is used. This
language is described in [11] in detail and will
not be explained here.

Throughout this paper DMAX will denote the
maximum dimension which is typically 3; 0 is
the current dimension. ~X denotes the maximum
level Which is typically 10 for a spacing value
g = 1; L is the current level. The universe,
W, is at level 0 and an LMAX-level full octree
has 8U~X lowest level nodes. Using a larger
spacing it is possible to reduce the maximum
level to LMAX' = ~X - log g.

A briet· summary of our al gori thm, STACK, is
as follows. First, STACK tries to combine
adj acent rows into squares. (Assume that, each
PI' has been divided into its maximal components
and these have al ready been inserted into
relevant I-dimenS1onal aA-list s using MAXCOM
below.) If a row cannot be combine d then it is
split into two smaller (half-size) rows and they
are triea, until the remaining pieces are at
level LJ~X'. These are inserted into 0 since
t!1ere is no way to combine them.

Then. STACK tries to combine adj acent
squa re 5 into cube s. Any square tha t ca nnot be
combined is spl it into four smaller
(quarter-size) squares and the process is
repeated until the remaining pieces are at level
U~X'. and they are added to O. Finally. all
the cubes that were produced are added to O. We
wul show in the next section t!1at this builds !2
in its reauced form. (An octree is in reduced
form if it has no pa rtial node s hav ing all empty
or all full sons.)

Graphics Interface '85

- 356 -

In the following we give the main program
and the other components of STACK. (This name
is chosen to conjure up a vision of what this
al gori t1lm is doing, i. e., stacking up things to
build larger things.)

PRoe stack(SET n, TREE a);
OOMMENT main procedure to create an octree

from a set of PPs;
INTEGER L, D, g, K, LMAX, LMAX';
nrPLE p;
LIST tD V
OOMMENT'1nitialize (assume thatUIAX :=10

and K := log(g»;
UIAX' : = LMAX - K;
FOR D E [1. .3] -)

FOR L Il [0 •• UIAX'] -)

tD L := [j
ROF'

ROF;
a := NULL;
OO&BlliNT read n and insert its maximal components

into I-D OA.-lists;
FOR p Il n -) maxcom(p, 0, 2LMAX - I, 0) ROF;
OOMAlliNT start combine/spl it operation;
FOR D Il [1 •• 2] ->

FOR L Il

IF D
I D

FI
ROF;

[O •• UIAX'-I] ->

1 -) SORT tD,L BY y,Z,x; csrow(L)
2 -) SORT tD,L BY z,x,y; cssqr(L)

add elements of tD,LMAX' to a
ROF;
FOR L Il [O •• LMAX'-I] - >

add elements of t3 L to a
ROF; ,
OO&BIENT at this point a is obtained;
REnJRN
END stack;

PRoe maxcom(nrPLE p, INTEGER 10. hi. L.
IDDIFIES LIST tl,L) ;

OOMAIENT find and add maximal components of p
to I-dimensional OA.-lists;

OOMAlliNT 10 and hi are the initial bounds of
a maximal component .

INTEGER nlo. nhi, tmp;
OOMAIENT nlo and nhi are the running bounds of

a maximal component.

IF P(Z1) = 10 AND p(za) = hi -> tI L : = tI.L,[P]
I P(Z1) >= 10 AND p(za) (= hi - > •

L : = L + 1;
nhi , = (hi + 10 + 1)/2 - 1;
nlo := nhi + 1;
tmp : = L;
IF p(zd (= nhi AND p(za)

maxcom (P. 10. nh i, L)
P(Z1) >= nlo AND p(za)
maxcom(p. nlo, hi. L)

(=

)=

)=

nhi -)

nlo -)

nlo -) p (Z1) (= nh i AND p (Z a)
maxcom«x, y. Z1. nhi >.
L := tmp;

10. nhi,

maxcom«x. y. nlo. za >.
FI;
L := tmp

FI;
REnJRN
END maxcom;

nlo, hi.

L) ;

L)

Graphics Interface '85

PKOC csrow(INTEGER L,

MODIFIES LISTS ~1, L' t 2 , L'
OOmlliNT combine/spl it /H.-llst t 1 ,L;
INTEGER i, j , e, he, n, D;
TIJPLE r, s, q;

e : = 2 UIAX- L; he := e/2; D : = 1; n : =
i := 0;
00 UNr'IL i = n -)

i : = i + 1;
OOM&mNT let r = (x 1 , Y1' Z1) be the i-th

el ement of t D, L;
IF mOd(r(x), e) () 0 -)

FI
OD;

tD L+t := tD L+l·[r, (x 1 ' Y1 , Z1+he)]
mOd(r x), eJ'= 0 -)
j := i + e/g - 1;
IF j) n -)
FOR m e [i. .n] -)

COmmNT let s = (x, Y, z) be the m-th
el ement of t D, L;

R~~;L+1 := t D,L+1'[s, (x, y, z+he)]

BREAK.
FI;
OOmmNT let q = (x a , y~, zs) be the j-th

element of t .
IF q(y) <> r(y) OR q?zt' () r(z) -)

t D,L+1 : = tD.L±1.[r, (X1, Y1, Z1+he)]
! q(y) = r(y) AND q(z) = r(z) -)

COMMENT combine;

tD+1 L : = tD+1 L.[r]; i : = j
FI' ,

t D, L : = [];

REnlRN
END csrow;

- 3 57 -

PROC cssqr(INTEGER L,

MODIFIES LISTS ~2 , L' t 3 ,L' t 2 ,L+1) ;
OOMlIENT combine/split OA.-llst t 2 ,L;
INTEGER i, j , e, he, n, D;
TIJPLE r, s, q;

e := 2U1AX
-

L
; he : = e/2; D : = 2; n : = !tD,L!;

i := 0;
00 UNTIL i = n -)

i : = i + 1;
OOM&mNT let r = (x 1 ' Y1'

element of tD,L;
IF mod(r(y), e) () 0-)

FI
OD;

t D,L+1 := t D,L+1·[r,

mOd(r(y), e) 0-)
j := i + e/g 1;
IF j) n -)
FOR m e [i • . n] -)

(x 1 ' Y1' Z1+he),
(x 1+he, Y1' Z1) '
(X 1+he, Y1' Z1+he)]

COMMENT let s = (x, y, z) be the m-th
e1 ement of t D, L;

t D,L+1 := t D, L+1'[s, (x, y, z+he) ,
(x+he, y, z) ,
(x+he, y, z+he)]

ROF;
BREAK

FI;
OOM&mNT let q = (x a , YS' zs) be the j-th

element of t .
IF q(x) () r(x) OR q?z~' () r(z) -)

t D,L+1 := tD,L+l . [r, (x 1 ' Y1' Z1+he) ,
<x 1+he, Y1' Z1) '
<x 1+he, Y1' Z1+ he)]

q(x) = r(x) AND q(z) = r(z) -)
COMP.mNT combine ;

tD+1,L := tD+1,L' [rl ; i := j
FI

tD,L : = (J;

REnlRN
END cssqr;

Graphics Interface '85

- 358 -

In STACK, the high-level operation "SORT
1 ist BY key" is lexicographic since key is
composite. In the same procedure, the "addition
of a full nOde to 0" is intentionally left as a
high-level step. This is due to the fact that
an octree is basically a digital search tree
(also known as trie) and handling insertion in a
trie is well-known [2].

We state several properties of STACK
de duce d from the se proce dures.

Lemma 1: level(O) <= UfAX'.
Proof: Obvious since the minimum cube must have
an edge length >- g.

Lemma 2 : The elements of t 1 ,UfAX' and t2,LJ~'

cannot be combined and hence are full nodes of
O.
Proof: Triv ia.L.

Lemma 3: Th~re is no need for t3 ,LMAX"
Proof: Any lnput to t 3 ,LMAX' may come only from
t 2 ,UfAX' which is [J at that point.
Additl0nally, the latter cannot send the former
anything since it cannot combine due to Lemma 2 .

Lemma 4: 0 is always in reduced form at"ter
STACK is applied.
Proof : Ass\lllle that this is not true. Take any
partia.L nOde of 0 at level L which has eight
fUll nOdes. (Eight empty nodes are treated
similarly .) These certainly imply 2 LMAX- L

combinable squares at level L + 1 which must
have been correctly computed by CSROW procedure.
But then CSSQR woul d correct ly combine them to •
full cube at level L.

EFFICIENCY

To estimate the efficiency of STACK we
examine its individual steps. Since we are
trying to see the worst-case complexity ass\mle
that g = 1, thus LMAX'" UfAX.

For a given PP there may be as many as
2(LMAX - 1) maximal components. Therefore,
)~X~OM initiallzes all the I-dimensional
bA-list s with rows in O(UfAX In I) operations
under tlle assUllption that appends take 0(1)
time.

Sorting a bA-list is a common operation in
STACK • . The important point is that for n > 1,
11Sts tn L will not be completely scrambled
prior to' sorting. Because of the way that new
elements are appended into tllem in almost sorted
order, they wHl have some order in them. (We
reler tlle reader to CSROW and CSSQR to see this
clearly.) On the other hand, one can assume

that tllere wHl be no order in I-dimensional
bA-list s ini ti ally,; they are in random order.
This would not be true if the elements of n are
1 isted in some order,; this may happen if the
ray-casting is implemented in some methodical
manner such as via do-loops while computing the
PPs. It is also noted that I-dimenSional splits
introduce some order to I-dimensional bA-lists
also. To exploit the last fact one can use
Shell sort which is of average-case 0(n1 •2s).
It is known that Shell sort has worst-case of
0(n1 •s } and furthermore does less work when the
file is partially ordered [2].

Finally, it is emphasized that a :fter the
sorting step, CSROW and CSSQR execnte very
efficiently since they make a single pass over
the list and spend Itn,LI time since appends are

carried out in constant tlme.

IMPLEMENTATION RESULTS

We implemented STACK in Ratfor (a
structured dialect of Fortran). For a
lIS-sphere, the elapsed CPU time of the
algorithm is 9.2 seconds on a Prime 750.
object is built from 833 PPs with LMAX =
g = 16. The final octree has a total of
nodes (4090 full, 1664 full with surface

This
10 and
6569
normal s

-- see tlle explanation of surface normals
below). For a paraboloid built from 916 PPs
wlth LMAX = 10 and g = 32 the final octree has a
total of 5913 nodes (3248 full, 1832 full with
surlace normals). This takes 7.4 seconds of CPU
tlme. In agreement with our predictions, the
I/O time is low in both cases (0.9 and 0.3
seconos, respectively). For a precisely
specified lI8-sphere consisting of 129S5 PPs,
STACK takes about 3 CPU minutes to build the
final octree wllich has 106833 node sand
LMAX = 8 . The nOde distribution is 67570 full
nooes, 13354 partial nodes, and 25909 empty
nOdes. This object is larger than many of the
examples ci ted in [9] and [13].

In the sequel we describe an enhancement
(which we also implemented) of this algorithm.

Since an octree created by STACK must
eventually be displayed, most of the time PPs
wl11 also have surface normal vectors , n1 and

n., associated with their Zl and z. endpoints.
respectively. That is, p is a 6-tuple <x, y,
Z1' z.' n1 , n.> where :

n 1 = n. (x) i + n
1

(y) j + n1 (z) k, and
n. = n.(x)i + n.(y)j + n.(z)k. (Here, i .
j, and k are the unit vectors in x , y, and
z directions, respectively .)

Graphics Interface '85

- 359 -

In tllis case, to create {) from n, the following
approach may be used. Create for each p & n
three PPs Pl, P1, and p' where:

Pl = (x, y, Z1' Zl + g - I) with implied
normal n1 ,

P1 = (x, y, Z1 - g + 1, Z1) with implied
normal n 1 , and
p' = (x, y, Zl + g, Z1 - g) with no
normal s,

assllllling that p = (x, y, Zl, Z1' n
1

, n1),
Z1 - Zl) g - 1. (If for a particular p,
Z1 - zl. .. g - 1 then only Pl is created with
implied normal~. This happened twice in the
above 1/8-sp.l1ere as can be seen from the nUlllber
of fnll nOGes with normals.) Once this
partltlOnlng is done, the idea is to add Pl and
P1 along with their normals to 0 directly since
these must not be combined. Then for n' (which
is the set including all p') STACK is applied as
before. Basically, what we are doing can be
slllllmarized as "pee.llng off tlle Skin" of n to
obtain n'.

ACKNOWLEDG MENTS

This material is based upon work supported
by the National Science Foundation under grant
nUlllber ECS 83-51942 and the Office of Naval
Research, Informahon Science s Division,
contract nUlllber N00014-82-I~0301. This
informahon does not necessarily reflect the
position of the goverlllllent, and no official
endorsement should be inferred. The second
author is also supporteG in part by a Fulbright
award.

REFERENCES

1. DOCTOR, L.J., AND TORBORG, J.G. 1981.
Display techniques for octree-encoded obj ects.
IEEE Computer Graphics and Applications 1, 3,
29-38.

2. GO~mET, G. H. 1984. Handbook of AI god thms
anG Data Structures, Internatlonal Computer
Scie~Series, Addison-Wesley. Reading, Mass.

3. JACKINS, C.L., AND TANIMOTO. S.L. 1980.
Octrees and their use in representing
three-dimensional obj ect s. Computer Graphics
ana Image Processing 14, 249-270.

4. JACKlNS, C.L., AND TANIMOTO, S.L. 1983.
Quadtrees, octrees, and K-trees : a generalized
approach to recursive decomposition of Eucl idean
space. IEEE Transactions ~ Pattern Analysis
~ Machine Intul igence 5, 5, 533-539.

5. MEAG HER , D. 1982. Geometric modeling using
octree encoding. COmputer Graphics and Image
Processing 19, 129-147.

6. R01lI, S.D. 1980. Ray casting as a method
for solid modeling. Tech. Rep. GMR-3466,
Computer Science Dept., General Motors Research
Labs, Warren, Mich.

7. SAMET, H. 1980. Region representation:
qnadtrees from boundary codes. COmmunications
of the ACM 23, 3, 163-170.

8. SRlHARI, S.N. 1981. Representation of
three-dimensi onal di gi tal image s. ADI Comput i ng
Surveys 13, 4, 400-424.

9. TAJlJUNEN, M., ANDSAMET, H. 1984. Efficient
octree conversion by connectivity labeling.
SIGGRAPH'84 Proceedings (published as ACM
Computer Graphics 18, 3), 43-51. --

10. TANImTO, S. 1980. Image data structures.
In S. Tanimoto and A. I1 inger (Eds.),
Structured Computer ~, Academic Press. New
York.

11. TARJ AN , R.E. 1983. Data Structures and
Network Algorithms, ClJMS-NSF Regional Conference
Series in Applied Math. 44, SIAM, Philadelphia,
Pa.

12. YAMAGUCHI, I., !UNII, T.L., FUJIMURA, K ••
AND TORIYA, H. 1984. Octree-related data
structures and algorithms. IEEE COmputer
Graphics and Applications 4. 1, 53-59.

13. YAU, M., AND SRmARI. S. N. 1983. A
hierarchical data structure for multidimensional
images. Communications of the ACM 26, 7,
504-515.

Graphics Interface 'S5

