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Abstract 

During the last few years motion analysis has devel
oped into a major field of interest in image analysis and 
understanding . Considerable progress has been made as 
evidenced by the number of publications . However , most 
of these have been confined to the study of rigid body 
mot ion . Very few have addressed the issue of non-rigid 
body motion which poses many interesting and difficult 
problems . We propose a new technique for analyzing 
non -rigid body motion of closed boundary shapes that is 
based on the computation of skeletons at multiple resolu 
tions . This techn ique is used for analyzing the structural 
changes in the morphology of locomoting Iymphocytes 
and, in particular , of their pseudopods . 

Resume 

Depuis quelques annees, I'etude de la theorie de I'ana
lyse du mouvement est devenue un domaine d ' interet ma
jeur en comprehension et analyse d ' images . D'immenses 
progres ont ete realises en ce domaine . Ceux-ci sont 
d' ailleurs mis en evidence par la quantite impressionante 
de publications ecrite Jusqu 'a ce jour. Cependant la plu
part de ces publications ont concerne I'e tude des co rps 

ri gides . Tres peu ont adresse I' e tude du mouvement des 
corps non-rigides, laquelle souleve plusieurs problemes 
interessants et difficiles . Nous proposons une nouvelle 
technique pour I'analyse du mouvement des corps non
rigides represantables par des contours fermes . Elle est 
basee sur I' evaluation des s kelettes a resolutions mul
tiples . Cette technique est utilisee pour analyser les 
changements structuraux dans la morphologie des Iym
phocytes et plus particulierement de leurs pseudopodes. 
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1. Introduction 

Methods for motion analysis are quite commonly cat , 
eg'Hized into two main clas ·5es . intenSity bJ,,,,J , . hem e, 

and token matching schemes [Hildreth and Ullman 1982] . 
The former are based on the computation of local changes 
in light intensity values whereas token matching schemes 
compare certain previously computed features over time . 
Any identifiable feature can be chosen as a token no mat
ter how complex it is : that is . the token can be composed 
of several more primitive features . Tokens that suggest 
themselves are: termination points of lines and edges, 
edge segments . boundary segments , points of curvature 
discontinuity, regions . to name only a few . The ma in 
difficulty of this scheme is the correspondence problem . 
In other words a token must be found at time I } that 
correponds to the given token a t time t , (J > i ). 

Whereas in the case of rigid body motion the tokens 
between which correspondence must be established are 
well defined , the choice of these tokens for non- rigid body 
motion is a very difficult task, For example , to define the 
tokens in the case of a locomoting blood cell. its shape 
must be partitioned into meaningful subparts . In general. 
this problem can certainly not be solved . Part of the dif
ficulty resides in the fact that the notion of meaningful 
depends on the scene. In other words , not only syntac
tic knowledge is required for partitioning a planar curve 
but dlso . to a great extent. semantic knowledge . Thus , 
Fischler and Bolles [1983] point out that the partit ioning 
problem is not a generic task independent of purpose. 
They also mention that the segments into which a curve 
is partitioned change when the purpose of the partition

ing is altered . 
Pseudopods are temporary protrusions of the proto

plasm of a cell. Therefore one is interested in partitioning 
the cell shape into tokens that represent convex subparts 
of the cell. A typical cell input image is shown in Figure 

1. 
The symmetric axis transform , introduced by Blum 

and Nagel [1978], or its discrete version that is usually 
referred to as skeleton , is a natural way of representing 
convex subparts of biological shapes . Any locally convex 
segment of contour , as well as a more globa lly convex 
segment of contour that comprises several local co nvexi · 
t ies, could be a pseudo po d HE:n ce the skelo::tvn vv v u!..J l, . 
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Figure 1 Typical frame of input image sequence 

better computed at different resolutions. Since the local 
as well as the global context must be maintained over 
time. smoothing operations as proposed by Dyer and Ho 
[19841 cannot be applied. In their approach small local 
convexities cause a new skeleton branch only if they are 
not incorporated in a large global convexity. This is be
cause their approach is based completely on syntactic 
knowledge. 

By computing skeletons at different resolutions a fil 
tered version can be produced without violating the con
straints imposed by the semantic knowledge. The reso
lution at which the shape is examined is related to the 
degree of smoothing. in that the lower the resolution . the 
higher the degree of smoothing. Skeleton branches that 
persist over several resolutions arise from convexities that 
are locally as well as globally significant. Their stability 
is related to their perceptual significance. Witkin [19831 

proposes a similar stability criterion that depends on the 
persistence of events over scale changes . In contrast to 
the shape centered descriptions of which the skeleton is 
an example. he uses a boundary-based description . 

Having computed the skeleton at different scales . we 
use those computed at the lower resolutions as a mea
sure of how global the underlying convexity is . Clearly 
the skeletons computed at higher resolutions represent 
the exact location and orientation of the underlying con
vexities . The structural changes of the locomoting cell 
are then quantified by comparing the filtered skeleton ver
sion of the cell at different time instances [Dill 1985] . 

2. Computation of skeletons 

The technique used for computing the skeleton is 
based on an algorithm by Arcelli [19811 . The resulting 
s keleton can be interpreted as a discrete ver ,,0" :Jf ~"e 
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symmetric axis transform . Given an object as a con
nected set of pixels O . the skeleton is derived by iter
atively tracing its 8-connected contour C. After every 
iteration . contour pixels that are neither multIple nor he 
on a significant convexity are assigned to a set of pixels 
R. according to some measure of significance thdt will 
be explained later. A pixel is mUltiple if it is traversed 
more than once during contour tracing. if it has no neigh
bors in the interior of 0 (interior: set of pixels U - C). 
or if it has at least one D-neighbor (D-neighbor: hori
zontally or vertically displaced neighbor of a pixel) which 
belongs to the contour but is not one of the two direct 
neighbors along the contour . Before the next iteration. 
o is assigned to 0 = 0 - R. The algorithm stops when 
R = 0. The skeleton S then corresponds to the set O. 
The different sets are illustrated in Figure 2. 

c:l- le-

. . , 

. . , . . , 

" 

Figure 2 Iteration 1 of the skeletonization algo
rithm . The contour (set C ) is composed of the 
symbols [:J and :-.. The set 0 corresponds to the 
union of the three different sets of symbols. Con
tour pixels that lie on a significant convexity are 
marked with the symbol [:J . Contour pixels marked 
as" are assigned to the set R. 

The significance of a convexity is measured as a func
tion of the discrete curvature computed at a given contour 
pixel. At every contour pixel that is not already labelled 
multiple. i.e .. pixels that are assigned to the set R . dis
crete curvature values are computed. Assuming that the 
chain code is available. a curvature value is readily ob
tained if only the two direct contour neighbors . i.e . . the 
preceding and succeeding contour pixel. are considered . 
The resulting curvature is referred to as the 1-code cl 

at contour pixel i . A negative 1-code results from anti~ 
clockwise rotation of the contour: -1 correponds to d ro
tation of -45 deg. - 2 to - 90 deg . and 3 to 180 deg 
Positive values range from 0 for a strdight lIne to 4 £l.r an 
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inversion . However . the i-code cannot be used for evalu
ating the significance of the underlying convexity because 
it is too noise sensitive. 

The discrete curvature function represented by the 
i -code must undergo some smoothing operations in or
der to be useful. Several methods have been proposed 
to obtain a more reliable measure of discrete curvature 
and thereby a better estimate of the significance of the 
underlying convexity. Rosenfeld and Johnston [1973] in
troduced k-curvature for this purpose whereas Freeman 
and Davis [1977] used a similar measure called the incre
mental curvature . We are smoothing the sequence of 1-
codes that represent the discrete curvature along the con
tour by correlating it with a triangular mask f t.n (i) . Its 
Fourier transform F t.n (~) is represented by a quadratic 
sine function . In other words . the correlation of the 1-
code sequence with a triangular mask is equivalent to a 
low pass filter operation in the frequency domain . Thus . 

ft.n( i ) = { ~ - l i l if li l :; n : 
elsewhere . 

n = 1,2, ... , k 

( ) 
_ sin2 (21r~ (n - 1)) 

Ft.n ~ - (7l'~)2 --

(1) 

(2) 

The correlation of the i -code sequence with the tri
angular mask f t.n (i) leads to a new discrete curvature 
measure that was first used by Gallus and Neurath [1970] 

and given the name n-code <'. defined as 

.. ... 
.. .. 

.. ... ... 
.. 

. . . . .. . . . . .. . 

. .. 

e ~ = ft. n (1) x et ( h def . ) were: x = correlation 

k=n 
L ft.n(k)e;+k 

k=- n 

n- l 

= ne; + L (n - k) ( eL k + e;+k) ' n ~ 1. (3) 
k=l 

This n-code can now be used for computing whether 
a contour pixel lies on a significant convexity. At a 
given resolution n . contour pixels whose n-codes exceed 
a certain threshold fJ are considered significantly convex. 
By increasing n . the size of the neighborhood that con
tributes to the curvature value of a contour pixel grows 
larger. This is equivalent to lowering the resolution at 
which the object is examined . If a continuous string of 
contour pixels is considered significantly convex only the 
mid-point of this string is labelled convex. New candi
dates that are too close to a contour pixel that is either 
labelled multiple or significantly convex are not included . 
Pixels are regarded as too close if they lie within n con
tour pixels on either side of a previously selected skeletal 
pixel. 

The set of pixels S which constitutes the skeleton 
consists of the following types of pixels : pixels with only 
one neighbor in S which we will refer to as end-nodes: 
pixels with two neighbors which are normal skeletal pix
els : and pixels with three or more neighbors which we 

.. .. ' . 
. ....... . .. . 

. . 

Figure 3 Some iterations of the skeletonization algorithm. The rightmost diagram 
shows the final skeleton with all end-branches of length 1 deleted . Skeletal pixels are 
depicted as • . 
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shall call branch-nodes . Skeleton branches that emerge 
from branch-nodes and lead into end-nodes are called 
end-branches. 

Once the set R is empty some postprocessing tech
niques are applied . First. lines that are of width 2 are 
thinned without violating the connectivity constraints and 
then spurious branches of length 1 are deleted. In Figure 
3 a few iterations of the algorithm are shown. 

3. Representation at multiple resolutions 

Before the skeletons computed at different resolu
tions can be related . another aspect needs some con
sideration . The question arises whether the numerical 
values of the n-codes computed at different scales have 
the same meaning. In other words. will a given contour 
point on a piece of arc with constant curvature result in 
the same absolute n-code values for different n ' s? This 
should obviously be the case as long as the mask f!:i n (i) 
does not exceed the part of the contour with constant 
curvature. Quite clearly the definition of the n-code as 
given in equation (3) violates these constraints . For an 
arc with constant curvature the resulting n-code values 
will increase as a function of n . However.it can be shown 
that this requirement is satisfied by normalizing the tri
angular mask f!:i n (i) so that the area between the mask 
and the x-axis is always 1. independent of n. As a mat
ter of fact the normalized n-code becomes independent 
of the resolution n [Dill 19851 . Thus. the employed mask 

0 " 
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Figure 4 Skeleton filtering process . 

- 388 -

is the normalized n-code en . where , 
en 

ei' = n'2 (4) 

These normalized n-codes are used for computing the 
skeletons at different resolutions as detailed in section 2. 

In other techniques that work with multiple resolu
tions for representing perceptually prominent points of 
a planar curve but use a boundary centered description 
over a shape centered description . the comparison be
tween different resolutions can be quite tedious [Witkin 
19831. This is because prominent points along a planar 
curve. whether they correspond to concavities . convexi
ties or to zero crossings of the curvature function. will be 
displaced with respect to their true physical position as 
the resolution is lowered. The position of the point that 
reflects a certain feature is only equivalent to the exact 
position at a very high resolution . 

In contrast to the above. the skeletons computed at 
different resolutions can be compared in a straightforward 
manner. It is true that the end-nodes of the end-branches 
also change position as a function of resolution but the 
corresponding branch-nodes do not alter as long as the 
accompanying end-branch persists . Because of this . it 
is sufficient to compare the coordinates of the branch
nodes from which the end-branches emerge in order to 
verify whether a convexity persists over a certain range 
of resolutions . 

In the following example (Figure 4). the skeleton is 

o 
o 

o · 

CDaElC · ••• cc 0 

.' 

The skeleton to the left was computed at n == 5 and the skeleton in the middle at 
n == 7. Both were computed with a threshold of & == 0.12. The skeleton to the ri ght 
is the filtered version . Branches at the hi gh resolut ion that match a branch at the 
low resolut ion are characterized by the sy mbol C. Non-matching branches that are 
deleted or merged at the high resolution a nd thus newly created in the filtered version 
are depicted as a sequence of • . 
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computed at two different resolutions: n = 5 and n = 7. 
At both resolutions the threshold is set to 8 = 0.12. Con
vexities that persist over both scales . hence signalling a 
global convexity. are included in the filtered version . Lo
cal convexities that appear only at the smaller scale are 
filtered . If two end-branches that are considered local 
share the same branch-node. they are merged creating a 
new end-node that lies between the old end-nodes : oth
erwise . they are deleted . The leftmost diagram of the 
figure corresponds to the unfiltered version of the skele
ton .computed at the small scale and the diagram in the 
middle to the unfiltered version at the large scale. The 
rightmost diagram of the figure shows the filtered ver
sion of the skeleton . The branches displayed with the 
symbol. in the unfiltered skeleton at the small scale re
fer to branches that are either deleted or merged. In the 
filtered version they refer to the corresponding new end
branches . Matching branches that are not altered are 
displayed as 8 . 

4 . Conclusions 

We h<lve presented a new technique for represent
Ing perceptually salient points on a closed planar curve 
with skeletons computed at different resolutions . One 
of the merits of this technique is the ease with which 
descriptions at different scales can be compared. The 
representation of convexities by branches of a skeleton 
is particularly well suited for analyzing non-rigid motion . 
That is because they do not only correspond to locally 
and globally significant convexities but also preserve the 
true orientation (as opposed to the orientation of the con
vexity with respect to the center of the sh<lpe) of these 
subparts . 
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