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Abstract 
One oC the most popular and most powerCul circuit 
simulators, the SPICE-2G program Crom University oC 
California, Berkeley, is rather inefficient in interactive 
applications because oC its "batch-oriented" structure. 
SPICE-PAC is a package (or a set) oC subroutines which 
is Cunctionally equivalent to the SPICE-2G circuit 
simulator, i.e., it accepts the same circuit description 
and perCorms all the analyses which are available in the 
SPICE-2G programs, but also provides several 
extensions , e.g. , circuit variables, parameterized 
subcircuit expansion, and an interCace to libraries oC 
st.andard modules . Two immediate applications oC the 
package are: (1) interactive circuit simulation in which 
an interactive driver controls the simulation subroutines 
according to · user commands, and (2) circuit 
optimization in which an optimization package is 
interfaced with the simulation package by user-supplied 
subroutines that evaluate objective functions, 
constraints, etc. Recently, the package has been 
extended by an interface to graphics facilities . An 
implementation of this interface, compatible with both 
the CORE and GKS systems, is described, and some 
simple examples are given as an illustration. 

1. INTRODUCTION 
Computer-aided circuit analysis , or circuit simula­

tion , has become a widely accepted tool in integrated 
circuit design [6,10,11] . Using this method, circuit 
designers can easily explore the effects of different 
designs on the circuit performance. The SPICE-2 pro­
gram [8,14] developed at the Department of Electrical 
Engineering and Computer Sciences, University of Cali­
fornia at Berkeley, has become one of the most popular 
"second-generat ion" circuit simulators. 

The SPICE-2 program execution consists of two 
basic phases [8] . The first phase reads all the input data 
(i .e., the circuit description and parameters of required 
analyses) , while the second phase performs all the simu­
lations and prints the results . The consequence of such a 
program organization is that even a minor change in 
any of the element descriptions or parameter values 

requires a new, independent run of the simulator. To 
provide flexible and efficient analyses oC numerous vari­
ants oC the same circuit (which is oCten required to 
"optimize" or "center" the initial design), a new struc­
ture oC the circuit simulator is needed , in which 
different analyses (for the same circuit) can be per­
Cormed selectively, and in which there is an access to 
internal representation oC circuit elements in order to 
mod iCy their values. SPICE-P AC is a package (or a set) 
oC subroutines which is functionally equivalent to the 
SPICE-2G.6 circuit simulation program, i.e., it not only 
accepts the same circuit description and perCorms all the 
analyses which are available in the SPICE 2G programs, 
but also provides an access to internal values of circuit 
elements, dynamic definitions oC parameters and out­
puts, a hierarchical naming scheme for subcircuit ele­
ments, parameterized subcircuit expansions, and an 
interCace to libraries oC standard modules. Two immedi­
ate applications oC the package are: (1) interactive cir­
cuit simulation, in which users selectively perCorm cir­
cuit analyses and modiCy circuit elements to satisfy 
design requirements, and (2) circuit optimization , in 
which an optimization package is interfaced with the 
simulation package by user-supplied subroutines that 
evaluate objective functions , constraints, etc. 

The advantages oC this very flexible structu re of the 
simulation package can, however , be seriously degraded 
by a traditional, numerical representation of results. 
This is especially acute in interactive applications where 
tedious studying of long columns of (very accurate) 
numerical results is usually much more time consuming 
and far less useful than simple comparisons of (less 
accurate) graphical data. Therefore the SPICE-PAC 
package has been extended by an interface to graphics 
facilities , and since the CORE graphics system has been 
more widely implemented than other graphics standards 
in North America [4,7,13], the CORE system was chosen 
rather than the GKS standard [2,15] as the "basic" level 
of reference. 

The CORE system is a package of subroutines 
which defines an abstract, device- independent set of 
graphics capabilities. It was designed for functional 
completeness so that any graphics function is either 
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included within the system or can be easily built on top 
of CORE system routines. The general functional capa­
bilities found in the system are of six types: 

1) output primitives which are lines, character strings, 
polygons and markers, 

2) output primitive attributes such as line color, style 
and intensity, character font, etc., 

3) segments which are disjoint collections of output 
primitives, and · which can be created, deleted, 
transformed, blinked, made temporarily invisible, 
and picked using an input device, 

4) viewing capabilities to create an image of an object in 
a viewport on a view surface, 

5) operator interaction, 
6) overall control to select the surface, establish default 

attributes, etc. 

For circuit simulation applications, a small subset 
of these functions is satisfactory, and a "basic" subset 
can be selected in such away, that only a very simple 
conversion is required to transform it into a subset of 
the GKS standard. In fact , the minimal subsets pro­
posed for both CORE and GKS are entirely adequate 
for this application. 

This paper discusses the general idea of interfacing 
circuit simulation packages with the CORE and GKS 
graphics systems, describes some "higher-level" func­
tions defined within the GRAPH-PAC set oC subrou­
tines, and shows some examples oC graphical results o( 
circuit simulations and optimizations. 

2. SPICE-P AC 2G6a 

SPICE-PAC version 2G6a is a package of simula­
tion subroutines obtained by redesigning the SPICE 
2G.6 simulation program. The package provides: 

(a) the same circuit descriptions as (or the SPICE 2G 
programs (in (act, there are a Cew minor differences 
but still the SPICE input language is accepted by 
the SPICE-PAC package), 

(b) all analyses available in the SPICE 2G programs; 
since all the analyses are performed "on demand" by 
calling appropriate subroutines oC the package, there 
is no restriction on the ordering or number of ana­
lyses perCormed within a single simulation session, 

(c) accp.ss to "circuit variables" as required in interactive 
simulation and circuit optimization; circuit variables 
are those circuit elements which can be modified 
during a simulation session; circuit variables can be 
defined at the main circuit level as well as in su bcir­
cuits, 

(d) dynamic declarations oC parameters and output vari­
ab les Cor all analyses; output variables can be indi­
cated at the main circuit level as well as in subcir-

cuits, 
(e) parameterized subcircuit calls; subcircuit element 

definitions can be redefined by parameters included 
in subcircuit calls, 

(C) an interCace to libraries oC standard modules; stan­
dard modules are in the Corm oC subcircuits stored in 
individual files within a file system, and they can be 
accessed by (parameterized) module calls. 

SPICE-PAC contains 25 "main" (or interCacing) 
subroutines but does not provide the "main program" 
which must be suplied by the user to "drive" the sub­
routines, i.e. , to call the subroutines which read a circuit . 
description, define circuit variables, perCorm analyses, 
etc. , as required by a particular application. 

Two immediate examples oC SPICE-P AC applica­
tions are interactive simulation and circuit optimization . 

In interactive circuit simulation , the driving routine 
mainly handles communication with the user, i.e., it 
enters user commands, converts them into correspond­
ing sequences oC SPICE-PAC subroutine calls, and 
displays (in numerical or graphical Corm) the resul ts. 
The complexity of the driver is directly related to the 
sophistication of interaction. In typical applications 
interaction is rather simple, and it can use, Cor example, 
commands similar to the SPICE input language. A 
"convenient" representation oC results appears to be a 
more troublesome problem, and a graphical Corm is 
probably the easiest to understand and the most 
efficient and compact way to present large amounts oC 
data. Since some selected data (e.g., the final solution) 
may be required in numerical Corm also (Cor Curther pro­
cessing), the graphical representation should be 
" backed-up" by a convenient way oC storing original 
numerical results obtained Crom circuit simulations. 

Because the output Crom SPICE-PAC is very likely 
to be used (or applications other than display , it is oC no 
real advantage to store the results as graphical inCorma­
tion in a metafile. This application is somewhat unique 
in that the computational effort involved in the simula­
tion is normally very much more than that required to 
provide the graphical display. 

In circuit optimizatioD, the driving routine has to 
control at least two packages, the optimization and t he 
circuit simulation one. In many cases , when indirect 
communication is used Cor interCacing circuit simulation 
with optimization , the packages are hierarchically struc­
tured, and then t he whole optimization process is con­
trolled by t he optimization algorithm used . This also 
means that t.he user can influence the optimization pro­
cess on ly by selection oC the starting point and (some of) 
the optimization parameters. More fl('xible (but also 
more difficult) so lution is to use reverse communication 
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[91 in which case user routines (or user - in an interac­
tive way) can control the optimization process at the 
"step" level, and can adjust the parameters even "dur­
ing" the optimization process, or can interrupt an 
" unsuccessCul" iteration to change the starting point, or 
can run several optimizations "concurrently" to compare 
the results and select the "best" ones. In all such cases a 
graphical "trace" oC the optimization progress is practi­
cally the only representation oC (usually multidimen­
sional) inCormation which can be used by users in "real­
time" to control and direct the optimization. Some very 
simple examples oC such traces are shown in section 5. 

3. GRAPHICS PACKAGES 

The graphics tools required Cor an interCace to 
SPICE-PAC are relatively unsophisticated. Normally, 
several circuit parameters are to be varied in a given 
simulation or optimization session, and these (numeric) 
inputs do not· readily lend themselves to graphical input. 
As well, most applications require immediate plotting oC 
results , and do not require the use oC retained segments. 
Consequen tly, a graphics system which provides a sim­
ple, two dimensional plotting capability with no graphi­
cal input and which supports only temporary segments 
is satisCactory. A metafile capability is not required , 
because the results oC the analysis will be saved Cor 
other applications, and can readily be replotted. In 
CORE, a system providing "basic", "no input", "20" 
capabilities is quite adequate. In the GKS system, out­
put level 0 (basic output), input level a (no input) is 
adequate; in Cact, the "minimal GKS" implementation 
described by Simons [121 is sufficient. 

Because there are basic differences between the 
CORE and GKS graphics systems [151 (e. g. , in the 
GKS system there is no concept oC "current position") , 
an implementation oC the GRAPH-PAC to GKS inter­
Cace may behave slightly differently Crom the case oC an 
interCace to CORE. In particular, it may be necessary 
to buffer the output oC some oC the plot Cunctions, and 
output may occur later than in the CORE implementa­
tion . Additionally, Cor text positioning, it may be neces­
sary to store the "current position" . Relative coordi­
nates are also not provided in GKS, but could easily be 
simulated. 

Table 1 shows the primitive Cunctions required to 
implement the present version oC the graphics driver Cor 
SPICE-PAC in both the CORE and GKS graphics sys­
tem . Also included are the Cunction names Cor a com­
mercial FORTRAN implementation oC the CORE 
graphics standard, 01-3000 [11. 

In addition to the graphics Cunctions listed in Table 
1, a number oC "second level" Cunct ions were defined to 

assist the user in defining the display region . In certain 
circuit analyses, the designer may want to use several 
different graphical scales, such as linear, log-linear, log­
log to display the Cull range oC data. ThereCore it is con­
venient to have a scale Cunction which allows the plot­
ting oC "scaled" data Crom "real" input data. ThereCore, 
plotting Cunctions were defined which automatically 
scale the data to correspond to a predefined set oC scale 
Cunctions. Normally, all plot commands position plotted 
points aCter applying the appropriate "scale" Cunctions 
to both the x- and y-coordinates oC the data. 

A number oC other Cunctions were defined to allow 
axes to be drawn through a point, to place labeled ticks 
arbitrarily at · a point (say, on an axis , to provide an 
arbitrary axis labeling). Some oC these Cunctions , defined 
in terms oC the Cunctions available in the lowest level 
graphics package, are the Collowing: 

GPSCALE(XMIN,XMAX,XFN,YMIN,YMAX,YFN) 
DOUBLE PRECISION XMIN,XMAX,YMIN,YMAX 
INTEGER XFN,YFN 

GPSCALE defines a transCormation Cunction Cor each oC 
the x and y coordinates, using the integer arguments 
XFN and YFN. A window is then created, using the 
scaled values oC XMIN, XMAX, YMIN and YMA...X. 
Presently, the transCormation Cunctions are: 

-2 natural log 
-1 decibel (lO * 10glO) 
o 10glO 
1 linear 
n polynomial, x**n or y**n 

there are also generalized DRAW and MOVE Cunctions 
which draw visible or invisible lines Crom the current 
position to the points determined by applying the 
appropriate scale Cunctions to their arguments. 

GPAXIS(XO,YO,XTIC,YTIC,XLABEL,YLABEL) 
DOUBLE PRECISION XO,YO,XTIC,YTIC 
CHARACTER*(*) XLABEL,YLABEL 

GPAXIS draws a set oC axes through the point (XO,'(O) 
with ticks spaced a distance XTIC and YTIC on the x 
and y axes, respectively . The ticks are labeled automat­
ically, and the labels XLABEL and YLABEL are written 
on the x and y axes. The ticks are uniCormly spaced in 
the "scaled" coordinates, and labeled with " real" coordi­
nate values. All labeling is done to the leCt and/or the 
bottom oC the plotting area, and the viewport is 
redefi ned to be the region included in t.he plot area, 
which excludes the possibility oC drawing lines in the 
text areas. 
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Table 1. Primitive graphics Cunctions Cor GRAPH-PAC 

CORE GKS GKS (FORTRAN) DI-3000 

1. initialization 

initialize_core OPEN GKS 
initialize_view _surCace 
select_view _surCace 
create_temporary _segment 

OPEN WORKSTATION 
ACTIVATE WORKSTATION 

GOPKS 
GOPWK 
GACWR 

new_Crame CLEAR WORKSTATION GCLRWK 

2. viewing 

set_window 
set_ viewport_2 
inqu ire_window 
inquire_ viewport 

3. drawing primitives 

line_abs_2 
move_abs_2 
move_rel_2 
marker_abs_2 

4. drawing attributes 

set_linestyle 
set _mar k er _sy m bol 

5. text primit ives 

text 

6. text attributes 

set_ront 
set_charsize 
set_charjust 
set_charpath 
set_charup_2 
inquire_text_extent_2 

7. t ermination 

close_temporary _segment 

SET WINDOW 
SET VIEWPORT 
INQUIRE NORMALIZATION 
TRANSFORMATION 

POLYLlNE 

POLYMARKER 

SET LINETYPE 
SET MARKER TYPE 

TEXT 

GSWN 
GSUP 
GQNT 

GPL 

GPM 

GSLN 
GSMK 

GTX 

SET TEXT FONT GSTXFP 
SET CHARACTER HEIGHT GSCHH 
SET TEXT ALIGNMENT GSTXAL 
SET TEXT PATH GSTXP 
SET CHARACTER UP VECTORGSCHUP 
INQUIRE TEXT EXTENT GQTXX 

deselect_view_surrace DEACTIVATE WORKSTATIONG DAWK 
terminate_v iew_surrace CLOSE WORKSTATION GCLWK 
terminate_core CLOSE GKS GCLKS 
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JBEGIN 
JDINIT 
JDEVON 
JOPEN 
JFRAME 

JWINDO 
JVPORT 

JDRAW 
JMOVE 
JRMOVE 
JMARK 

JLSTYL 
JCMARK 

J3STRG 

JFONT 
JSIZE 
JJUST 
JPATH 

JCLOSE 
JDEVOF 
JDEND 
JEND 
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GPTICK(X,Y,DIR,LABEL) 
DOUBLE PRECISION X, Y 
INTEGER Dm 
CHARACTER*( *) LABEL 

GPTICK places a tick at point (X,Y) in direction DIR 
(1- right, 2- down, 3- left, 4- up) and writes the charac­
ter string LABEL beside the tick . 

GPBOX(XL,YB,XR,YT) 
DOUBLE PRECISION XL,YB,XR,YT 

GPBOX draws a box with lower left coordinate (XL,YB) 
and upper right coordinate (XR,YT). 

4. IMPLEMENTATION ISSUES 
One of the most significant differences between 

CORE and GKS is the presence of language bindings in 
GKS. For languages like FORTRAN, C, PASCAL or 
ADA, subroutine names, calling sequences and data 
types are given in the standard specification. This 
means that programs should require essentially no 
changes to move among different environments support­
ing GKS. In CORE, no standard syntax was given for 
any programming language, and implementors strayed 
to varying extents from the CORE specification. This is 
not very comforting to users who try to develop port­
able application programs. 

To overcome these differences, a "2-level" solution 
has been attempted in GRAPH-PAC. The first (lower) 
level is a set of subroutines which provide an interface 
between a "standard" graphics package (CORE, GKS, 
or another one) and the second level. The second level 
provides a " user" interface, i.e., it is a set of subroutines 
which implement "user oriented" functions in terms of 
primitives supported by the first level. In the case of 
moving from one graphics environment to another (e.g., 
from CORE to GKS), only the lower-level interface 
must be replaced by a new, appropriate set of "binding" 
subroutines which are usually rather simple, and in 
many cases perform just a renaming or reordering of 
calling sequences. 

Moreover, the lack of standardization of calling 
sequ ences in CORE may result in difficulties in access­
ing the CORE implementation from different languages. 
For example, if parameter passing mechanisms are not 
the same for different higher-level languages, a "low­
level" rOil tines m ust be used to adj Ilst the parameter 
representations . In our implementation, the CORE 
graphics system was developed for a C programming 
environment , and does not conform to FORTRAN 
parameter passing convent ions. Therefore it was neces­
sary to implement a part of the lower-level GRAPH­
PAC interface in th e C language. 

Also since GRAPH-PAC must be linked wi th 
several other packages , some of which are very complex 
and sophisticated (e.g., SPICE-PAC and optimization 
packages, with hundreds of internal subroutines) , strict 
naming conventions must be imposed to avoid naming 
conflicts among globally defined objects. Therefore it 
was assumed that within packages all global names 
begin with the same prefix. For GRAPH-PAC the prefix 
is "GP", for SPICE-PAC it is "SP" , for optimization 
packages "Wxyz", where "xyz" identifies the package 
(DI-3000 has a similar convention and all subroutine 
names begin with " J" ; for the GKS FORTRAN binding, 
each sub program name begins with "G" ). 

Presently, GRAPH-PAC is implemented on VAX-
11 systems under the 4.2-BSD-UNIX operating system, 
and will shortly be ported to the V AX-11/VMS environ­
ment. Together with SPICE-PAC and optimization 
libraries , it is a part of CAD software being developed 
for design and verification of electronic circuits. 

5. EXAMPLES 
The first example is an interactive simulation of a 

differential amplifier in which case a DC transfer curve 
[141 is analyzed, and a linear region, symmetrical with 
respect to zero input voltage, should be .obtained. Fig. l 
shQwS 3 pairs of transfer characteristics (denoted by 
V(3) and V(5), V(3)a and V(5)a, and V(3)b and V(5)b , 
respectively) obtained for a "benchmark" circuit used in 
[16, Example 11 with 3 different values of the resistor 
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Fig.1. Different ial amplifier - DC transfer curves 1. 
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RE. Fig. 2 shows the same characteristics "extended" 
in the region of zero input voltage. It can be observed 
that the only characteristics which satisfy the require­
ments correspond to curves V(3) and V(5). 

~.o~-------------------------. 

1.0"00 
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1.0I+0Il 
___ JC]] 

1.0"00 
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1'--__ -------
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'" . -- ...... _----

" ... , ........................... .---... lt~-·--- ...... --", ,.---- ....... 
X '--------, , 

--------------_____ .1 , ____________ _ 

-5.0 -0.25 0.25 
inpU t vo I toga 

Fig.2. Differential amplifier· DC transfer curves 2. 

As an optimization example, a single stage CE 
amplifier in a seIC-biasing configuration is analyzed, and 
it is to find the values of three resistors, RI , R2 and RE 
[17], such that for the midband frequency f=50KHz, 
and for the spread of beta.dc between 80 and 250, the 
voltage gain is as close as possible to the value lOV IV, 
and the input resistance is not less than 20Kohms. The 
minimax optimization package WMBG2 [18\ used in this 
example is a modified version of linearly constrained 
minimization technique combined with routines for 
numerical approximation of gradients. Fig.3 shows 
traces of consecutive steps of optimization (without any 
"external" intervention in this case) in which voltage 
gain is given as a function of the beta.dc parameter (the 
influence of input resistance is not shown), and "step 0" 
denotes the starting characteristic. Also, a "tolerance 
region" [9 .5,10.5\ is indicated by its boundaries. It can 
be observed that after 4 iteration steps the whole 
characteristic is within the tolerance region , and remain­
ing steps are used for centering the design (one of the 
centering steps fails but is corrected successfully) . 

Similar traces for an optimization example are 
show n in Fig.4 which illustrates an optimization of the 
same single stage CE amplifier but now the voltage gain 
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Fig.3. Amplifier optimization - beta.dc variation . 
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Fig.4. Amplifier optimization - temperature variation . 

is stabilized against variation of t he temperature (for a 
fixed value of beta.dc) , and it is to find the values of RI , 
R2 and RE such that for the same mid band frequency 
and for the temperature range [-50,100\ degrees Celsius, 
the voltage gain is as close as possible to lOV IV, and 
the input resistance is not less than lOKohm. Again, 
"step 0" shows the initial design Cor which the voltage 
gain variation in the t emperature range [-50,100] is 
approximately 2.5V IV. After 3 iteration steps , the vari­
ation is reduced to approximately O.SV IV, and after 13 
iteration steps it is less than 0.1 V IV. 
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6. CONCLUSIONS 
An interCace "ststandard" graphics systems has 

been designed for use with the SPICE-P AC package oC 
circuit simulation subroutines. This interCacing package 
allows the designer to see, in a familiar graphical form, 
the results of the most important analyses available 
with the SPICE 2G.6 circuit simulation program, and to 
interact with the circuit simulation package, dynami­
cally alter circuit variables and parameters, perform 
analyses, etc. 

Although other programs are available which plot 
the output from the SPICE program, or other circuit 
analysis programs [3], this package is the only system 
which allows the full interactive display of SPICE ana­
lyses and which permits user interaction to alter the 
values of circuit elements. Plots from several analyses 
can be displayed simultaneously. Plots can be scaled 
and rescaled in several different ways, and the results of 
the SPICE-PAC analyses, together with the values of 
circuit variables and other parameters, can be stored 
and redisplayed . 

Future improvements in GRAPH-PAC will allow 
more extensive interaction with general purpose optimi­
zation routines used in conjunction with SPICE-PAC 
for circuit optimization . 
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