
- 37 -

INTERF ACING INTERACTIVE CIRCUIT SIMULATION
WITH STANDARD GRAPmCS FACILITIES

P . Gillard, W.M. Zuberek
Department oC Computer Science, Memorial University oC NewCoundland

St. John's, NewCoundland, Canada A1C 5S7

Abstract
One oC the most popular and most powerCul circuit
simulators, the SPICE-2G program Crom University oC
California, Berkeley, is rather inefficient in interactive
applications because oC its "batch-oriented" structure.
SPICE-PAC is a package (or a set) oC subroutines which
is Cunctionally equivalent to the SPICE-2G circuit
simulator, i.e., it accepts the same circuit description
and perCorms all the analyses which are available in the
SPICE-2G programs, but also provides several
extensions , e.g. , circuit variables, parameterized
subcircuit expansion, and an interCace to libraries oC
st.andard modules . Two immediate applications oC the
package are: (1) interactive circuit simulation in which
an interactive driver controls the simulation subroutines
according to · user commands, and (2) circuit
optimization in which an optimization package is
interfaced with the simulation package by user-supplied
subroutines that evaluate objective functions,
constraints, etc. Recently, the package has been
extended by an interface to graphics facilities . An
implementation of this interface, compatible with both
the CORE and GKS systems, is described, and some
simple examples are given as an illustration.

1. INTRODUCTION
Computer-aided circuit analysis , or circuit simula­

tion , has become a widely accepted tool in integrated
circuit design [6,10,11] . Using this method, circuit
designers can easily explore the effects of different
designs on the circuit performance. The SPICE-2 pro­
gram [8,14] developed at the Department of Electrical
Engineering and Computer Sciences, University of Cali­
fornia at Berkeley, has become one of the most popular
"second-generat ion" circuit simulators.

The SPICE-2 program execution consists of two
basic phases [8] . The first phase reads all the input data
(i .e., the circuit description and parameters of required
analyses) , while the second phase performs all the simu­
lations and prints the results . The consequence of such a
program organization is that even a minor change in
any of the element descriptions or parameter values

requires a new, independent run of the simulator. To
provide flexible and efficient analyses oC numerous vari­
ants oC the same circuit (which is oCten required to
"optimize" or "center" the initial design), a new struc­
ture oC the circuit simulator is needed , in which
different analyses (for the same circuit) can be per­
Cormed selectively, and in which there is an access to
internal representation oC circuit elements in order to
mod iCy their values. SPICE-P AC is a package (or a set)
oC subroutines which is functionally equivalent to the
SPICE-2G.6 circuit simulation program, i.e., it not only
accepts the same circuit description and perCorms all the
analyses which are available in the SPICE 2G programs,
but also provides an access to internal values of circuit
elements, dynamic definitions oC parameters and out­
puts, a hierarchical naming scheme for subcircuit ele­
ments, parameterized subcircuit expansions, and an
interCace to libraries oC standard modules. Two immedi­
ate applications oC the package are: (1) interactive cir­
cuit simulation, in which users selectively perCorm cir­
cuit analyses and modiCy circuit elements to satisfy
design requirements, and (2) circuit optimization , in
which an optimization package is interfaced with the
simulation package by user-supplied subroutines that
evaluate objective functions , constraints, etc.

The advantages oC this very flexible structu re of the
simulation package can, however , be seriously degraded
by a traditional, numerical representation of results.
This is especially acute in interactive applications where
tedious studying of long columns of (very accurate)
numerical results is usually much more time consuming
and far less useful than simple comparisons of (less
accurate) graphical data. Therefore the SPICE-PAC
package has been extended by an interface to graphics
facilities , and since the CORE graphics system has been
more widely implemented than other graphics standards
in North America [4,7,13], the CORE system was chosen
rather than the GKS standard [2,15] as the "basic" level
of reference.

The CORE system is a package of subroutines
which defines an abstract, device- independent set of
graphics capabilities. It was designed for functional
completeness so that any graphics function is either

Graphics Interface '85

- 38 -

included within the system or can be easily built on top
of CORE system routines. The general functional capa­
bilities found in the system are of six types:

1) output primitives which are lines, character strings,
polygons and markers,

2) output primitive attributes such as line color, style
and intensity, character font, etc.,

3) segments which are disjoint collections of output
primitives, and · which can be created, deleted,
transformed, blinked, made temporarily invisible,
and picked using an input device,

4) viewing capabilities to create an image of an object in
a viewport on a view surface,

5) operator interaction,
6) overall control to select the surface, establish default

attributes, etc.

For circuit simulation applications, a small subset
of these functions is satisfactory, and a "basic" subset
can be selected in such away, that only a very simple
conversion is required to transform it into a subset of
the GKS standard. In fact , the minimal subsets pro­
posed for both CORE and GKS are entirely adequate
for this application.

This paper discusses the general idea of interfacing
circuit simulation packages with the CORE and GKS
graphics systems, describes some "higher-level" func­
tions defined within the GRAPH-PAC set oC subrou­
tines, and shows some examples oC graphical results o(
circuit simulations and optimizations.

2. SPICE-P AC 2G6a

SPICE-PAC version 2G6a is a package of simula­
tion subroutines obtained by redesigning the SPICE
2G.6 simulation program. The package provides:

(a) the same circuit descriptions as (or the SPICE 2G
programs (in (act, there are a Cew minor differences
but still the SPICE input language is accepted by
the SPICE-PAC package),

(b) all analyses available in the SPICE 2G programs;
since all the analyses are performed "on demand" by
calling appropriate subroutines oC the package, there
is no restriction on the ordering or number of ana­
lyses perCormed within a single simulation session,

(c) accp.ss to "circuit variables" as required in interactive
simulation and circuit optimization; circuit variables
are those circuit elements which can be modified
during a simulation session; circuit variables can be
defined at the main circuit level as well as in su bcir­
cuits,

(d) dynamic declarations oC parameters and output vari­
ab les Cor all analyses; output variables can be indi­
cated at the main circuit level as well as in subcir-

cuits,
(e) parameterized subcircuit calls; subcircuit element

definitions can be redefined by parameters included
in subcircuit calls,

(C) an interCace to libraries oC standard modules; stan­
dard modules are in the Corm oC subcircuits stored in
individual files within a file system, and they can be
accessed by (parameterized) module calls.

SPICE-PAC contains 25 "main" (or interCacing)
subroutines but does not provide the "main program"
which must be suplied by the user to "drive" the sub­
routines, i.e. , to call the subroutines which read a circuit .
description, define circuit variables, perCorm analyses,
etc. , as required by a particular application.

Two immediate examples oC SPICE-P AC applica­
tions are interactive simulation and circuit optimization .

In interactive circuit simulation , the driving routine
mainly handles communication with the user, i.e., it
enters user commands, converts them into correspond­
ing sequences oC SPICE-PAC subroutine calls, and
displays (in numerical or graphical Corm) the resul ts.
The complexity of the driver is directly related to the
sophistication of interaction. In typical applications
interaction is rather simple, and it can use, Cor example,
commands similar to the SPICE input language. A
"convenient" representation oC results appears to be a
more troublesome problem, and a graphical Corm is
probably the easiest to understand and the most
efficient and compact way to present large amounts oC
data. Since some selected data (e.g., the final solution)
may be required in numerical Corm also (Cor Curther pro­
cessing), the graphical representation should be
" backed-up" by a convenient way oC storing original
numerical results obtained Crom circuit simulations.

Because the output Crom SPICE-PAC is very likely
to be used (or applications other than display , it is oC no
real advantage to store the results as graphical inCorma­
tion in a metafile. This application is somewhat unique
in that the computational effort involved in the simula­
tion is normally very much more than that required to
provide the graphical display.

In circuit optimizatioD, the driving routine has to
control at least two packages, the optimization and t he
circuit simulation one. In many cases , when indirect
communication is used Cor interCacing circuit simulation
with optimization , the packages are hierarchically struc­
tured, and then t he whole optimization process is con­
trolled by t he optimization algorithm used . This also
means that t.he user can influence the optimization pro­
cess on ly by selection oC the starting point and (some of)
the optimization parameters. More fl('xible (but also
more difficult) so lution is to use reverse communication

Graphics Inte ~rface '85

- 39 -

[91 in which case user routines (or user - in an interac­
tive way) can control the optimization process at the
"step" level, and can adjust the parameters even "dur­
ing" the optimization process, or can interrupt an
" unsuccessCul" iteration to change the starting point, or
can run several optimizations "concurrently" to compare
the results and select the "best" ones. In all such cases a
graphical "trace" oC the optimization progress is practi­
cally the only representation oC (usually multidimen­
sional) inCormation which can be used by users in "real­
time" to control and direct the optimization. Some very
simple examples oC such traces are shown in section 5.

3. GRAPHICS PACKAGES

The graphics tools required Cor an interCace to
SPICE-PAC are relatively unsophisticated. Normally,
several circuit parameters are to be varied in a given
simulation or optimization session, and these (numeric)
inputs do not· readily lend themselves to graphical input.
As well, most applications require immediate plotting oC
results , and do not require the use oC retained segments.
Consequen tly, a graphics system which provides a sim­
ple, two dimensional plotting capability with no graphi­
cal input and which supports only temporary segments
is satisCactory. A metafile capability is not required ,
because the results oC the analysis will be saved Cor
other applications, and can readily be replotted. In
CORE, a system providing "basic", "no input", "20"
capabilities is quite adequate. In the GKS system, out­
put level 0 (basic output), input level a (no input) is
adequate; in Cact, the "minimal GKS" implementation
described by Simons [121 is sufficient.

Because there are basic differences between the
CORE and GKS graphics systems [151 (e. g. , in the
GKS system there is no concept oC "current position") ,
an implementation oC the GRAPH-PAC to GKS inter­
Cace may behave slightly differently Crom the case oC an
interCace to CORE. In particular, it may be necessary
to buffer the output oC some oC the plot Cunctions, and
output may occur later than in the CORE implementa­
tion . Additionally, Cor text positioning, it may be neces­
sary to store the "current position" . Relative coordi­
nates are also not provided in GKS, but could easily be
simulated.

Table 1 shows the primitive Cunctions required to
implement the present version oC the graphics driver Cor
SPICE-PAC in both the CORE and GKS graphics sys­
tem . Also included are the Cunction names Cor a com­
mercial FORTRAN implementation oC the CORE
graphics standard, 01-3000 [11.

In addition to the graphics Cunctions listed in Table
1, a number oC "second level" Cunct ions were defined to

assist the user in defining the display region . In certain
circuit analyses, the designer may want to use several
different graphical scales, such as linear, log-linear, log­
log to display the Cull range oC data. ThereCore it is con­
venient to have a scale Cunction which allows the plot­
ting oC "scaled" data Crom "real" input data. ThereCore,
plotting Cunctions were defined which automatically
scale the data to correspond to a predefined set oC scale
Cunctions. Normally, all plot commands position plotted
points aCter applying the appropriate "scale" Cunctions
to both the x- and y-coordinates oC the data.

A number oC other Cunctions were defined to allow
axes to be drawn through a point, to place labeled ticks
arbitrarily at · a point (say, on an axis , to provide an
arbitrary axis labeling). Some oC these Cunctions , defined
in terms oC the Cunctions available in the lowest level
graphics package, are the Collowing:

GPSCALE(XMIN,XMAX,XFN,YMIN,YMAX,YFN)
DOUBLE PRECISION XMIN,XMAX,YMIN,YMAX
INTEGER XFN,YFN

GPSCALE defines a transCormation Cunction Cor each oC
the x and y coordinates, using the integer arguments
XFN and YFN. A window is then created, using the
scaled values oC XMIN, XMAX, YMIN and YMA...X.
Presently, the transCormation Cunctions are:

-2 natural log
-1 decibel (lO * 10glO)
o 10glO
1 linear
n polynomial, x**n or y**n

there are also generalized DRAW and MOVE Cunctions
which draw visible or invisible lines Crom the current
position to the points determined by applying the
appropriate scale Cunctions to their arguments.

GPAXIS(XO,YO,XTIC,YTIC,XLABEL,YLABEL)
DOUBLE PRECISION XO,YO,XTIC,YTIC
CHARACTER*(*) XLABEL,YLABEL

GPAXIS draws a set oC axes through the point (XO,'(O)
with ticks spaced a distance XTIC and YTIC on the x
and y axes, respectively . The ticks are labeled automat­
ically, and the labels XLABEL and YLABEL are written
on the x and y axes. The ticks are uniCormly spaced in
the "scaled" coordinates, and labeled with " real" coordi­
nate values. All labeling is done to the leCt and/or the
bottom oC the plotting area, and the viewport is
redefi ned to be the region included in t.he plot area,
which excludes the possibility oC drawing lines in the
text areas.

Graphics Interface '85

- 40 -

Table 1. Primitive graphics Cunctions Cor GRAPH-PAC

CORE GKS GKS (FORTRAN) DI-3000

1. initialization

initialize_core OPEN GKS
initialize_view _surCace
select_view _surCace
create_temporary _segment

OPEN WORKSTATION
ACTIVATE WORKSTATION

GOPKS
GOPWK
GACWR

new_Crame CLEAR WORKSTATION GCLRWK

2. viewing

set_window
set_ viewport_2
inqu ire_window
inquire_ viewport

3. drawing primitives

line_abs_2
move_abs_2
move_rel_2
marker_abs_2

4. drawing attributes

set_linestyle
set _mar k er _sy m bol

5. text primit ives

text

6. text attributes

set_ront
set_charsize
set_charjust
set_charpath
set_charup_2
inquire_text_extent_2

7. t ermination

close_temporary _segment

SET WINDOW
SET VIEWPORT
INQUIRE NORMALIZATION
TRANSFORMATION

POLYLlNE

POLYMARKER

SET LINETYPE
SET MARKER TYPE

TEXT

GSWN
GSUP
GQNT

GPL

GPM

GSLN
GSMK

GTX

SET TEXT FONT GSTXFP
SET CHARACTER HEIGHT GSCHH
SET TEXT ALIGNMENT GSTXAL
SET TEXT PATH GSTXP
SET CHARACTER UP VECTORGSCHUP
INQUIRE TEXT EXTENT GQTXX

deselect_view_surrace DEACTIVATE WORKSTATIONG DAWK
terminate_v iew_surrace CLOSE WORKSTATION GCLWK
terminate_core CLOSE GKS GCLKS

Graphics Interface '85

JBEGIN
JDINIT
JDEVON
JOPEN
JFRAME

JWINDO
JVPORT

JDRAW
JMOVE
JRMOVE
JMARK

JLSTYL
JCMARK

J3STRG

JFONT
JSIZE
JJUST
JPATH

JCLOSE
JDEVOF
JDEND
JEND

- 41 -

GPTICK(X,Y,DIR,LABEL)
DOUBLE PRECISION X, Y
INTEGER Dm
CHARACTER*(*) LABEL

GPTICK places a tick at point (X,Y) in direction DIR
(1- right, 2- down, 3- left, 4- up) and writes the charac­
ter string LABEL beside the tick .

GPBOX(XL,YB,XR,YT)
DOUBLE PRECISION XL,YB,XR,YT

GPBOX draws a box with lower left coordinate (XL,YB)
and upper right coordinate (XR,YT).

4. IMPLEMENTATION ISSUES
One of the most significant differences between

CORE and GKS is the presence of language bindings in
GKS. For languages like FORTRAN, C, PASCAL or
ADA, subroutine names, calling sequences and data
types are given in the standard specification. This
means that programs should require essentially no
changes to move among different environments support­
ing GKS. In CORE, no standard syntax was given for
any programming language, and implementors strayed
to varying extents from the CORE specification. This is
not very comforting to users who try to develop port­
able application programs.

To overcome these differences, a "2-level" solution
has been attempted in GRAPH-PAC. The first (lower)
level is a set of subroutines which provide an interface
between a "standard" graphics package (CORE, GKS,
or another one) and the second level. The second level
provides a " user" interface, i.e., it is a set of subroutines
which implement "user oriented" functions in terms of
primitives supported by the first level. In the case of
moving from one graphics environment to another (e.g.,
from CORE to GKS), only the lower-level interface
must be replaced by a new, appropriate set of "binding"
subroutines which are usually rather simple, and in
many cases perform just a renaming or reordering of
calling sequences.

Moreover, the lack of standardization of calling
sequ ences in CORE may result in difficulties in access­
ing the CORE implementation from different languages.
For example, if parameter passing mechanisms are not
the same for different higher-level languages, a "low­
level" rOil tines m ust be used to adj Ilst the parameter
representations . In our implementation, the CORE
graphics system was developed for a C programming
environment , and does not conform to FORTRAN
parameter passing convent ions. Therefore it was neces­
sary to implement a part of the lower-level GRAPH­
PAC interface in th e C language.

Also since GRAPH-PAC must be linked wi th
several other packages , some of which are very complex
and sophisticated (e.g., SPICE-PAC and optimization
packages, with hundreds of internal subroutines) , strict
naming conventions must be imposed to avoid naming
conflicts among globally defined objects. Therefore it
was assumed that within packages all global names
begin with the same prefix. For GRAPH-PAC the prefix
is "GP", for SPICE-PAC it is "SP" , for optimization
packages "Wxyz", where "xyz" identifies the package
(DI-3000 has a similar convention and all subroutine
names begin with " J" ; for the GKS FORTRAN binding,
each sub program name begins with "G").

Presently, GRAPH-PAC is implemented on VAX-
11 systems under the 4.2-BSD-UNIX operating system,
and will shortly be ported to the V AX-11/VMS environ­
ment. Together with SPICE-PAC and optimization
libraries , it is a part of CAD software being developed
for design and verification of electronic circuits.

5. EXAMPLES
The first example is an interactive simulation of a

differential amplifier in which case a DC transfer curve
[141 is analyzed, and a linear region, symmetrical with
respect to zero input voltage, should be .obtained. Fig. l
shQwS 3 pairs of transfer characteristics (denoted by
V(3) and V(5), V(3)a and V(5)a, and V(3)b and V(5)b ,
respectively) obtained for a "benchmark" circuit used in
[16, Example 11 with 3 different values of the resistor

20.0.....---------------,

1.04001

--YCS)
1.0"111

_ •• .vCl)
1.0..aJ

____ .YCS),

t.Oi+1II
___ JC31t

1.0ftOO
__ J(SJb

------------~ - -; r :'
". I

",I "

\ ~' ".,/ .. ,
, ." \ I

-------------~ ·t
\ I l
\ ~f

" i --1.0 .. 111
___ Yr3n

\ :~ - ---~. ~ --.- ..,--1---------' ,\ '" _- ..--
,: _::----

.. ---..... -------------~~,,;'

-5.0 -5.00 5.00
inpU t VG 11 cge.

Fig.1. Different ial amplifier - DC transfer curves 1.

Graphics Interface '85

- 42 -

RE. Fig. 2 shows the same characteristics "extended"
in the region of zero input voltage. It can be observed
that the only characteristics which satisfy the require­
ments correspond to curves V(3) and V(5).

~.o~-------------------------.

1.0"00
_VIS]

1.0I+0Il
___ JC]]

1.0"00
__ VC5Je

1.0I+0Il
__ JC31.

1.0I+0Il
__ JC5Jb

1.0I+0Il
__ .VC3Jb

-------~~ _--~-----t " ... "'~"
" / '. '/ ,;,

----------""
1'--__ -------

.",.r,\
'" . -- _----

" ... ,---... lt~-·--- --", ,.----
X '--------, ,

--------------_____ .1 , ____________ _

-5.0 -0.25 0.25
inpU t vo I toga

Fig.2. Differential amplifier· DC transfer curves 2.

As an optimization example, a single stage CE
amplifier in a seIC-biasing configuration is analyzed, and
it is to find the values of three resistors, RI , R2 and RE
[17], such that for the midband frequency f=50KHz,
and for the spread of beta.dc between 80 and 250, the
voltage gain is as close as possible to the value lOV IV,
and the input resistance is not less than 20Kohms. The
minimax optimization package WMBG2 [18\ used in this
example is a modified version of linearly constrained
minimization technique combined with routines for
numerical approximation of gradients. Fig.3 shows
traces of consecutive steps of optimization (without any
"external" intervention in this case) in which voltage
gain is given as a function of the beta.dc parameter (the
influence of input resistance is not shown), and "step 0"
denotes the starting characteristic. Also, a "tolerance
region" [9 .5,10.5\ is indicated by its boundaries. It can
be observed that after 4 iteration steps the whole
characteristic is within the tolerance region , and remain­
ing steps are used for centering the design (one of the
centering steps fails but is corrected successfully) .

Similar traces for an optimization example are
show n in Fig.4 which illustrates an optimization of the
same single stage CE amplifier but now the voltage gain

12.0

.hp 0 ../ ~- ---... -.. -------.. -.----.--... ----

.Iep I -. ,
'hp 2 .!'

---------------------------------.
• h,3 -_
.1., 4

, -'
.hp 5 "

----------------------------------, "
.hp 6 .:.,

- •• ------- •••••• 1 ••••••• 1 ••••••••••• ,1 ••• . " • hp 7 .. -: ... !........... .
'hp 8 -',~ , . ,
.h, 9 .o', , .
.1.,10 " , , -', , · ,hpll .. · · -', · · ,1.,12

, · · _. , , . , . , , . , . , , , , , . , , , . , ,
8.0

80.0 250.0
b.la. de

Fig.3. Amplifier optimization - beta.dc variation .

12.0r----------------,

itep 0 h
.Iep 1 -
.Iep 2 • ~_-.----
.1 3.' -.------------

tp '. ~.--- --------- _ ... ------- - - -- ..
• Iep 4 -. • ..' _---------
.Iep 5 -, ~ .:!_'~-------___ _ _____________ _
at", G· ·! . _ .• _ ... _.... . .. --:.:,-.---...... - ------- .. -----
• ttp 7 iii.aaa. • •• a ••••• _ ••• _ ••• _ ••• ~ ••• _ ••• _.::

.Iep 8 ". __ .---- ------------

.Iep 9 -.,. • __ --- ----- -

• lep12 -~
'''pIO -', v-- -­.lep11 -;~

.lep13 .:

100.0
Itttperature

Fig.4. Amplifier optimization - temperature variation .

is stabilized against variation of t he temperature (for a
fixed value of beta.dc) , and it is to find the values of RI ,
R2 and RE such that for the same mid band frequency
and for the temperature range [-50,100\ degrees Celsius,
the voltage gain is as close as possible to lOV IV, and
the input resistance is not less than lOKohm. Again,
"step 0" shows the initial design Cor which the voltage
gain variation in the t emperature range [-50,100] is
approximately 2.5V IV. After 3 iteration steps , the vari­
ation is reduced to approximately O.SV IV, and after 13
iteration steps it is less than 0.1 V IV.

Graphics Interface '85

- 43 -

6. CONCLUSIONS
An interCace "ststandard" graphics systems has

been designed for use with the SPICE-P AC package oC
circuit simulation subroutines. This interCacing package
allows the designer to see, in a familiar graphical form,
the results of the most important analyses available
with the SPICE 2G.6 circuit simulation program, and to
interact with the circuit simulation package, dynami­
cally alter circuit variables and parameters, perform
analyses, etc.

Although other programs are available which plot
the output from the SPICE program, or other circuit
analysis programs [3], this package is the only system
which allows the full interactive display of SPICE ana­
lyses and which permits user interaction to alter the
values of circuit elements. Plots from several analyses
can be displayed simultaneously. Plots can be scaled
and rescaled in several different ways, and the results of
the SPICE-PAC analyses, together with the values of
circuit variables and other parameters, can be stored
and redisplayed .

Future improvements in GRAPH-PAC will allow
more extensive interaction with general purpose optimi­
zation routines used in conjunction with SPICE-PAC
for circuit optimization .

REFERENCES

[1] "DI-3000 User's Guide"; Precision Visuals, Boulder
CO, 1984.

[2] "Status Report on the Graphics Standard Planning
Committee"; Computer Graphics, vol.l3, no.2,
1979.

[3] "VLSI Design Tools - Reference Manual - Release
2.1"; UW /NW VLSI Consortium, University of
Washington , Seattle WA 98195, 1984.

[4] D. Bergeron, P . Bono, J .D. Foley, "Graphics pro­
gramming using the Core system"; ACM Comput­
ing Surveys, vol.lO, no.4 , pp .389-443, 1978.

[5] P .R. Bono, J.L. Encarnacao, R.A. Hopgood, P.J.W.
ten Hagen , "GKS - the first graphics standard" ;
IEEE Computer Graphics and Applications, vol.2,
no.S , pp.9-24, 198:!.

[6] R.K. Bray ton, G.D. Hachtel, A.L. Sangiova.nni­
Vincentelli, "A survey of optimization techniques
Cor in tegrated-circuit design" ; Proc. oC the IEEE,
vo1.69, no. 10, pp .1334-1362, HJ81.

[7] G. Chappel, P. Bone, "Core system implementations
- a status report" ; Computer Graphics, vol.l2 , no.4,
pp.53-65 , 1978.

[8] E. Cohen, "Program reference for SPICE 2"; Univer­
sity of California, Berkeley CA 94720, Memo ERL­
M592,1976.

[9] P.E. Gill, W. Murray, S.M. Picken, "The design and
structure oC a Fortran library Cor optimization" ;
ACM Tr. Mathematical SoCtware, vol.5, no.3,
pp.259-283, 1979.

[10] A.R. Newton, D.O. Pederson, A.L. Sangiovanni­
Vincentelli, C.H. Sequin, "Design aids Cor VLSI -
The Berkeley perspective"; IEEE Tr. Circuit and
Systems, vol.28, no.7, pp.666-680, 1981.

[11] D.O. Pederson, "A historical review oC circuit simu­
lation"; IEEE Tr. on Circuits and Systems, vol.31 ,
no.1 , pp.103-Il1, 1984.

[12] R.W. Simons, "Minimal GKS" ; Computer Graphics,
vol.l7, no.3, pp.183-189, 1983.

[13] E .L. Sonderegger, "The case Cor CORE system stan­
dardization" ; Computer Graphics World , vol.7 ,
no.2, pp.26-30, 1984.

[14] A. Vladimirescu, K. Zhang, A.R. Newton , D.O.
Pederson, A. Sangiovanni-Vincentelli, "SPICE
Version 2G - User's Guide (10 Aug. 1981)" ; Depart­
ment oC Electrical Engineering and Computer
Sciences, University of CaliCornia, Berkeley CA
94720, 1981.

[15] T. Wright, "GKS versus CORE"; Computer Graph­
ics World, vol.7, no.2, pp.18-24, 1984.

[16] W.M. Zuberek, "SPICE-PAC 2G6a.84.05 - User's
Guide"; Department of Computer Science,
Memorial University of Newfoundland , St. John 's,
Nftd ., Canada A1C 5S7, Technical Report 8404,
1984.

[17] W.M.Zuberek, "SPICE-PAC, a package oC subrou­
tines for interactive simulation and optimization of
circuits"; Proc . International Conference on Com­
puter Design, Port Chester NY, 1984.

[18] W.M. Zuberek, "WMBG2, a package of subroutines
for bounded minimax optimization without deriva­
tives"; Department of Computer Science, Memorial
University of Newfoundland, St. John 's, Nftd.,
Canada AIC 5S7, Technical Report 8502, 1985.

Graphics Interface '85

