
- 425 -

GENERATIVE DESIGN IN ARCHITECTURE USING AN EXPERT SYSTEM 

Eric Gullichsen 
Ernest Chang 

Dept. of Computer Science, 
P .0. Box 1700, 

University of Victoria, 
Victoria, E.C. V8W 2Y2 

March 1, 1985 

ABSTRACT 

The mathematician-architect Christopher Alex­
ander has devised a theory of objective architectural 
design. He believes that all architectural forms can be 
described as interacting patterns, all possible relation­
ships of which are governed by generative rules. These 
form a 'pattern language' capable of generating forms 
appropriate for a given environmental context. 

The complexity of interaction among these rules 
leads to difficulties in their representation by conven­
tional methods. This paper presents a Prolog-based 
expert system which implements Alexander's design 
methodology to produce perspective views of partially 
and fully differentiated 3-dimensional architectural 
forms. 

I I 
RESUME 

Le mathematicien-architecte Christopher Alex­
ander a invente une theorie d'esthetique architectural. 
II croit qu 'on pe ut 'ecrire toutes les conformations avec 
un systeme de regles qui agit l'un sur I'autre. Les regles 
se forment un language qui peut produire les conforma­
tions convenable au contexte de I'environnement. 

C'est difficile de representer ces regeles par les 
methodes classiques a cause de la complexite 
d'interaction entre les regles. Nous presentons un 
systeme qui utilize la langage de programmation Prolog 
pour mettre en oeuvre la methodologie d'Alexander et 
creer les perspectives tridimensionelles des 
conformations partialement et totalment distinguees. 

KEYWORDS: architectural design, expert systems, 
logic programming, generative systems. 

'From the sequence of these individual patterns, 
whole buildings with the character of nature will 
form themselves within your thoughts, as easily as 
sentences.' [3,p .xivj 

1. Introduction: The Pattern Language of Chris­
topher Alexander 

1.1. Patterns: Forms within a Context of 
Forces 

What are the primitive 'atomic' elements which 
comprise an architectural form such as a room, a build­
ing, or a city? In answering this question, the environ­
mental context of what may upon first consideration 
appear to be atomic elements must not be neglected. 

According to Alexander, patterns, which consist of 
static physical elements (the form) in the environment, 
together with dynamic occurences related to the physi­
cal elements (the context) which in turn result from the 
interaction of certain relevant forces, constitute the 
entire physical substance of the world. To consider the 
world to be made of physical 'things' entails a miscon­
ception analogous to that held by classical physics in 
considering an 'atom' a thing. Western languages con­
tribute to the perpetuation of the illusion that 'things' 
are fundamental, by their preponderance of nouns. In 
Alexander's view, a noun is simply a convenient label 
for a set of relationships amongst patterns. 

What is it then that is repeated in an architectural 
form? Traditionally, physical entities are repeated 
hierarchically: an apartment building can be seen as a 
collection of suites, each of which is a collection of 
rooms. However, this classical view fails to explain how 
or why these elements tend to be associated with 
different sets of events. For instance, people who live 
in an apartment building do disparate things in their 
respective suites, and the modular viewpoint fails to 
account for this variation. 

Graphics Interface '85 



- 426 -

Alexander asserts that hierarchies of relationships, 
rather than of things, contain the architectural primi­
tives we seek. Each pattern is a morphological law 
which defines a permissible set of spatial relationships 
within a given context. The taxonomy of these mor­
phological laws is a hierarchy, as each pattern is itself a 
pattern of relationships among other patterns. 

The relationships between patterns are the only 
entities repeated in the world. Patterns, consisting of a 
space and the events which occur there, are the atoms 
of the man-made universe. According to Alexander 
[3,p.9g] these patterns are only a few in number: a 
building is defined by several dozen patterns. 

If this is accepted, the obvious question is then 
how these canonical patterns combine to produce the 
world we know. Before we attempt to answer this, a 
distinction must be made between 'good' and 'bad' pat­
terns. 

1.2. The Quality of Patterns 

Alexander claims that patterns vary from 'good' to 
'bad', and that the quality of a form to be created can 
be assured by objective scientific means. Good patterns 
possess a certain hard-to-characterize quality of holistic 
completeness or 'life' which Alexander terms the 'qual­
ity without a name'. Patterns which produce irrecon­
cilable conflicts in humans and thereby increase their 
psychological stress are bad patterns. What then is a 
good pattern? As will become apparent, good patterns 
are those generated by a specific set of rules which 
take into consideration the forces acting on the pat­
tern being designed. 

Such a pattern has an ecological balance of inter­
nal and external forces acting upon it. Where this bal­
ance is stable, as in the forms found in nature, a pat­
tern is good or 'alive'. These live patterns can interact 
to support each other. 

Natural objects are always formed by the forces 
which arise within them. Objects created by man a re 
also formed through the action of certain forces, but 
there may also exist additional latent forces which do 
not directly influence the form of the object. However, 
a design procedure which does not account for all forces 
acting; on objects will inevitably lead to an unstable 
system. 

Living patterns are easily recognized from their 
geometric character. Alexander stresses that a hierarchy 
of living patterns is never modular. Rather, the recon­
ciliation of patterns with their internal forces make 
their details unique, like the leaves of a tree. or the 

waves of an ocean. To be whole and alive, buildings 
and other architectural structures must have this 
natural characteristic of responsiveness to internal and 
external environmental forces. 

It is precisely this holistic characteristic of good 
architectural design requiring the interaction of large 
amounts of knowledge that makes the use of expert­
system techniques suitable. 

1.3. The Generation of Pattern Hierarchies by 
Pattern Languages 

Good patterns cannot be brought into existence by 
a single monumental effort of intellect, but only 
through process. Just as life within a natural organism 
implies the maintenance of a balance of forces, so a 
building which is alive must be grown from a set of 
patterns in which the parts created are harmonious 
both internally and in their totality. Rules for com­
bining patterns constitute 

'a way of focusing attention on some particular 
holistic behavior in a thing, which can only be un­
derstood as a prod uct of interaction among the 
parts. ' [1) 

Alexander claims to have discovered a simple set 
of generative rules which determine the structure of 
any environment. These rules are similar to a genetic 
code, and govern human acts of building. Architectural 
forms generated by this ' pattern language' are neces­
sarily 'alive' since a balance of relevant internal forces 
follows inevitably from the manner of their creation. 
Details of the 253 patterns which comprise this pattern 
language have been published [2]. Alexander asserts 
that the language represented by these patterns consti­
tutes the archetypal core of all possible pattern 
languages. 

He makes a clear distinction [7] between a genera­
tive design process, and design governed by con­
straints, which is the conventional method of 

formulating design rules in architecture. An appropri­
ate analogy can be found in the field of linguistics. 
Chomsky [4] was the first to develop generative gram­
mars for languages, both natural and artificial. Until 
Chomsky, most grammatical rules were expressed in 
the form of constraints which sentences in the language 
obeyed. Chomsky's generative specification of gram­
matical rules was novel in that only correct sentences 
would ever be created. Therefore, complex and uncer­
tain 'generate-and-test' methods were no longer 
required. A similar process occurs in nature, in which 
an organism grows from an embryo in accordance with 
the generative rules encoded in its chromosomes. The 
same efficient design methodology is possible, according 
to Alexander, in architecture. 

Graphics Interface '85 



- 427 -

2. From Forces to Forms: Design with a Pattern 
Language 

We have postulated the need to achieve during its 
design process, a balance of forces acting on a designed 
object, for it to be 'alive' and have the 'quality without 
a name'. We now explore more thoroughly how this 
need can be satisfied through use of a pattern-based 
design process. 

2.1. A Formalism for Patterns 

In [3,p.247] Alexander gives a rigorous treatment 
of patterns, the basic entities of his design system. A 
pattern both corresponds to a certain class of thing 
which exists in the world, and is a rule describing the 
design (generation) of that thing. 

The structure of a pattern language follows from 
the fact that individual patterns are not isolated. Each 
pattern occupies a position in a (possibly cyclic) net­
work of related patterns, connected to the smaller pat­
terns it contains, as well as the larger patterns in which 
it is contained. A pattern helps to complete the pat­
terns above it in the network, and is itself completed 
by the smaller patterns below it. 

(1) 

(2) 

A pattern has three components: 

Context. Where or when is the pattern applicable? 
The context of a pattern may be considered to be 
a set of preconditions which specify its applicabil­
ity. 

The system of forces which define the problem 
solved by this pattern. Why is this pattern 
required? Recall that good patterns resolve or bal­
ance the internal and external forces acting on the 
thing designed. This component of the pattern 
provides the reason(s) for its application. 

(3) The solution, or spatial configuration of entities 
implied by the pattern which permit the resolution 
of (2). What specifically is the invariant property 
common to all such solutions? As patterns are 
hierarchically arranged, this third component of a 
pattern may be highly complex, and usually 
involves other patterns. 

Each pattern thus contains two logical statements, 
which must be empirically true. The first is that a 
given problem (2) exists within the stated context (1). 
Secondly, the pattern asserts that (3) solves (2). A pat­
tern is objectively good if the problem (2) is real and 
configuration (3) solves (2) . 

To implement a design system based upon an 
interacting set of such patterns, the rigorous 

specification of (3) frequently proves to be difficult l
. As 

seen in the next section, for patterns to be practically 
applied to a design problem, the solution may have to 
be a set of procedures which further differentiates the 
form being designed. 

In [2] , 253 patterns which apply to architectural 
forms of varying scales are presented. The scales dis­
tinguished by Alexander are those of: towns, buildings, 
and construction. Our expert design system employs a 
subset of 84 of these 253 patterns, selected to consider 
the design of forms from the second of the three scales, 
those that pertain to individual buildings and the 
spaces between buildings. 

2.2. Use of a Pattern Language: Differentiation 

The use of a language of patterns to design an 
architectural form involves a process of differentiation: 
the creation of distinctions where no distinctions previ­
ously existed. A process of differentiation which results 

in the 'growth' of a design should not simply consist of 
the addition of modular components in a hierarchical 
manner; each part must be modified by its position in 
the whole design. 

Alexander's patterns are arranged roughly in order 
of decreasing morphological importance to ensure that 
a whole, imprecisely-specified form is successively 
differentiated during the process of design. This succes­
sive differentiation ensures that subsequent design 
decisions do not conflict with earlier decisions, and 
eliminates the need for backtracking. 

Since patterns are ordered, no pattern can unex­
pectedly arise to act as a constraint on a partially­
completed design. Patterns are applied successively in a 
generative manner. At each step, certain general 
configurations of the form are established, and details 
are then elaborated, conforming to the structure laid 
down. 

More precisely, to design in a generative manner, 
the order of application of patterns should meet the fol­
lowing three heuristic criteria, listed in order of 
decreasing importance [3,p.380] 

(1) If pattern A is above pattern B in the network of 
patterns, then A should be employed before B. For 
instance, if pattern A involves a living room, and 
B involves alcoves in a room, the living room 
design must be produced (roughly) before alcoves 
can be incorporated. 

lThe reader is challenged to provide a rigorous definition of a 
' rough circle ', an object which any child could sketc h without hesi­
tation . 

Graphics Interface '85 



- 428 -

(2) Before employing pattern A, all the patterns 
immediately above A in the pattern network 
should be considered in the design, as contiguously 
as is possible. 

(3) Similarly, after employing pattern A in a design, 
the patterns immediately below A in the network 
should be considered, as contiguously as is possi­
ble. 

It is the burden of the designer of a pattern 
language to correctly structure the network of patterns 
so that features which are 'dominant' in a form which 
can be produced are characterized by patterns which 

occur higher in the network of patterns2
• As Alexander 

has made explicit the structure of the network of pat­
terns for his pattern language [2], we need not concern 
ourselves with the problem of discovering the pattern 
hierarchy. 

2.3. Differentiation of the Structure of an Indivi­
dual Building 

In order to illustrate more clearly what is meant 
by the process of design by differentiation, let us con­
sider in detail that subset of patterns (104-204) which 
deals with the design of individual buildings. 

An examination of these patterns as presented in 
[2] reveals that the use of this portion of the pattern 
language involves 8 identifiable steps of differentiation 
of detail of the form being designed. 

(1) Initially, the position and rough shape of 
building(s) on the site is fixed. (patterns 104-109). 

(2) Entrances, gardens, courtyards, terraces and roofs 
are laid out. (patterns 1l0-1l8). 

(3) The gradients of space within the building are 
established. (patterns 127-135). 

(4) Within building wings, the most important areas 
and rooms are defined. (patterns 136-145). 

(5) The inside of the building is knit to the outside, 
by treating the building edge as a distinct place. 
(patterns 157-168). 

(6) Minor rooms and alcoves are attached, to complete 
the main rooms. (patterns 179-189). 

(7) The size and shape of rooms and alcoves are fine­
tuned, to make them precise and constructable. 
(patterns 190-196). 

(8) Finally, the walls are given depth as necessary for 
alcoves and windows. (patterns 197-204). 

2It is reasonable to imagine that if patterns were represented 
by means of a sufficiently uniform and rich description language, 
an inference of the structure of the pattern network might proceed 
automatically . 

For the design of any form which is to be a com­
plete building, patterns are usually selected from each 
of the 8 groups outlined above. Variation in the exact 
selection of patterns leads to variation between indivi­
dual designs. 

3. The Prolog-based Expert System 

The ideas and structure of Alexander's system of 
design as based on a generative pattern language have 
been presented. The entities of the system are the pat­
terns, each of which has three principal constituents 
(section 2.1). A network of patterns is seen to form a 
language for design, where a useful language should be 
both morphologically and functionally complete. The 
structure of the network is governed by the morpholog­
ical dependencies present between patterns. Heuristic 
design rules for traversing the network to apply pat­
terns one-at-a-time in a top-down differentiating 
fashion have been discussed. 

Computer-based experiments with generative 
architectural design were conducted using the very 
high-level logic programming language, Prolog [6 ,8]. 
CProlog Version 1.4 was employed on a VAX 11/750, 
and a Raster Technology Model 20 colour raster graph­
ics device was used to present graphical output interac­
tively, employing a 3-d solids rendering package 
developed at the University of Victoria. Prolog was 
selected for a number of reasons, including: its suitabil­
ity as a language for implementing expert systems [5], 
and its overt descriptive clarity. 

3.1. The Need for an Expert Design System 

Expert systems are powerful tools in knowledge­
intensive fields of human expertise. Heuristics are often 
used to search problem spaces too large or heterogene­
ous for formal techniques. 

As Alexander has observed [7], the number of 
potential interactions between rules in a generative sys­
tem increases so explosively with the number of rules 
that a conventional exhaustive mathematical trea tment 
of all points in the design space is impossi ble for non­
trivial systems. He has also recommended [3,p.538] 
that designers should be free from preconceived 
notions, apply the pattern language objectively, and be 
egoless~ Computer expert systems seem to meet these 
requirements. 

3.2. The Knowledge-Base of Patterns 

A subset of the patterns of Alexander 's pattern 
language constitutes the expert knowledge of our 

system. The morphological content of patterns is 
represented in part by Prolog axioms, and can be mani­
pulated (displayed, changed, removed, summarized) 

Graphics Interface '85 



- 429 -

within the expert system. The solution component of 
each pattern is represented through the procedural 
attachment of appropriate Prolog routines to the pat­
tern. Knowledge possessed by the system is thus both 
declarative and procedural in nature. The declarative 
knowledge indicates when and for what purpose the 
pattern is to be used. The procedural knowledge deter­
mines how the form being designed is affected when the 
pattern is applied. 

Declarative information is represented for each 
pattern. The pattern number and name are present, to 
identify the pattern. Alexander's judgement of the 
universal archetypal validity of the pattern [2,p.xv) is 
represented by an integer from 0-2. The context of the 
pattern is encoded by associating, with each pattern, 
lists of the patterns immediately above and below it in 
the network of patterns. The group to which the pat­
tern belongs is represented by an integer between 1 and 
8. The problem solved by the pattern is given in text 
form. Finally, the solution component is given both in 
text form for explanatory purposes, and as (a set of) 
Prolog procedures. 

The Prolog procedures for a pattern embody 
knowledge of the processing required to apply the 
design rule(s) captured by the pattern. Since Alexander 
intended his language to be used by people who possess 
spatial and perceptual tools (not easy to implement in 
machines), the amount of computation required to 
apply a even single pattern is often large. In our sys­
tem, the complexity of individual rules (patterns) is · 
much larger than that typical of production-based 
expert systems. 

For example, consider Alexander's pattern number 
106, termed 'positive outdoor space' [2). This pattern 
solves the problem of unused spaces between buildings 
by making these spaces 'positive' in form, giving each 
some degree of enclosure. This intuitive notion 
corresponds closely to the mathematical idea of ensur­
ing that the sum of areas enclosed by walls of buildings 
or segments which constitute the convex polygonal hull 
of the building's wings, weighted by the ratio of its 
enclosing perimeter (provided by the walls) to the 

entire perimeter of the hull, is sufficiently high. 

Although the attachment of a plethora of pro­
cedures to a single pattern seems to violate the princi­
ple of modularization, it was necessary to create such 
complex rules in order to automate Alexander's system 
in its original form. The lower-level procedures typi­
cally employ geometric methods to solve technical 
problems which are simply taken for granted in human 
design. 

3.3. Pattern Selection and Ordering 

The first step in the design of a form is the selec­
tion of the patterns which are to be used in the design 
of the form. According to the instructions of Alexander 
[2,p.xxxviii) , in order to design a form, one begins by 
selecting the single pattern which 

'best describes the overall scope of the project [one] 
has in mind' . 

The network of patterns is traversed forward from the 
position occupied by this initial pattern; all patterns 
below the initially-chosen pattern are presented to the 
user for selection or rejection. The user should select 
all patterns relevant to the form to be designed. 

Alexander cautions the user against selecting 
irrelevant patterns: 

'When in doubt about a pattern , don ' t include it . 
Your list can easily get too long; and it if it does, it 
will become confusing. ' [2 ,p.xxxix] 

One goal of the development of an expert system for 
design is to succeed in dealing with complexity without 
confusion. As the user traverses the network of pattern 
in the knowledge base, explanations can be given of the 
problems resolved by the patterns encountered, to help 
in deciding whether to include the pattern. 

Following the selection of patterns, those chosen 
are sorted into the order in which they are to be 
applied, according to the heuristic rules of section 2.2. 

3.4. Form Generation 

At the beginning of the generation process, a 
number of global design parameters are requested of 
the user. For example, what is the square footage of 
the form to be designed? Although Alexander's 

patterns do not explicitly use such information, the 
creation of actual buildings requires it. Selected pat­
terns are then used, one at a time, to differentiate the 
form. 

The Prolog procedures attached to each of the 
selected patterns are then applied sequentially to 
differentiate the form . Prior to the application of each 
procedure, the user may chose to invoke one of several 
available options. If desired, an explanation of why the 
pattern is being applied is presented. At the end of the 
partial differentiation which results from application of 
a series of patterns from the same group, special post­
processing procedures are invoked, to 'clean-up' the 
form which results from the processing. 

A graphical display of the form as it currently 
exists at a given stage in the design procedure is 
updated as the form is differentiated by the application 

Graphics Interface '85 



- 430 -

of patterns. As design proceeds, the user may request 
explanations of a design step or request the retention of 
the design for subsequent reproduction. 

At the earlier stages of differentiation, the building 
is represented as a 2-dimensional line drawing in plan 
view. After all patterns from the first group have been 
applied, the form is given elevation, and is rendered 
thereafter by perspective projection of the 3-
dimensional model. Through the scene description 
language employed by the rendering software, the user 
is free to select viewpoint, lighting sources, surface 
colours and reflectance properties for the building and 
its background both during and subsequent to the 
design. 

3.5. An Example of Design 

The following example of form generation is 
intended to convey the level of design expertise 
currently present in our system. Nine patterns [21 were 
selected for use in the design: 

104) Site Repair 
105) South-facing Outdoors 
106) Positive Outdoor Space 
107) Wings of Light 
108) Connected Buildings 
117) Sheltering Roof 
128) Indoor Sunlight 
159) Light on Two Sides of Every Room 
239) Small Panes 

Pattern 104 prohibits the form from being gen­
erated in certain regions of the site, as buildings should 
be constructed on those parts of the land which are in 
the worst condition. Pattern 105 establishes the princi­
pal orientation of the building. Graphical output com­
mences for this example with the application of pattern 
107, which causes the building to be generated in the 
form of long narrow wings (Figure 1). 

Pattern 106, which occurs below 107 in the pattern 
hierarchy, is applied next, to ensure that sufficient 
space is enclosed by the proposed form (Figure 2). Pat­
tern 108 ensures that the building is connected, and 
pushes wings towards their center of gravity if any 
were disconnected. As by chance all wings were con­
nected, the application of this pattern causes no change 
in the example design. 

As the next pattern to be applied, 117, is in a 
different group than is 108, end-of-group processing for 
group 1 causes extension of the building into the second 
and third dimensions (Figures 3,4). Pattern 117 causes 
the roof to be partially differentiated (Figure 5), and 
the remaining patterns create and differentiate windows 
(Figure 6). Figures 7 through 10 provide some views of 
the completed form. 

4. Conclusions 

Although our design system is still being 
developed, our results are promising, and convince us. of 
the feasibility of a Prolog-based expert system which 
implements the pattern language of Christopher Alex­
ander. 

The usefulness of the system as a practical design 
tool is reduced by a number of factors. Alexander 's 
design methodology, although formal and precise in 
many of its higher-level characteristics, requires the 
user to make many lower-level decisions based on intui­
tion alone. That is, the language is morphologically 
complete in its specification of form only to a cert.ain 
level of detail beyond which it seems natural and sim­
ple for huma~s to continue on the basis of considera­
tions which appeal to emotional feeling. 

While the mechanisms for choosing patterns and 
applying the language are easily implementable, it is 
difficult to automate the entire process of form genera­
tion, because the intuitive feelings of human designers 
are difficult to characterize formally in expert systems. 
It is only due to the high degree of formal structure 
present in Alexander's system that the automation of 
design is conceivable at all. 

We believe that introspection combined with 
experimental verification can in all cases reveal the for­
mal substance of what is termed 'feeling' or 'intuition' 
about design. The production of a formal characteriza­
tion of human feelings about design can in many cases 
be laborious; its difficulty was greatly underestimated 
at the commencement of our experiment. 

Another problem encountered during the develop­
ment of the system was the lack of a good program­
ming environment for Prolog. In order to develop a 
convenient user interface for the system, a large 
amount of low-level Prolog code had to be written. Pro­
log routines for such tasks as list manipulation, I/O, 
screen management, menu presentation and raster 
graphics have all been created, and are now available 
for future projects and the continuing development of 

our system3
• 

Our experiences with Alexander's design methods 
leave us optimistic about the future of complex 
knowledge- based expert systems in the field of architec­
tural design. 

3The Prolog source code ror the system is available rrom the 
authors upon request . 

Graphics Interface '85 



- 431 -

References 

1. C. Alexander, "The Bead Game Conjecture," 
Lotus, an International Review of Contemporary 
Architecture 5 pp. 151-154 Fantoni Artegrafica, 
(1968). 

2. C. Alexander, A Pattern Language, Oxford Univer­
sity Press, New York (1977). 

3. C. Alexander, The Timeless Way of Building, 
Oxford University Press, New York (1979). 

4. N. Chomsky, Aspects of the Theory of Syntax1956. 

5. KL. Clark and F.G. McCabe, "PROLOG: A 
Language for Implementing Expert Systems," pp. 
455-470 in Machine Intelligence 10, ed. D. 
Michie,John Wiley & Sons, New York (1982). 

6. C.S. Clocksin and W.F. Mellish, Programming in 
PROLOG, Springer-Verlag, New York (1982). 

7. S. Grabow, "The Science of Design: Christopher 
Alexander's Search for a Generative Structure," 
Re Visions, (2) pp. 36-45 (Fall, 1983). 

8. R.A. Kowalski, "Predicate Logic as a Program­
ming Language," IFIP 74, pp. 569-574 North­
Holland, (1974). 

PLAN VIEW.SCALE 1:500 

Pattern 107:Wings of Light 

Figure 1 

PLAN VIEW.SCALE 1:500 

Pattern 106:Positive Outdoor Space 

Figure 2 

PLAN VIEW.SCALE 1:500 

Pattern endgrpl:2-d extension 

Figure 3 

Graphics Interface '85 



- 432 -

Figure 4 Figure 6 

Figure 5 Figure 7 

Graphics Interface ~8S 



- 433 -

Figure 8 Figure 10 

Figure 9 

Graphics Interface '85 


