
- 56 -

USING CACHING AND BREADTH-FIRST SEARCH TO SPEED UP 

RAY-TRACING 

(extended abstract) 

Pat Hanrahan 

Abstract 

Ray-tracing is an expensive image synthesis 
technique because many more ray-surface 
intersection calculations are done than are 
necessary to shade the visible areas of the 
image. This paper extends the concept of 
beam-tracing so that it can be coupled with 
caching to reduce the number of intersection 
tests. Two major improvements are made over 
existing techniques. First, the cache is organized 
so that cache misses are only generated when 
another surface is intersected, and second, the 
search takes place in breadth-first order so that 
coherent regions are completely computed before 
moving onto the next region. 

Graphics Interface '88 

Introduction 

Ray-tracing has attracted considerable 
attention recently because of the super-realistic 
images that can be produced. Lighting and shading 
effects that require information about the global 
environment, such as shadows, reflections and 
refractions, can be calculated by recursively 
tracing rays from the surfaces they intersect 

. [Whitted, 1980]. Distributed or stochastic 
ray-tracing can be used to simulate other optical 
effects, such as motion blur, finite-sized light 
sources, prismatic effects, etc., and to remove 
many of the artifacts due to point sampling the 
image [Cook, Porter and Carpenter, 1984]. 
Ray-casting can also be used to generate line 
drawings and sectioned views, and to perform 
the volume integrals needed for the calculation 
of mass properties [Roth, 1982]. Another 

. advantage of ray-tracing is that it is 
conceptually elegant and easy to implement. The 
models that comprise the scene can be rendered 
if a procedure to intersect a ray with their 
su rfaces is provided. Because of the 
object-oriented architecture, a ray-tracing 
system is easy to maintain and extend. The 
nu mber. of geometric primitives that can be 
ray-traced is quite large and continues to grow. 

The major disadvantage of the standard 
ray-tracing algorithm is that the time needed to 
generate an image is equal to the number of 
geometric primitives times the size of the 
output image. This is because when an individual 
ray is being traced all the objects in the scene 

Vision Interface '88 



- 57 -

need to be tested to check for an intersection. As 
a result there are many more ray-surface 
intersection calculations performed than there 
are rays intersecting visible surfaces. Several 
approaches have been attempted to reduce the 
number of intersection tests. Rubin and Whitted 
[1980] use a hierarchical tree of bounding boxes 
to describe a scene. Since the bounding volumes 
of the children lie entirely within the bounding 
volumes of the parent, the child volumes need 
only be searched if the ray intersects the parent 
volume. An alternative approach is to decompose 
space into a set of disjoint volumes. Each I/olume 
in the subdivision contains a list of those 
surfaces contained within it, and the subdivision 
is made fine enough so that the total number of 
objects in each volume is a small number. The 
search for an object intersection proceeds along 
the path of the ray through the subdivision. Two 
different subdivision methods have been 
reported. One method decomposes space into a 
rectangular array of voxels. In this case the 
volumes along ,the path of the ray can be 
determined using a 3-d incremental line drawing 
algorithm [Fujimoto and Iwata, 1985; Haeberli, 
1985]. The second method decomposes space with 
an oct-tree [Glassner, 1984; Kaplan, 1985]. In 
this case, determining the next volume in the 
path is more complicated, but this disadvantage 
is offset by the fact that the oct-tree 
decomposition takes less space for a given level 
of detail . 

In this paper we develop another method for 
speeding up the search for ray intersections by 
combining two methods previously reported in 
the literature: beam-tracing [Heckbert and 
Hanrahan, 1984] and coherent ray-tracing [Speer, 
De Rose and Barsky, 1985]. We discuss how the 
concept of a beam-tree can be used to 
characterize the coherence contained in an 
image. The beam-tree also suggests that the 
ray-surface intersections should be searched for 
in breadth -first order, that is, all the 
intersections with a given surface should be 
found before proceeding to the next surface. We 
also discuss several new methods for caching 
rays. 

Graphics Interface '86 

The Beam Tree 

Heckbert and Hanrahan [1984] described a 
method to trace beams through a scene 
consisting of polygonal qbjects. This method was 
based on the observation that neighboring rays 
have essentially the same object intersection 
tree. This coherence can be quantified by 
introducing the notion of the beam-tree. In a 
ray-tree (as described in Whitted [1980]), the 
links represent rays of light and the nodes 
represent the surfaces that those rays 
intersected. Similarly, the links in a beam-tree 
represent beams of light, and the nodes contain a 
list of surfaces intersected by a beam. Each of 
the surfaces intersected by the beam spawns 
new beams corresponding to reflections, 
refractions and shadows. 

In Heckbert and Hanrahan [1984] the beams 
of light were pyramidal cones. The original beam 
was the viewing pyramid and since the objects 

, in the scene were polygons, all the secondary 
beams also had polygonal cross-sections. In the 
case of reflection and shadows, and under certain 
assumptions, refraction, it was shown that the 
new beams were also pyramidal cones -- that is, 
they contained a single apex. These restrictions 
allowed an entire beam to be traced at once by 
using a recursive polygonal hidden surface 
algorithm similar to that described in Weiler and 
Atherton [1977] . 

In case of curved surfaces or of true 
refraction, the form of a beam changes 
drastically when it interacts with a surface. 
Therefore, it is difficult to devise an algorithm 
to trace all the rays contained within it 
simultaneously . However, as we will 
demonstrate , it is still possible to take 
advantage of the coherence of a beam. In the 
general case we define a beam as a set of rays ' 
that all originate from the same object (or from 
the same point) and all intersect the same 
object. Generally, rays grouped together into 
beams will belong to adjacent pixels, although 
this is not strictly required. For example, all the 
rays through the eye that hit the background may 

Vision Interface '86 



- 58 -

be considered a single beam even though the 
regions comprising the background may not be 
connected. A beam under this definition need not 
be uniform, for example, it might contain 
caustics and other singularities. An example of a 
coherent beam that contains a singularity is one 
which passes through a lense or into a crystal 
ball. 

Notice that the beam tree for a given image 
(scene plus point of view) is independent of the 
method used to generate it. Given the ray-trees 
for all the pixels in the scene, the beam-tree 
could be created as a post-process by recursively 
merging adjacent rays if they intersect the same 
surface. The size of the beam-tree is a natural 
measure of the intrinsic coherence in an image. 

coherence = average ray-tree size 
total beam-tree size 

Where the average ray-tree size is the total 
number of nodes in the ray-tree divided by the 
number of pixels. If at each level of the tree all 
the rays could be coalesced into a single beam 
then the size of the beam-tree would be the same 
as the average ray-tree size. This would be the 
maximum coherence possible. If the beam-tree is 
any bigger, this implies that adjacent ray-trees 
could not be merged, resulting in a new 
sub-beam, and therefore, less coherence. Notice 
that using this definition, the coherence does not 
depend on the relative sizes of the different 
sub-beams. For example, an image with one large 
beam and two small beams has the same 
coherence as an image with three equal-sized 
beams. 

The amount of work needed to compute an 
image is the sum of two factors: shading and 
intersection processing. The number of 
calculations to shade the image is proportional 
to the size of the image times the average size 
of the ray tree. The optimal number of 
calculations needed to compute the ray-tree at 
each pixel is proportional to the size of the 
beam-tree. Optimi.stically, the cost of 

Graphlca Interface '86 

computing each node in the beam-tree would be 
proportional to the number of objects in the 
scene. Thus, coherence allows us to decouple the 
complexity of the intersection phase of the 
calculation (which is most sensitive to the 
Inumber of objects in the scene) from the shading 
phase of the calculation. (which is most 
sensitive to resolution of the image). In 
particular, notice that in standard ray-tracing 
the cost per pixel is multiplied by the number of 
objects, whereas using beam tracing this cost is 
amortized over the average number of pixels per 
beam. Thus, beam-tracing wins big at high 
resolutions. 

Caching 

Speer, De Rose and Barsky [1985] described a 
method to speed up ray-tracing which they term 
coherent ray-tracing. Their method is based on 
the same observation as contained in Heckbert 
and Hanrahan [1984]: that adjacent rays have a 
high probability of intersecting the same 
objects. However, instead of attempting to trace 
many rays simultaneously, they save the ray-tree 
c~~responding to the previous ray and use it to 
guide the next intersection test. The ray-tree is 
intended to act as a cache. A cache hit occurs if 
the next ray intersects the same surface ; a miss 
occurs if another surface is intersected. The 
cache is complicated by the fact that, although 
the same object may be hit by the next ray, 
another object may block the ray before it hits 
that object. They solved this problem by using a 
cache with two types of information: the last 
object intersected and a cylindrical region of 
safety. The cylinder of safety is the largest 
region surrounding the ray which does not 
contain any other surfaces_ When a cache hit 
occurs, the ray is only tested against the last 
sphere and the cylinder. Thus, since only two 
tests need to be done, if there is a cache hit the 
average cost of computing an intersection per 
ray is constant within a beam_ 

Vlalon Interface '86 



- 59 -

We implemented this technique and upon 
examining caching statistics found that there 
were many cache misses even though the same 
sphere was still intersected. This is because the 
cylindrical region of safety is much smaller than 
the beam cross-section (see Figure 1). To 
remedy this, we devised a method which may in 
some situations require more work, but will 
cause a cache miss only if the last sphere was 
not intersected. 

Figure 2 shows a situation where a ray hits 
one sphere and then hits a second sphere. The 
cache contains the last sphere hit and a list of 
spheres that could potentially block a ray 
travelling from the first to the second. Normally 
this list is empty or contains only a small 
number of spheres. Any ray originating on the 
surface of the first sphere that also intersects 
the second sphere can only intersect objects 
contained on this list of potential blocking 
spheres. A cache miss occurs if, first, the ray 
does not intersect the second sphere, or second, 
it intersects a sphere contained in the list of 
blocking spheres. Using this caching system all 
misses imply that a new object has been 
intersected. Another advantage of this technique 
is that · no special ray-cylinder intersection tests 
are required . 

Figure 1 - This figure shows two spheres (in 
bold) and 2. ,;yl;nder of safety viewed along the 
axis of the ray (marked with a +) . Notice that 
the cylinder is much smaller than the visible 
part of the large sphere. 

Graphics Interface 'S6 

There are several ways in which the list of 
potential blocking spheres is generated. The most 
common situation is where the ray originated 
from the eye point or is travelling to the light 
source. In this case the .list of spheres are all 
those spheres contained in a cone from the point 
to the sphere that was intersected. The second 
most common situation is where a ray travels 
between two spheres. In this case all the spheres 
that lie within a cone circumscribed around the 
two spheres and between them are determined. 
Another method used to generate a list of 
potential blocking spheres is when a ray enters 
the interior of a transparent sphere and 
intersects itself. In this case the list of 
blocking spheres are all those spheres that 
intersect the interior of the transparent sphere. 
It should be mentioned that it is possible to 
precompute the list of potential blocking spheres 
for a given scene before an image is generated. 
However, the naive algorithm to do this is of 
O(n3). 

This new method works well for rays that 
travel from sphere to sphere, from point to 
sphere, or from sphere to point, but does not 
work if a ray doesn't intersect any objects. In 
this case the original method due to Speer, 
DeRose and Barsky should be used. 

Figure 2 - This figure shows a ray reflecting off 
the large sphere on the left and hitting the 
smaller sphere on the right. Around these 
spheres is a cone which contains a single sphere 
which might potentially block another ray 
travelling between the same two spheres. 

Vision Interface 'S6 



- 60 -

dreadth-fi rst Search 

Caching will work effectively if the 
searches are ordered in a way which maximizes 
the probability that a cache hit will occur. For 
example, if rays were randomly chosen from 
different pixel locations then we would expect 
few cache hits. Thus, the effectiveness of 
caching depends both on the intrinsic coherence 
in the scene and the search strategy employed. 
Fortunately, we are at liberty to reorder the 
search. This is analogous to the situation 
encounted in optimizing compilers where 
instruction execution order is rearranged to 
maximize the number of cache memory hits. The 
goal is to use knowledge about the general 
properties of the beam-tree so that searches for 
ray-surface intersections can be ordered in a 
way that maximizes the probability of cache 
hits. 

The first important point is that the cache 
should be organized as a tree. There is little 
reason to suspect that a reflected ray will hit 
the same object as the refracted ray or the 
incident ray. Practically this means that if a 
cache miss occurs at a parent node then we 
should flush the cache of all the child nodes. 

The second and major point is that the 
beam's cross-section is two-dimensional, not 
one-dimensional. Consider the simplified case 
where the ray-tracer is only being used to 
remove hidden surfaces, so that there are no 
reflected or transmitted rays. In the standard 
ray-tracer, rays are generated in scanline order. 
The number of cache misses per scan line is equal 
to the number of regions crossing that scanline. 
Each cache miss causes all the objects to be 
searched. The total number of complete searches 
is therefore much greater than the total number 
of regions. In order to achieve one complete 
search per region the search should continual 
two-dimensionally until a cache miss occurs. 
This is similar to the common seed fill or 
boundary fill algorithm used in paint systems 
[Smith, 1979]. This search method also works 
when the tree has greater depth. If we imagine 

Graphlca Interface '86 

. the complete ray-tree as including all the rays 
emanating from the eye point, the region fill 
corresponds to a breadth-first search of this 
tree. 

The initial reaction to breadth -first search 
is that since ir:nages are so large, the size of the 
list of rays queued would be prohibitively large . 

. However, it is possible to organize the search in 
scanline order so that the list is kept to a 
reasonable size. 

Results 

To test these ideas we implemented a 
simple tached ray-tracer for spheres. The code 
was written so it was easy to turn caching on or 
off. This program was run over a variety of 
different scenes with similar results. In the 
table below the scene consisted of a NxNxN 
array of spheres whose centers and radii were 
randomly jittered. This cube of,spheres was then 
viewed from an angle and scaled so that it filled 
the screen. As can be seen from Table 1, caching 
itself sped up the ray-tracer from 2-5 times; 
adding breadth-first search sped it up by another 
factor of 2-3. 

Number of spheres 33 43 53 

Not cached 1.00 1.00 1.00 

Cached .53 .29 .20 

Cached, breadth-first .25 .15 .11 

Table 1 - Timing results 

Conclusions 

Although these results are preliminary, this 
area of research look promising. Analyzing the 
caching statistics and comparing them to the 
actual coherence as measured by the beam-tree 
we find that the number of complete searches is 
still much more than the theorectical maximum. 
In particular the cache hit test is not very 

Vlalon Interface '86 



- 61 -

successful when a ray had not previously hit an 
object. Improving this case would significantly 
sp~ed up the program. 

Spheres were chosen in this study because 
the intersection tests are easy to implement and 
because spheres can also be used to bound the 
extent of other object types. An avenue for 
further research is to devise cache tests for 
other object types . In the general case it may be 
worthwhile to allow different caching strategies 
for different objects. For example, the polygons 
in a convex polyhedral solid cannot occlude other 

polygons of that solid. Thus, these polygons 
cannot be on the list of potential blockers. 
Sometimes even in the case when a search 
through all the objects in the scene need be done, 
a cache can be used to speed this up. Considering 
again the case of a convex polyhedral solid, we 
can cache the last polygon hit. If that polygon is 
missed by the next ray, then we should search 
polygons adjacent to it first. 

Caching is a very general method for 
speeding up computations when coherence exists. 
For this reason it can be used along with other 
methods, such as cellular decomposition, to 
speed up the search for ray-surface 
intersections. It is also likely that many other 
hidden surface algorithms would benefit from 
caching. 

Finally, the idea of breadth-first search was 
originally motivated by the desire to build an 
interactive ray-tracing tool. If each ray is 
immediately painted onto the image after it is 
traced, then the details of the image will 
gradually be filled in. First, the a hidden surface 
view will be drawn, followed by reflections and 
shadows at greater and greater depth. 

Acknowledgements 

Some of this work was done while the 
author was at the University of Wisconsin and a 
member of the research staff of the Cigital 
Equipment Corporations Systems Research 
Center. Thanks to Paul Haeberli for his insight 
and enthusiam. 

Graphics Interface '86 

References 

Cook, R., Porter, T. and Carpenter, L., Distributed 
ray tracing, Computer Graphics, (SIGGRAPH '84 
Proceedings) 18(3), pp. 137.:145, 1984. 

Fujimoto, A., and Iwata, K., Accelerated 
ray-tracing, Computer Graphics, Tokyo, 1985, pp. 
1-26, 1985. 

Glassner, A.S., Octree encoding to speed up ray 
tracing, IEEE Trans. Comp. Graphics and Appl., 
4(10), pp. 15-22, 1984. 

Haeberli, P., (personal communication) 1985. 

Heckbert, P.S. and Hanrahan, P., Beam tracing 
polygonal objects, Computer Graphics (SIGGRAPH 
'84 Proceedings), 18(3), pp. 119-127, 1984. 

Kaplan, M., Constant-time ray tracing, Notes for 
State of the Art in Image Synthesis, Proc. of 
SIGGRAPH '85, 1985. 

Roth, S.D., Ray casting for modeling solids, 
Computer Graphics and Image Processing, 18(2), 
pp. 109-144, 1982. 

Rubin, S.M., and Whitted, T., A 3-dimensional 
representation for fast rendering of complex 
scenes, Computer Graphics (S,IGGRAPH '80 
Proceedings), 14(3), pp. 110-116, 1980. 

Smith , A.R., Tint fill , Computer Graphics 
(SIGGRAPH '79 Proceedings) 13(2), pp. 276-283, 
1979. 

Speer, L.R., OeRose, T.O., and Barsky, B.A., A 
theoretical and empirical analysis of coherent 
ray-tracing, Graphics Interface '85, 1985. 

Weiler, K.J., and Atherton, P.A., Hidden surface 
removal using polygon area sorting, Computer 
Graphics (SIGGRAPH '77 Proceedings), 11 (3), 
1977. 

Whitted, T., An improved illumination model for 
shaded display, C.A.C.M., 23(6), pp. 343-349, 
1980. 

Vision Interface '86 


