
- 62 -

What are 
Visual Programming, 

Programming by Example, 
and 

Program Visualization? 

Brad A. Myers 

Dynamic Graphics Project . 
Computer Systems Research Institute 

University of Toronto 
Toronto, Ontario, M5S lA4 

Canada 

ABSTRACT 

There has been a great interest recently in systems 
that use graphics to aid in the programming, debug
ging, and understanding of computer programs. The 
terms "Visual Programming" and "Program Visuali
zation" have been applied to these systems. Also, 
there has been a renewed interest in using examples 
to help alleviate the complexity of programming. 
This· technique is called "Programming by Example." 
This paper attempts to provide more meaning to these 
terms by giving precise definitions, and then uses 
these definitions to classify existing systems into a 
taxonomy. 

RESUME 

Les systemes qui utilisent l'infographie pour aider a 
la programmation, a la mise-au-point et a .la 
comprehension de logiciels ont recemment susclte 
beaucoup d'interet. Les termes "program mat ion 
visuelle" et "visualisation de programmes" ont ete 
associes it ces systemes. Il y a aussi eu un renouveau 
d'inteTl!t pour l'utilisation d'exemples pour aider a 
simplifier la programmation. On parle alors de "pr?
grammation par exemples". Nous essaierons de defimr 
ces termes avec plus de precision et utiliserons ces 
definitions comme base pour etablir une taxonomie 
des systemes disponibles actuellement. 

Key Words and Phrases: Visual Programming, Pro
gram Visualization, Programming by Example, 
Inferencing, Automatic Programming, Flowcharts, 
Debugging Aids, Program Synthesis, Documentation, 
Computer Languages. 

Graphics Interface '88 

Extended Summary. 
NOTE: This paper is a summary of [Myers 86J . 

The reader should refer to that paper for full informa
tion. 

As the distribution of personal computers and the 
more powerful personal workstations grows, the 
majority of computer users now do not know how to 
program. They buy computers with packaged 
s()f\ware and are not able to modify the software even 
to make small changes. In order to allow the end user 
to reconfigure and modify the system, the software 
may provide various options, but these often make the 
system more complex and still may not address the 
users' problems. "Easy-to-use" software, such as the 
"Direct Manipulation" systems [Shneiderman 83] 
actually make the user-programmer gap worse since 
more people will be able to use the software (since it 
is easy to use), but the internal program code is now 
much more complicated (due to the extra code to han
dle the user interface). Therefore, systems are mov
ing in the direction of providing end user program
ming. It is well-known that conventional program
ming languages are difficult to learn and use [Gould 
84), requiring skills that many people do not have. In 
an attempt to make the programming task easier , 
recent research has been directed towards using 
graphics. This has been called "Visual Programming" 
or "Graphical Programming". Some Visual Program
ming systems have successfully demonstrated tllat 
non-programmers can create fairly complex programs 
with little training [Halbert 84). 

Another motivation for using grapllics is that it 
tends to be a higher-level description of tile desired 
actions (often de-emphasizing issues of syntax and 
providing a higher level of abstraction) and may 
tllerefore make the programming task easier even for 
professional programmers. This may be especially 
true during debugging, where graphics can be used to 
present much more information about the program 
state (such as current variables and data structures ) 
than is possible with purely textual displays. This is 
one of the goals of Program Visualization. Other Pro
gram Visualization systems use graphics to help teach 
computer programming. 

Vision Interface '88 



- .63 -

Programming-by-Example is another technology 
that has been investigated to make programming 
easier, especially for nOh-programmers. It involves 
presenting to the computer examples of the data that 
the program is supposed to process and using these 
examples during the development of the program. 
Many, although not all,Programming-by-Example 
systems have also used Visual Programming, s6 these 
two 'technologies are often linked. 

Recently, there has been a large number of arti
cles about systems that incorporate some or all of 
these features [Grafton 85][Raeder 85]. Unfor
tunately, the terms have been used impreciselyl, and 
there has not been a comprehensive taxonomy that 
classifies these systems. This paper summarizes 
research that attempts fill this gap in the literature. 
The full results are reported in [Myers 86]. First, the 
important terms are defined in a precise manner, and 
then these definitions are used to differentiate some 
example systems. . 

There are many systems that could be included in 
this paper in the various categories, but no attempt 
has been made to be comprehensive. It is hoped that 
the selection of systems listed will help the reader 
understand the intent of the classification system. 

Definitions. 

Programming: What is meant by computer "program
ming" is probably well understood, but it is important 
to have a definition that can be used to eliminate 
some limited systems. In this paper, "program" is 
defined as "a set of statements that can be submitted 
as a unit to some computer system and used to direct 
the behavior of that system" [Oxford 83]. While the 
ability to compute "everything" is not required, the 
system must include the ability to handle conditionals 
and iteration, at least implicitly. 

Interactive vs. Batch Any programming language 
system may either be "interactive" or "batch." A 
batch system has a large processing delay before 
statements can be run while they are compiled, 
whereas an interactive system allows statements to be 
executed when they are entered. This characteriza
tion is actually more of a continuum than a dichotomy 
since even interactive languages like LISP typically 
require groups of statements (such as an entire pro
cedure) to be specified before they are executed. 

1 For example, Zloofs Query-By-Example system [Zloof 77 and 
81] is not a Programming by Example system. 

Graphics Interface '86 

Visual Programming "Visual Programming" (VP) 
refers to any system that allows the user to specify a 
program in a two (or more) dimensional fashion. Con
ventional textual languages are not considered · two 
dimensional since the compiler or interpreter 
processes it as a long, one-dimensional stream. 
Visual Programming includes conventional flow 
charts and graphical programming languages . It does 
not include systems that use conventional (linear) pro
gramming languages to define pictures. This elim
inates most graphics editors, like Sketchpad [Suther
land 63]. 

Program Visualization' "Program Visualization" (PV) 
is an entirely different concept from Visual Program
ming. lit Visual Programming, the graphics is the 
program itself, but in Program Visualization, the pro
gram is specified in the conventional, textual manner, 
and the graphics is used to illustrate some aspect of 
the program or its run-time execution. Unfortunately, 
in the past, many Program Visualization system have 
been incorrectly labeled "Visual Programmi~g" (as in 
[Grafton 85]). Program Visualization systems can be 
divided along two axes: whether they illustrate the 
code or the data of the program, and whether they are 
dynamic or static. "Dynamic" refers to systems that 
can show an animation of the program running, 
whereas "static" systems are limited to snapshots of 
the program at certain points. If a program created 
using Visual Programming is to be displayed or 
debugged, clearly this should be done in a graphical 
manner, but this would not be considered Program 
Visualization. Although these two terms are similar 
and confusing, they have been widely used in the 
literature, so it was felt appropriate to continue to use 
the common terms. 

Programming by Example The term "Programming 
by Example" (PBE) has been used to describe a large 
variety of systems. Some early systems attempted to 
create an entire program from a set of input-output 
pairs. Other systems require the user to "work 
through" an algorithm on a number of examples and 
then the system tries to infer the general program 
structure. This is often called "automatic program
ming" and has generally been an area of Artificial 
Intelligence research. 

Recently, there have been a number of systems 
that require the user to specify everything about the 
program (there is no inference involved), but the user 
can work out the program on a specific example. The 
system executes the user's commands normally, but 
remembers them for later re-use. Bill Buxton coined 
the phrase "Programming with Examples" to more 
accurately describe these systems. Halbert [84] 
characterizes Programming with Examples as "Do 
What I Did" whereas inferential Programming by 
Example might be "Do What I Mean". The term 
"Programming by Example" will be used to include 
both inferencing systems and Programming With 
Example systems. 

Vision Interface '86 



- 64 -

Of course, whenever code is executed in any sys
tem, test data must be entered to run it on. The dis
tinction between normal testing and "Programming 
with Examples" is that in the latter the system 
requires or encourages the specification of the' exam
ples before programming begins, and then applies the 
program as it develops to the examples. This essen
tially requires all Programming-with-Example sys
tems (but not Programming-by-Example systems with 
inferencing) to be interactive. 

Taxonomy of Programming Systems. 
This paper presents two taxonomies. The first is 

for systems that support programming. The second 
taxonomy is for systems that use graphics after the 
programming process is finished (Program Visualiza
tion systems) . 

A meaningful taxonomy can be created by classi
fying programming systems into eight categories 
using the orthogonal criteria of 

Visual Programming or not, 
Programming by Example or not, and 
Interactive or batch. 

Of course, a single system may have features that fit 
into various categories and some systems may be hard 
to classify, so this paper attempts to characterize the 
systems by their most prominent features. Figure 1 
shows the division with some sample systems. 

Taxonomy of Program Visualization Systems. 
The systems listed below are not programming 

systems since code is created in the conventional 
manner. Graphics in these are used to illustrate some 
aspect of the program after it is written. Figure 2 
shows some Program Visualization systems classified 
by whether they attempt to illustrate the code or the 
data of a program (some provide both), and whether 
the displays are static or dynamic. 

Conclusions. 

Visual Programming, Programming by Example 
and Program Visualization are all exciting areas of 
active computer science research, and they promise to 
improve the user interface to programming environ
ments . A number of interesting systems have been 
created in each area, and there are some that cross 
the boundaries. This paper has attempted to classify 
some of the~e systems in hopes that this will clarify 
the use of the terms and provide a context for future 
research. 

ACKNOWLEDGEME NTS 
For help and support of this article , I would like to thank Bill 
Buxton , Ron Baecker, Bernita Myers , and many others at the 
University of Toronto . The research described in this paper was 
partially funded by the National Science and Engineering 
Research Council (NSERC ) of Canada . 

Graphics Interface '86 

Not Programming by Example 

Batch 

All Conventional 
Not VP Languages: 

Pascal, Fortran, 
etc. 

GraiI 
[Ellis 69] 

AMBIT/G/L 
VP [Christensen 68,71] 

Query by Example 
[Zloof 77,81) 

FORMAL 
[Shu 85] 

GAL 
[Albizuri-Romero 84] 

Programming by Example 

Batch 

UO pairs* 
Not VP [Shaw 75) 

[Bauer 78) traces* 
VP 

Figure 1. 

Interact.ive 

LISP, APL, etc. 

Graphical Program Editor 
[Sutherland 66] 

PIGS 
[Pong 83) 

Pict 
[Glinert 84) 

PROGRAPH 
[Pietrzyko'Nski 83,84) 

State Transition U[MS 
[Jacob 85 ) 

Interactive 

Tinker 
[Lieberman 82] 

A u toProgrammer* 
[Biermann 76] 

Pygmalion 
[Smith 77) 

Graphical Thimglab 
[Borning 86) 

SmallStar 
[Halbert 81 ,84] 

Rehearsal W or ld 
[Gould 84) 

Classification of programming systems by whether they 
are visual or not, whether they have Programming by Ex
ample or not, and whether they are interactive or batch. 
Starred systems (*) have inferencing, and non-starred PBE 
systems use Programming With Example. 

S tabc D Jynamlc 
Flowcharts BALSA 

(Haibt 59) [Brown 84) 
SEE Visual Compiler PV Prototype 

Code [Baecker 86) [Brown 85) 
PegaSys 

[Moriconi 85] 
Two Systems 

[Baecker 75) 
TX2 Display Files Sorting out Sorting 

Data [Baecker 68) [Baecker 8L ) 
Incense BALSA 

(Myers 80,83] [Brown 84) 
Animation Kit 

[London 85] 
PV Pr()totype 

[Brown 85) 

Figure 2. 
Classification of Program Visualization Systems by wheth
er they illustrate code or data, and whether they are 
dynamic or static . 

Vision Interface '86 



- 65 -

REFERENCES 
[Albizuri-Romero 84] Miren B. Albizuri-Romero. "GRASE--A 

Graphical Syntax-Directed Editor for Structured Program
ming," SIGPLAN Notices.' 19(2) Feb. 1984. pp. 28-37 . 

[Attardi 82] Giuseppe Attardi and Maria Simi. "Extending the 
Power of Programming by Example," SIGOA Conferenu on 
Office Information Systems, Philadelphia, PA, Jun. 21-23, 
1982. pp. 52-66 . 

[Baecker 68] RM.Baecker. "Experiments in On-Line Graphical 
Debugging: The Interrogation of Complex Data Structures," 
(Summary only) First Hawaii International Conference on 
the System Sciences . Jan. 1968. pp. 128-129. 

[Baecker 75] RM.Baecker. "Two Systems which Produce 
Animated Animated Representations of the Execution of 
Computer Programs," SIGCSE Bulletin. 7(1) Feb. 1975. pp. 
158-167. 

[Baecker 81] Ron Baecker. Sorting o.ut Sorting . 16mm color, 
sound film , 25 minutes. Dynamics Graphics Project, Com
puter Systems Research Institute, University of Toronto, 
Toronto, Ontario, Canada. 1981. Presented at ACM SIG
GRAPH'81. Dallas, TX. Aug. 1981. 

[Baecker 86] Ronald Baecker and Aaron Marcus. "Design Princi
ples for the Enhanced Presentation of Computer Program 
Source Text," Human Factors in Computing Systems: 
Proceedings SIGCHl'B6. Boston, MA. Apr. 13-17, 1986. 

[Bauer 78] Michael A. Bauer. A Basis for the Acquisition of Pro
cedures. PhD Thesis, Department of Computer Science, 
University of Toronto. 1978. 310 pages. 

[Biermann 76] Alan W. Biermann and Ramachandran Krish
naswamy. "Constructing Programs from Example Computa
tions," IEEE Transactions on Software Engineering. SE-
2(3) Sept. 1976. pp. 141-153. 

[Borning 86] Alan Borning. "Defining Constraints Graphically," 
Human Factors in Computing Systems: Proceedings SIG
CH1'86. Boston, MA. Apr. 13-17, 1986. 

[Brown 84] Marc H. Brown and Robert Sedgewick. "A System for 
Algorithm Animation," Computer Graphics: SIGGRAPH'84 
Conference Proceedings. Minneapolis, Minn. 18(3) July 23-
27, 1984. pp. 177-186. 

[Brown 85] Gretchen P. Brown, Richard T. Carling, Christopher 
F. Herot, David A. Kramlich, and Paul Souza. "Program 
Visualization: Graphical Support for Software Develop
ment," IEEE Computer. 18(8) Aug. 1985. pp. 27-35. 

[Christensen 68] Carlos Christensen. "An Example of the Mani· 
pulation of Directed Graphs in the AMBIT/G Programming 
Language," in Interactive Systems for Experimental Applied 
Mathematics, Melvin Klerer and Juris Reinfelds, eds. New 
York: Academic Press, 1968. pp. 423-435. 

[Christensen 71] Carlos Christensen. "An Introduction to 
AMBIT/L, A Diagramatic Language for List Processing," 
Proc. 2nd Symposium on Symbolic and Algebraic Manipula
tion. Los Angeles, CA. Mar. 23-25 , 1971 . pp. 248-260. 

[Ellis 69] T.O. ElIis, J .F. Heafner and W.1. Sibley. The Grail 
Project: An Experiment in Man-Machine Communication . 
RAND Report RM-5999-Arpa . 1969. 

[Glinert 84] Ephraim P. Glinert and Steven 1. Tanimoto. "Pict: 
An Interactive Graphical Programming Environment," 
IEEE Computer. 17(11) Nov . 1984. pp. 7-25. 

[Gould 84] Laura Gould and William Finzer. Programming by 
Rehearsal. Xerox PARC TR SCL-84-1. May, 1984. 133 
pages. Excerpted in Byte. 9(6) June, 1984. 

[Grafton 85] Robert B. Grafton and Tadao Ichikawa, eds. IEEE 
Computer, Special Issue on Visual Programming. 18(8) 
Aug . 1985. 

[Haibt 59] Lois M. Haibt. "A Program to Draw Multi-Level Flow 
Charts," Proceedings of the Western Joint Computer Confer. 
ence. San Francisco, CA. 15 Mar. 3-5, 1959. pp . 131-137. 

[Halbert 81] Daniel C. Halbert. An Example of Progra mming by 
Example. Masters of Science Thesis. Dept. of EE&CS, 
University of Calif. , Berkeley and Xerox Corporation Office 
Products Division, Palo Alto, CA. June, 1981. 55 pages . 

Graphics Interface '86 

[Halbert 84] Daniel C. Halbert. Programming by Example. PhD 
Thesis. Computer Science Division, Dept. of EE&CS, 
University of California, Berkeley. 1984. Also: Xerox Office 
Systems Division, .. Systems Development Department, TR 
OSD-T8402, December, 1984. 83 pages. 

[Jacob 85] Robert J .K. Jacob. "A State Transition Diagram 
Language for Visual Programming," IEEE Computer. 18(8) 
Aug. 1985. pp. 51-59. 

[Liebennan 82] Henry Lieberman. "Constructing Graphical Use!," 
Int,erfaces by. Example," Graphics Interface'B2 , Toronto, 
Onto Mar. 17-21, 1982. pp. 295-302. 

[London 85] Ralph 1. London and Robert A. Druisberg. "Animat
ing Programs in Smalltalk," IEEE Computer. 18(8) Aug. 
1985. pp. 61-71. 

[Moriconi 85] Mark Moriconi and Dwight F. Hare. "Visualizing 
Program Designs Through PegaSys," IEEE Computer. 18(8) 
Aug. 1985. pp. 72-85 . 

[Myers 80] Brad A. Myers. Displaying Data Structures for 
Interactive Debugging. Xerox Palo Alto Research Center 
Technical Report CSL-80-7. June, 1980.97 pages. 

[Myers 83] Brad A. Myers. "Incense: A System for Displaying 
Data Structures," Computer Graphics: SIGGRAPH 'B3 
Conference Proceedings. 17(3) July 1983. pp. 115-125. 

[Myers 86] Brad A. Myers. "Visual Programming, Programming 
by Example, and Program Visualization; A Taxonomy." 
Proceedings SIGCHl'B6: Human Factors in Computing Sys
tems. Boston, MA. April 13-17, 1986. 

[Oxford 83] Dictionary of Computing . Oxford: Oxford University 
Press, 1983. 

[Pietrzykowski 83] Thomas Pietrzykowski, Stanislaw Matwin, 
and Tomaaz Muldner. "The Programming Language PRO
GRAPH: Yet Another Application of Graphics," Graphics 
Interface'B3, Edmonton, Alberta. May 9-13, 1983. pp. 143-
145. 

[Pietrzykowski 84] T. Pietrzykowski and S. Matwin. PRO
GRAPH: A Preliminary Report. University of Ottawa 
Technical Report TR-84-07 . April, 1984. 91 pages. 

[Pong 83] M.C. Pong and N. :Ng . .. t'lgS--ft ;:)ystem lor rco~CI'w
ming with Interactive Graphical Support," Software-
Practice and Experienu . 13(9) Sept. 1983. pp. 847-855. 

[Raeder 85] Georg Raeder. "A Survey of Current Graphical Pro-
gramming Techniques," IEEE Computer. 18(8) Aug. 1985. 
pp. 11-25. 

[Shaw 75] David E. Shaw, WiIliam R. Swartout, and C. Cordell 
Green. "Inferring Lisp Programs from Examples," Fourth 
International Joint Conference on Artificial Intelligence. 
Tbilisi, USSR Sept. 3-8, 1975. 1 pp. 260-267. 

[Shneiderman 83] Ben Shneiderman. "Direct Manipulation: A 
Step Beyond Programming Languages," IEEE Computer. 
16(8) Aug. 1983. pp. 57-69. 

[Shu 85] Nan C. Shu. "FORMAL: A Forms-Oriented Visual
Directed Application Development System," IEEE Com 
puter. 18(8) Aug. 1985. pp. 38-49. 

[Smith 77] David C. Smith. Pygmalion: A Computer Program to 
Model and Stimulate Creative Thought. Basel, Stuttgart: 
Birkhauser, 1977. 187 pages. 

[Sutherland 63] Ivan E. Sutherland. "SketchPad: A Man- . 
Machine Graphical Communication System," AFIPS Sprtng 
Joint Computer Conference . . 23 1963. pp. 329-346. 

[Sutherland 66] William R. Sutherland. On-line Graphical 
Specification of Computer Procedures. MIT PhD Thesis. Lin
coln Labs Report TR-405 . 1966. 

[Zloof 77] Moshe M. Zloof and S. Peter de Jong. "The System for 
Business Automation (SBA): Programming Language," 
CACM. 20(6) June, 1977. pp. 385-3 96. 

[Zloof 81] Moshe M. Zloof. "QBE/OBE: A Language for Office and 
Business Automation," IEEE Computer. 14(5) May, 1981. 
pp. 13-22 . 

Vision Interface '86 


