
- 71 -

AUTOMATIC GENERA nON OF GRAPHICAL USER INTERFACES

Gurminder Singh and Mark Green

Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H 1

ABSTRACT
The research reported here is focussed on the issues

involved in automatically generating the presentation com­
ponent of user interfaces. The design and implementation of
the presentation component of the University of Alberta User
Interface Management System are described. The system is
used for automatically generating graphical user interfaces for
interactive applications. The system has been designed to
keep the other components of the user interface device
independent, keep the designer 's interest alive in the design
process, make the design process less cumbersome, and
reduce the burden of programming as far as possible . The
results presented in this report are based on the experience
gained through implementing a system to generate the presen­
tation component of user interfaces automatically . The
presentation component can be viewed as the lexical level of
the user interface.

1. Introduction
There has been a growing awareness in software design

of the importance of the user. This concern has manifested
itself, for example, in analysis of desirable properties of user
interfaces (Cheriton76J and in investigations into the user­
friendliness of interactive systems. The concept that the user
interface can be treated as a separate module within the
whole system, and not simply embedded at a range of points
through it, is gaining acceptability (EdmondsB 1 J. The effort
now is to make user interfaces more interactive, graphic, for­
giving, and self-explanatory . But, unfortunately, the construc­
tion of good user interfaces even today remains an expen­
sive, time-consuming, and often a frustrating process (Bux­
tonB3J. This prompted researchers in human factors to
explore the possibility of automatically generating user inter­
faces and the notion of a User Interface Management System
(UIMS). This paper describes a tool for automatically generat­
ing graphical user interfaces for interactive programs and
explores the issues related to the process .

1.1. What is A User Interface?
The user interface is the part of a system that handles

the interaction between the user and the other components of
the system. In order to complete a useful task the system
accepts inputs and presents outputs through [he user inter­
face . As more interactive systems of comparable functional­
ity become available, their success in the market place is
based increasingly on ease of use . Bad user interfaces often
cause unnecessary loss of productivity and aggravation . Ease
of use, not ease of implementation, has become the crucial
design consideration.

The basic structure of a user interface does not change
radically over a wide range of applications (GreenB4aJ. There
are a number of functions that must be performed by most
user interfaces. These functions include error detection and
recovery , user protocoling, and undo processing . The con­
cepts of a separate user interface module, separate interface
designer , and the common features of the user interfaces
have lead to the notion of UIMS.

Graphics Interface '86

1.2. Automatic Generation of User Interfaces
The fact that the basic structure of a user interface does

not change radically over a wide range of programs and that
functions like error detection, error recovery , and help are
common to almost all user interfaces leads to the idea of
automatic generation of user interfaces. The high cost and
large turnaround time for hand coded user interfaces .pro­
vides additional motivation for the idea.

The automatic generation of the user interfaces has the
following advantages:
1) It reduces the cost of producing user interfaces.
2) It provides a much shorter lead time than the hand coding

of the interfaces.
3) The low cost and short lead time for the production of

the user interfaces makes it possible to experiment with
new ideas in user interface design.

4) Once the user interface generator is debugged com­
pletely, the software it generates is more reliable than
hand coded software.

5) A particular user interface generator may be used to
generate a number of user interfaces which are con­
sistent in their over all approach to functions such as
error reporting and help. Familiarity with one such user
interface can expedite the learning of the others.

1.3, What is a UIMS7
A UIMS is a collection of software tools supporting the

design, specification, implementation, and evaluation of user
interfaces (SeattleB3J. It performs an important role of medi­
ating the interaction between a user and an application; satis­
fying user requests for application actions, and application
requests for data from tne user . It thus provides for the
application programmer 's problem specific skills to be con­
centrated on the application, and freed from detailed concern
with managing the flow of user actions and responses .
UIMSs have also been called ''Dialogue Management Systems"
(RoachB2J or "Abstract Interaction Handlers" (FeldmanB2].
Over the past few years many models of UIMSs have been
proposed and implemented (Newman6BL (KasikB2L
(GuestB2L (BuxtonB3L (JacobB3L (Olsen Jr.B3J.

2. The University of Alberta UIMS
The University of Alberta UIMS (GreenB5L (SinghB5L

(Lau85L (ChiaB5J is based on the Seeheim model of user
interfaces discussed in section 2 . 1. The design and imple­
mentation details of the presentation component of the U. of
A UIMS are described in this paper. Three main notations
have been used for specifying the dialogue between the user
and computer . These notations are: recursive transition net­
works , BNF grammars, and events . A system accepting dialo­
gues specified by recursive transition networks is discussed
in (LauB5J. Details about an event language and its implemen­
tation can be found in (ChiaB5J. At the present time the imple­
mentation of a grammar based notation has not been started .
Support for the application interface model is currently under
development .

Vision Interface '86

- 72 -

2.1. The Seeheim Model of User Interfaces
In the Seeheim model of user interfaces IGreen84bl a

user interface is divided into three components as shown in
Figure 1. The presentation component can be viewed as the
lexical level of the user interface. This component is respon­
sible for managing the input and output devices used by the
user interface. All the interaction techniques and display for­
mats are defined in this component. It reads the physical
input devices and converts the raw input data into the form
required by the other components in the user interface. The
user interface employs an abstract representation for the
input and output data. This representation consists of a type
or name that identifies the kind of data, and the collection of
values that define the data item. This chunk of information is
called a token.

While the presentation component is responsible for
converting user actions to input tokens, the dialogue control
component defines the set of legal Input tokens. It Interprets
the sequence of input tokens produced by the presentation
component to determine the operations the user wants to
perform. Once a complete command has been formed from
the input tokens the dialogue. control component uses , the
application ~nterface model to Invoke the appropriate routines
in the application. Similarly the output tokens sent by the
application interface model are interpreted by dialogue con­
trol and transformed into a format acceptable to the user .
This component contains the control logic of the user inter­
face. Most existing UIMSs have concentrated on thiS
component of the user interface.

The application interface model is a representation of
the functionality of the applic~tion . It represents .the user
interface 's view of the application. The application Interface
model contains the descriptions of the major data structures
maintained by the application, and the application routines that
can be invoked by the user interface. It also covers the mode
of communication between the user interface and the applica­
tion . The user interface may communicate with the applica­
tion in one of the three possible modes of interaction : the
user initiated, the system initiated, and mixed initiative .

3. Design of the Presentation Component
The basic job of the presentation component is to con­

vert user interactions with the input devices into input tokens.
and convert output tokens into images on the output devices.
The basic structure of the presentation component of the
University of Alberta UIMS is, presented ,in Figure 2 . In the
following sections a deSCription of the Important concepts
related to the presentation component of the University of
Alberta UIMS is presented.

3.1. Input Tokens
The input tokens convey information about the user 's

interactions with the user interface to the other parts o f the
UIMS. The raw data generated by the user interactions w ith
the input devices is manipulated and restruc~ured by the
interaction techniques and control module . This new struc­
ture, called an input token, is sent to the other part.s of the
UIMS. An input token represents exactly one Unit of informa­
tion as far as the UIMS is concerned . An Input token contains
the following information.

Token Number
Token Value
The token number is the unique number assigned to each

type of input token by the presentation component of the
UIMS. The interpretation of the token value depends upon the
token number .

Presenta tion
USER

Component

Dialogue

Control

3.2. Output Tokens

The output tokens are used for generating images.
These tokens are generated by the dialogue control com­
ponent as well as the application, and are sent to the control
module of the presentation component for further process­
ing. The control module invokes the display procedure associ­
ated with the output token and ensures that the image is gen­
erated in the appropriate window. An output token contains
the following fields . '

Token number
Token value

The token number is the unique number assigned to each
type of output token by the presentation component of the
UIMS. Using the token number as the key the control module
finds the associated display procedure and the Window name.
The interpretation of the token value is left to the displax pro­
cedure . Usually this field pOints to a structure defined In the
token definition file . The token definition file contains the
definitions of the structures the value field of an input or out­
put token could point to .

3.3. Control Module
The control module is responsible for all communication

with the other parts of the user interface. This communica­
tion includes sending the input tokens to the dialogue control
component and receiving the output tokens form the other
parts of the user interface. .

The other important function of the control module is to
perform an external-internal mapping. This , mapping deter­
mines how the user 's actions are converted Into Input tokens
and how output tokens are converted into images. The
external-internal mapping can be viewed as a dictionary used
by the control module for interpreting user actions and output
tokens . For input tokens the control ' module uses the event
number and the window name of the input event to determine
the input token number. In the case of output tokens, it
determines the window where the Image Will be generated
and the display procedure to be used from the output token
number .

3.4. Library of Interaction Techniques
Most interaction tasks are performed by a set of

interaction techniques . An interaction technique is defined as
a way of using a physical input device to enter a certain type
of word (command, value, location, etc .1. coupled with the
simplest form of feedback from the system to the user
IFoley811.

There are a large number of possible interaction tech­
niques. Each interaction technique is suitable for a particular
function . The set of interaction techniques available to a
designer remains very limited if he f she has te:> develop one
every time it is required. To make the deSigner 's chol~e
wider a library of interaction techniques can be created. This
library can be used by any designer while deciding on . which
interaction techniques to use. Every time a ~ew tel?hnlque IS
developed it can be added to the already eXisting library . In
this way one can keep building the library and help reduce the
cost and time of producing good user interfaces.

3.5. Library of Display Procedures
A display procedure is a procedure that consumes out­

put tokens. In the process ~f consuming output toke!'s the
display procedure produces Images . on the graphics display.
This image represents the data received In the output token .

Application
~--.:!j Interface

Model

Fig . 1. The Seeheim Model of a User Interface

Graphics Interface '86 Vision Interface '86

- 73 -

I Display l
1 Procedure I

- Display Output
Device 'Tokens

I Display I
I Procedure I

Control
Module

I Interaction I 1 Technique I Input

~ Input Tokens

Devices

I Interaction I 1 Technique I

Fig. 2. The Structure of the Presentation Component

Each display procedure has a specific purpose and is used to
generate a specific image. Examples of display procedures
are Angle Display, Vertical Bar Display, and Text Windows.

The idea of having a library of display procedures is
similar to that of the library of interaction techniques . By
adding new display procedures to the library a large body of
procedures can be built . This library can then be used for fast
and economical production of user interfaces.

4. The Implementation
The presentation component of the University of Alberta

UIMS has been implemented on V AX 1 11 780 running UNIX·
4 .2 BSD. The programs used for implementing the system
are written in the programming language C.

4 .1. Structure of the Presentation Component
The presentation component of the University of Alberta

UIMS is responsible for the following activities.
Screen management
Information display
Associating interaction techniques with windows
Associating display procedures with output tokens
Assigning unique token numbers to input and output
tokens
Converting user interactions into input tokens
Converting output tokens into images
Lexical feedback
Adapting to different display devices, if possible
An interactive approach to the design of the presenta­

tion component of the user interfaces has been adopted in
this UIMS. There are two steps involved in the complete
deSign. The first step is the specification step. In this step
the user interface designer interactively specifies the design
information. This information is then used in the second step
for generating the presentation component of the user inter­
face and providing run-time support. To support both these
functions the presentation component of the University of
Alberta UIMS is divided into two logically independent parts.
The first part, called "ipcs" (interactive presentation com­
ponent specification), accepts the design specifications from
the designer and generates a data base, token tables, and 'C'
procedures. The second part, called "pcg" (presentation com­
ponent generation). consists of a number of procedures
which provide run-time support for the presentation com­
ponent of the user interfaces. This part is driven by the data
base and the token tables . The 'C' procedures produced by
ipcs are compiled and linked with the pcg procedures. The
entire sequence of creating a presentation component is

·UNIX is a trademark of AT&T Bell Laboratories .

Graphics Interface '86

shown in Figure 3 . In implementing the presentation com­
ponent a graphics package called WINDLlB [Green84c) and a
data base package called FDB [Green83) are extensively used.

4.2. The Specification Step
The complete specification of the presentation com­

ponent involves the specification of the following com­
ponents .

Screen layout
Input tokens and interaction techniques associated with
windows
Output tokens and display procedures
Menu layouts
The interactive specification program "ipcs" is used to

enter the design information. The ipcs screen is divided into
four areas as shown in Figure 4. The work area corresponds
to the display screen of the user interface being designed.
The designer pOSitions windows and menus in this area.
Above the work area is a text area used for help and error
messages. The right side of the screen is used for the ipcs
menu. An area across the bottom of the screen displays
some of the attributes of the current window in the work
area. In the following sections a brief description of the
functions performed by ipcs is presented.

4.2.1. Window Definition
Ipcs starts off by displaying the layout shown in Figure

4 . At the start of the specification session the work area
corresponds to the device window on which the user inter­
face will be implemented. All the windows created by the
user interface designer are children of this window. To start
defining windows the designer selects the 'Window Defini­
tion" command from the ipcs menu. A window can then be
defined by pointing at its two opposing corners . Once a win­
dow is defined it can be removed, stretched to a different
size, or moved to a new position. An arbitrary number of
windows can be defined at each level.

4.2.2. Window Attributes
The window attributes can be defined by selecting the

"Window Attributes" command from the ipcs menu. This
command assigns and displays default attributes for each win­
dow in the work area .. The default attributes consist of the
window name, window limits, background colour, drawing
colour, and boundary colour. The value of an attribute can be
changed by pointing at it and entering a new value .

In this step an interaction technique can be associated
with a window. An interaction technique can be selected
from the library of interaction techniques, or it can be a pro­
cedure written by the user interface designer . The name of
the output token associated with the window is also specified
in this step . On receiving this token the run-time support

Vision Interface '86

module creates the window. It is important to note that it is
the output token name, not the window name, which is used
by the run-time support module .

Ipcs is capable of handling windows of variable size. In
a normal case, depending upon the size of the window, one,
five , or ten window attributes are displayed at a time . In the
case of one or five attributes, the next set of attributes can
be displayed by moving the tracking cross inside the window
and hitting carriage return . To be able to define or change
attributes for a very small w indow, its size can be temporarily
adjusted . The size of such a window is adjusted for the pur­
poses of display only .

The system also allows the use of overlapping windows.
In the case of overlapping windows, the attributes displayed
in one w indow overlap with the attributes in the other win­
dow . These windows can be flipped by pointing at thE;
desired window. The selected window temporarily becomes
the top-most window and its attributes become visible .

It is not necessary to complete the definition of all the
attributes of a w indow at one time . The designer can post­
pone the definition of all or some of the window attributes
for a later time. The system does not force any pre­
determined sequence of specification steps to be followed.

- 74 -

The attributes for a w indow can be changed as often as
desired. The system does not differentiate between changing
a default attribute, or a designer-defined attribute. This facili­
tates the interactive design of user interfaces. This mechan­
ism for accommodating changes in the specification also
helps in adapting user interfaces to individual users . The
interaction technique or colours associated with a window,
for example, can be easily changed to the actual user 's liking_

4.2.3. Menu Definition
The "Menu Definition" command is used for defining

menus. A menu is always associated with one of the win­
dows defined in the work area. A menu consists of a menu
header and a variable number of menu items. The menu
header contains information affecting the appearance and
location of the menu. This information consists of menu
name, menu type, menu items placement option, menu orien­
tation, and menu output token. Menu name is entered by the
designer . A meaningful menu name can be used to remember
the purpose or contents of the menu. The system provides
facilities for fixed as well as pop-up menus. The default
menu type is "fixed". The placement of menu items can be
automatically handled by the system at the run time . The menu
area is equally divided and allocated to each menu item in the
menu. The system then centers the text and icons. The
designer , however, has the option of specifying the location
and size of individual menu items in the menu. The default
menu items placement option is "system", it can be changed to
"designer". The default menu orientation is "vertical", it can be
changed to horizontal. Each menu is assigned an output

Design

Specifications

Genarate Data Base,

Token Tables, and

'C' Procedures

Fig. 3 . Sequence for Constructing a Presentation Component

Graphic. Interface '88

token. On receiving this output token the run-time support
module displays the menu. The run-time support module
recognizes the menus by their output token , not by the menu
names_

A variable number of menu items can be associated with
a menu. Each menu item occupies a rectangular area within
the menu area. A menu item can be labeled either by an icon
or text strings . A menu may consist of a mixture of iconic
and textual menu items. For each menu item the designer
specifies its type; iconic or textual. In the case of textual
menu items one or more lines of text can be associated with
the item. .

In the case of icons the system provides a library of
icons. An icon may be selected from this library, or it can be
produced by using an interactive editor , called ICON
(GreeneSL developed at the University of Alberta. To associ­
ate an icon with a menu item the name of the procedure draw­
ing the icon is entered .

The system allows the designer to associate more than
one menu with a window. This helps in creating a hierarchy of
menus. It is important to note that the menus may be
displayed in any order. It is not necessary to display the
menus in the order they are defined. Therefore, though the
menu definition hierarchy is simple, the menu display hierarchy
can be as complex as desired.

4.2_4. Input Token Definition
Input tokens can be associated with a window by select­

ing the "Input Token Definition" command from the ipcs menu.
The input tokens convey information about tile user's interac­
tions with the user interface to the other parts of the UIMS.
A variable number of input tokens can be associated with a
window. An input token definition consists of token name
and the associated event number . The system allows the
designer to delete or add any number of input tokens during a
specification session.

4.2.5. Output Token Definition
Output tokens can be associated with a window by

selecting the "Output Token Definition" command from the
ipcs menu. For output tokens the designer specifies the name
of the token along with the name of a display procedure. On
receiving the output token, the run-tirne support module
invokes the associated display procedure. Based on the
information contained in the output token, the d isplay pro­
cedure produces the image in the window in which the output
token is specified.

More than one output token can be associated with a
window. Different output tokens are used to produce dif­
ferent images in the same window. The system allows the
designer to modify or delete an output token after its defini­
tion.

4.2.6. Next IIfld Previous Level Definitions
To be able to define the next level in the tree of win­

dows, the designer can select "Next Level" command from the
ipcs menu and point to a window in the work area . This win­
dow now becomes the new parent. Some of the important
attributes of this window are displayed in the bottom of the
screen and the environment switches back to the one shown
in Figure 4.

A tree of windows can be created by using the "Next
Level", "Previous Level", and 'Window Definition" commands
from the ipcs menu. By selecting the "Next Level" command
and pointing at a window in the work area, children of the
window pointed at can be created. The work area
corresponds to the selected window and child windows can
be created using the 'Window Definition" command.

The system does not require the designer to complete
the definition of the current level before going to the next
level in the tree of windows . The tree can be defined
branch-by-branch, level-by-Ievel or by a mixture of the two
approaches . This flexibility in designing the tree allows the
designer to work more methodically and concentrate on one
part of the user interface at a time . The system does not put
any limit on the depth of the tree or number of windows at a
particular level of the tree . .

4.3. Novice and Expert Users of ipcs
Ipcs has two levels of use; "novice" and "expert". A

novice may use only the basic set of commands. In this mode

VI.lon Interface '86

- 75 -

To ch.a.Dce a.n attribute. m>ve tbe cunor oD topoftbe attribute and type the EJ new value. HIt ~ retW11 a/t.er ent.er1Da" the nlue.

I ~. to ad lust .he. PF. · to ftlD wlndo PF.· to nd~ ..
Deftnttk>D

NAme: ~ Num: ~ Vv1Ddow

Limit !lx: ~ Attribute.

Umltllx; ~
~ EJ Limit Itv:

Limit Ity: ~ DellnltlDB

Limit un: ~
~

Input Token

~
Llmk W'1:

Limit ury: DeftokloB

E4 CoIor. CJ Limit ury: ~ Outpul Tot ..

DeftokloB

Dn.w CoIo r: c=J E4 CoIor. L::J EJ BodryCoIor. c=J CJ Oraw CoIor.

E] Jntl'd. Tech.: ~
Bodry CoIor. CJ

Output Token: EJ EJ lotJ"ttTec:b...: b::J

NAme: ~ Output Token: ~ ~
\r\1.ndow 1'll 1 E4 Color pn .. Colo, Bound.uy BI. Tec:h. D Tokem put Token.

Jup7 Jup7 o 1 1 Done o 0

Fig. 4. The ipcs Screen Layout
all the input is done through one button on the cursor puck.
and all through the ipcs session the designer is guided by help
messages. The help messages are quite detailed for the
novice. In expert mode. the designer is allowed to use other
buttons on the puck . and the messages produced by the sys­
tem are terse . The use of extra buttons on the puck allows
the designer to delete. resize . move. or temporarily change
the size or priority of a window. A profile for each user of
ipcs (called "userprofile") is created and maintained by the pro­
gram. initially tagging each user as a novice. The userprofile
file stores the status ("novice" or "expert'1 of the user. the
number of times he has invoked ipcs. and the number of times
the designer successfully finished the specification sessions .
A novice is upgraded to an expert based on the number of
successful executions of the ipcs.

4.4. Output of ipcs
The output produced by ipcs is used to drive the run­

time support module. and provides the interface for the
dialogue control component and the application interface
model. The information produced for the run-time support
module consists of an FDB data base and 'C' procedures .
whereas the interface information for the dialogue control
component and application interface model consists of tables
of input and output tokens . A brief description of these files
is presented in the following sub-sections .

Graphics Interface '86

4.4.1. Data Base Description.
The design information for the presentation component

is stored in an FDB data base . An object in the data base is
represented by a frame . A window frame points to the next
w indow at the same level as well as to its child windows at
the next level. In addition. a window frame points to the first
menu. first input token. and first output token frames associ­
ated with the window. Each of these in turn point to the
frames providing detailed information about the objects .

4 .4 .2. 'C' Procedures
The 'C' procedures generated by ipcs are mainly used

for passing parameters to the interaction techniques . The
procedure calls are also used for loading the appropriate
routines from the library of interaction techniques . display
procedures . and icons. These procedures are compiled and
linked with the other routines for run time support.

4 .4.3. File of Input/Output Tokens
This file contains the names of all the input and output

tokens along with a number. These numbers are assigned by
ipcs to each of the input and output tokens . For reasons of
efficiency this number is used for communication amongst
various components of the user interface at run t ime.

4 .5. Run-Time Support Module
. The run-time support for the presentation component of

the user interface is provided by the routines in "peg". The
following functions are supported by pcg.

Vision Interface '86

Receive the user 's interactions in the form of WIND LIB
events, re format them into input tokens, and send these
tokens for further processing.
Receive output tokens from the dialogue control com­
ponent, find the appropriate w indow and display pro­
cedure, and call the display procedure.
Display menus and highlight the selected menu items.
The program pcg is driven by the data base created by

the specification program ipcs. It retrieves the information
from the database and restructures the information as
required. It also receives some help from the 'C' code gen­
erated by the ipcs. This code is compiled and linked with the
other run time routines. Pcg is divided into three logical
parts. The first part is responsible for displaying menus and
performing the associated bookkeeping. The second part
handles the user interactions and generates the input tokens.
The third part receives the output tokens and is responsible
for their display.

S. Conclusions
In our system attention is focussed on the issues

involved in the automatic generation of presentation com­
ponents of user interfaces. The separation of presentation
component from the dialogue control component helps
designers work more methodically , and may therefore result
in better user interfaces. The approach also overcomes one
of the major stumbling blocks in user interface design,
namely, the representation of geometric information in textual
form. In our design most of the geometrical information is
entered graphically. The system provides a window based
environment which helps designers structure the user inter­
faces in a more natural way . The system also provides facili­
ties for creating and maintaining a hierarchy of windows and
menus. The interactive design of user interfaces is supported
by allowing the designer to move to the next level in the
hierarchy without completing the definition of all aspects of
the user interface at the current level. The system provides
more freedom to the designer by not imposing any predeter­
mined sequence of commands for creating user interfaces.

The second contribution of this system is to show that
all device dependencies can be limited to the presentation
component of the user interface. If the user interface is
moved to a different device only the presentation component
needs to be changed . This increases the portability of the
user interfaces. Also. the presentation component can be
designed to support a range of devices. and automatically
adapt to the one in 'use w ithout changing the structure of the
dialogue.

The third contribution of this system is to show that user
interfaces can easily be adapted to individual users . Screen
layout, for example. can be easily tailored for left handed
users. The selection of interaction techniques and display
formats can also be easily changed to the actual user 's liking.

It is also observed that the existence of a separate
presentation component encourages the use of a standard
library of interaction techniques . This speeds up the process
of generating user interfaces to a great extent and reduces
the cost of programming considerably . This reduction in cost
and time encourages experimentation with user interfaces and
hence increases user satisfaction .

References

Buxton83 .
W . Buxton, M . R. Lamb. D. Sherman and K. C. Smith,
Towards a Comprehensive User Interface Management
System. Computer Graphi cs 17. 3 (July 1983). 35-42 .

Cheriton76.
D. R. Cheriton. Man-Machine Interface Design for Time­
Sharing Systems, Proc. of ACM Annual Conf., 1976.
362-366 .

Chia85 .
M . S. Chia. An Event Based Dialogue Specifi cation for
Automatic Generati on of User Interfaces. M .Sc. Thesis .
Dept. of Computing Science. Univ . of Alberta.
Edmonton. Alberta. Canada. 1985.

Graphics Interface '88

- 76 -

Edmonds81.
E. A. Edmonds, Adaptive Man-Computer Interfaces. in
Computing Skills and the User Interfaces. M. J.
Coombs and J. L. Alty (ed.). Academic Press. London.
1981 . 389-426.

Feldman82.
M. Feldman and G. Rogers, Towards the Design and
Developement of Style Independent Interactive Systems .
Proc. 1st Annual Conf. on Human Factors in Computer
Systems, Gaithersburg Maryland, Mar. 1982. 111-116 .

Foley81 .
J . D. Foley . V. L. Wallace and P. Chan. The Human
Factors of Interaction Techniques . liST Report 81-03.
Dept. of Electrical Engineering and Computer Science.
The George Washington University. Washington, D.C.,
Mar. 1981.

Green83.
M. Green. M . Burnell. H. Vernjak and M. Vernjak.
Experience with a Graphical Data Base System. Proc.
Graphics Interface' 83. 1983, 257-270 .

Green84a.
M. Green, ThB Design of Graphical User Interfaces .
Ph.D. Thesis , Univ . of Toronto. Toronto . Canada. 1984.

Green84b.
M. Green. Report on Dialogue Specification Tools,
Computer Graphics Forum 3. (1984), 305-313.

Green84c.
M. Green and N. Bridgeman, WINDLlB Programmer's
Manual, Dept. of Computing Science, Univ . of Alberta.
Edmonton, Alberta, Canada, 1984.

Green85.
M. Green, The University of Alberta User Interface
Management System, Proc. Siggraph' 85, 1985, 205-
213.

Green86.
M. Green and G. Singh, Windows as a User Interface
Structuring Mechanism, (in preparation), 1986 .

Guest82.
Stephen P. Guest. The Use of Software Tools for
Dialogue Design, Int. Journal of Man-Machine Studies
16, (1982). 263-285.

Jacob83.
R. J. K. Jacob, Executable Specifications for a Human­
Computer Interface, Proc. CHJ'83, Dec . 1983. 28-34.

Kasik82 .
D. J. Kasik, A User Interface Management System,
Computer Graphics 16, 3 (July 1982). 99-106.

Lau85.
S. C. Lau, The Use of Recursive Transition Networks for
Dialogue in User Interfaces , M.Sc . Thesis, Dept. of
Computing Science, Univ. of Alberta, Edmonton , Canada,
1985.

Newman68.
W . M . Newman, A System for Interactive Graphical
Programming, Proc. Spri ng Joint Computer Conf. ,
1968, 47-54.

Dlsen Jr.83.
Dan R. Dlsen Jr . and Elizabeth P. Dempsey, SYNGRAPH:
A Graphical User Interface Generator, Computer
Graphics 17, 3 (July 1983). 43-50 .

Roach82 .
J. Roach, R. Hartson, R. Ehrich, T. Yunten and D .
Johnson, DMS : A Comprehensive System for Managing
Human-Computer Dialogue. Proc. 1st Annual Cont . on
Human Factors in Computer Systems, Gaithersburg
Maryland. Mar. 1982, 102-105.

Seattle83 .
Seattle. Proc . of Graphics Input Interaction Technique
Worksop. June 2-4 Battelle Seattle. Computer Graphi cs .
Jan. 1983.

Singh85.
G. Singh, Presentation Component for the U of A UI MS.
M.Sc. Thesis, Dept . of Computing Science . Univ . of
Alberta. Edmonton, Canada, 1985.

Vlelon Interface '88

