
- 77 -

A FAST ALGORITHM FOR GENERAL RASTER ROTATION

Ala" W . Paeth

Computer Graphics Laboratory, Department of Computer Science
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Tel: (519) 888-4534, E-Mail: A WPaeth%watCGL@Waterloo.CSNet

ABSTRACT

The rotation of a digitized raster by an arbitrary angle
is an essential function for many raster manipulation
systems. We derive and implement a particularly fast
algorithm which rotates (with scaling invariance) rasters
arbitrarily; skewing and translation of the raster is also
made possible by the implementation. This operation is
conceptually simple, and is a good candidate for
inclusion in digital paint or other interactive systems,
where near real-time performance is required.

RESUME

La rotation d 'un "raster" d'un angle arbitraire est une
foilction essentielle de plusieurs logiciels de
manipulation de "raster" . Nous avons implemente un
algorithme rapide de rotation de "raster" conservant
l'echelle de I'image. Nous d'ecrivons ce systeme qui
permet aussi le biaisage et la translation du "raster".
Cette operation, d'un concept simple, se revele un bon
candidat a I'insertion dans un logiciel de "paint system"
(ou autre systeme interactif) oil une performance quasi­
temps reel est necessaire.

Keywords: raster rotation, frame buffer, real-time .

Gr aphlcs Interface '86

INTRODUCI10N

We derive a high-speed raster rotation algorithm
based on the decomposition of a 2-D rotation matrix
into the product of three shear matrices. Raster
shearing is done on a scan-line basis, and is particularly
efficient. A useful shearing approximation is averaging
adjacent pixels, where the blending ratios remain
constant for each scan-line. Taken together, our
technique rotates (with anti-aliasing) rasters faster than
previous methods. The general derivation of rotation
also sheds light on two common techniques: small angle
rotation using a two-pass algorithm, and three-pass
9O-degree rotation . We also provide a comparative
analysis of Catmull and Smith's method [Catm80n and
a discussion of implementation strategies on frame
buffer hardware.

STATEMENT OF THE PROBLEM

A general 2D counter-clockwise rotation of the
point (x, y) onto (x', y') by angle theta is performed
by multiplying the point vector (x, y) by the rotation
matrix:

M [
c~s 8
sm 8

-sin

cos :]
The matrix ' is orthogonal: it is symmetric, rows

and columns are unit vectors, and the determinant is
one. To rotate a raster image, we consider mapping
the unit cell with center at location (1, j) onto a new
location (1', j') .

/ ,
A A

,< , , , ,

~0 ~
, ,

~ V ,

Rotate 45

),
~

2 .3"
)'

8. g,,/' , ,
'.' 60 , 0" , , ,
~8,9%",

Figure 1. Rotation by Raster Sampling

Vision Interface '86

The image of the input cell on the output grid is a
cell with (usually) a non-integral center, and with a
rotation angle theta (B) . We adopt a "box-filter"
sampling criterion, so the value of the output pixel is
the sum of the intensities of the covered pixels, with
each contributing pixel's intensity weighted in direct
proportion to its coverage (Figure 1) . Note that the
output pixel may take intensities from as many as six
input pixels. Worse, the output pixel coverage of
adjacent input pixels is non-periodic; this is directly
related to the presence of irrational values in the
rotation matrix. Clearly , the direct mapping of a raster
by a general 2x2 matrix is computationally difficult:
many intersection tests result, usually with no
coherence or periodicity to speed program loops.

ROTATION THROUGH SHEARING

Now consider the simplest 2x2 matrices which
may operate on a raster. These are shear matrices:

X-shear Y-shear

Shear matrices closely resemble the identity
matrix: both have a determinant of one. They share no
other properties with orthogonal matrices. To build
more general matrices , we form products of shear
matrices - these correspond to a sequence of shear
operations 00 the ruter. Intuitively, consecutive
shearing along the same axis produces a conforming
shear. This follows directly:

*

Thus, shear products may be restricted to products
of alternating x and y shears, without loss of generality.
The product of three shears gives rise to a general 2x2
matrix in which three arbitrary elements may be
specified. The fourth element will take on a value
which insures that the determinant of the matrix
remains one. This "falls out" because the determinant
of the product is the product of the determinants (which
are always one for each shear matrix). Orthogonal 2x2
matrices also have unit determinant, and may thus be
decomposed into a product of no more than three
shears.

[
la] [1 0] [1 "'I] [C~B -sinB]
o 1 plO 0 smB cosB

Solving the general equation, we have
a="'I=l-cos(J / sinB; p=sinB. The first equation is
numerically unstable near zero, but can be replaced by

Graphics Interface '86

- 78 -

the half-angle identity: Cl="'I=-tan (B /2). Program
code to shear and update the point (x.y) with (x',y')
is then:

1* X Shear *1 1* Y Shear *1
x' : = x - sinB * y; x' . - x;
y ' : = y; y' := y + tan(B/2) * x;

When the output vector replaces the input, x=x'
and y=y', so the second line of the sequence may be
optimized out. Consecutive shears yield sequential
program steps. Thus, a three-shear rotation is achieved
by the three program statements:

x .- x + Cl * y;

y .- y + P * x;

x .- x + Cl * y;

[1]

[2]

[3]

With B~o , Cohen [Newm79D uses steps [1] and
[2] to generate circles by plotting points incrementally .
His derivation begins be choosing Cl and p to
approximate the conventional rotation matrix, and then
points out that by reassigning X+Cl*y to the original
variable x in [1], and not to a temporary value x', the
determinant becomes one, and the circle eventually
closes. Our analysis demonstrates formally why this is
true: rewriting the variables constitutes a shear. and the
sequence of shears always maintains a determinant of
one. Augmenting the code with line [3] would convert
the two-axis shear into a true rotation: the circle
generator would then produce points rotated through a
constant angle relative to the preceding point. This is
important should the algorithm be used to produce
circle approximations as n-gons (and not point
drawings), where B=360/n is no longer small.

RASTER SHEARING

Raster shearing differs from point transformation
because we must consider the area of the unit cell
which represents each pixel. Fortunately, the shear
operation modifies the pixel location with respect to
only one axis, so the shear can be represented by
skewing pixels along each scan-line. This simplifies the
intersection testing that must go on to recompute the
intensity of each new output pixel. -11 Shear 0 . 3 - ~

1

Figure 2. Raster Shearing Along the X Axis

Vision Interface '86

- 79 -

In general, the unit square P (1, j) OIl row 1 is
rewritten as a unit parallelogram with side of slope l/a
on row 1, with the former displaced by ay pixel widths.
This displacement is not usually integral , but remains
invariant for all pixels on the 1th scan-line. For
illustration and implementation, it is represented as the
sum of an integral and a fractional part (" f " in Figure
3; " skewf' in Figure 6) . Those pixels covered by this
parallelogram are written with fractional intensities
proportional to their coverage by the parallelogram.
The sum of all these pixels must equal the value of the
original input pixel, as they represent this input pixel
after shearing.

We next approximate this parallelogram of unit
area with a unit square. Placing the edges of the
square through the midpoints of the parallelogram, we
produce an exact approximation when the
parallelogram covers two pixels, but not when it covers
three. This approximation is the basis for our rotation
algorithm. As we shall see, it can be implemented as a
very efficient inner-most pixel blending loop, thus
offsetting the cost of making three shearing passes, as
compared to previous techniques, which employ two
less efficient (though more general) passes.

I Z I Z I Z I
areas identical

I fPl+l I

Figure 3. The Parallelogram Approximation

Based on this filtering strategy, we consider two
approaches to rotation. First, we seek angles () for
which the filtering is exact. Second, we analyze the
filter for arbitrary values of () where the filter may not
be exact.

Filtering is exact when all parallelograms overlap
no more than two pixels. This will always occur when
the shear offset is of length l/n , as a periodic cycle of
n parallelograms results , in which each spans exactly
two pixels. Choosing this ideal filter for the first and
third passes , we derive the second pass shear value.
Setting a=l/n , we have () =2 ' tan- 1 (l/n) and thus by
manipulation of inverse trigonometric functions ,
p=2n/1+n2. Setting n=l yields a=-l , 1'=1 and thus
rotations with ()=90 degrees are exact (not possible
with the Catmull-Smith approach). Moreover, this
shearing matrix never generates fractional values
(implying no anti-aliasing must take place), so 90
degree rotation may be coded as a three pass pixel
" shuffle" .

Graphics Interface '86

Other choices of n yield exact sampling in the two
a passes, as a=l/n. Here 1'=2n/l+n2 (in the middle
pass) will never be of the form l/m, so some filtering
artifacts will be present. However, we can form small
rational values for a and I' corresponding to various
angular rotations, and create specialized filters, in
which only the I' pass generates small errors on a
periodic basis. When a and I' -are small rationals of the
form 1/ j, then the shear values (which are used as
blending coefficients by our algorithm) will recur every
j scan-lines, leading to customized algorithms. Solving
for general rational values of a and 1', we find that
a=1/j and 1'=21j/12+j2. These tabulated values
give rise to highly efficient filters , with approximation
errors minimized:

a I' ()

-1 1 I.JU.UU
-3/4 24/25 73.74
-2/3 12/13 67.38
-1/2 4/5 53.13
-1/3 3/5 36.87
-1/4 8/17 28.07
-1/5 5/13 22.62

Flpre". RotatiOll by a RatiOllal Shear

We now consider arbitrary choices of 8 , and then
the precision of the rotation. For (»90 degrees , our
shear parallelogram may span four pixels, and the
filtering rapidly breaks down. Based OIl the four-fold
symmetry of a raster, we may restrict our attentiOll to
rotations of no more than 45 degrees, where our
approximation has worst-case performance (because a
and I' grow monotonically with O~()<90 degrees). Here
a=l-\!2 :::::-.4142; and 1'=\/2/2 ~.7071. The
second I' pass is the most error-prone.

Probabilistically, its filter is exact 29.3% of the
time. Otherwise, the parallelogram spans three pixels,
and the error, as a function of fractional pixel skew,
grows quadratically to a cusp, reaching its worst-case
error when the parallelogram is symmetric about the
output pixel. This error is \/2/8 or 17.7%. However,
the sampling tile shifts as the shear value changes with
each scan-line, so average degradation to the sheared
raster is computed by integrating over parallelograms of
all possible skew. Solving the equations, we find that
the worst-case shear filter approximates intensities to
within 4.2% of the actual intensity. For rotations less
the 45 degrees , the approximation is even closer, as the
the probability of the parallelogram spanning three
pixels decreases. Where it does , the error terms are
also smaller.

Vision Interface '86

- 80 -

.3
E
~ .2
o
r

, , , , , ,
I , , , , ,

Fract10nal Skew

Fi~e 5. Approximation Error

The nature of the error is to concentrate
intensities from a center pixel whereas the true box­
filter approximation calls for contributing coverages
from two neighboring pixels. Thus, the approach
"peaks" the data: the nature of the degradation is not
random. Further, a reasonable implementation of the
filter guarantees that when any scan-line is skew­
sheared by a fractional amount, the contributing
intensities of each input pixel sum to 1.0 - the filter
parallelograms never overlap. If we consider the sum
of the pixel intensities along any scan-line, this sum
remains unchanged after the shear operation. Thus,
the algorithm produces no visible shifts in intensity, and
introduces no "holes" during rotation. The only
rotation artifacts discernible appear with high-frequency
data (such as lines of single pixel width), and even then
only after magnification. This property is shared
generally with rotation and translation algorithms which
must resample such "sharp" rasters onto non-integral
pillel boundaries.

IMPLEMENTATION

Scan line shearing is approximated by a blending
of adjacent pixels. In the following code segment, the
"pixmult" function returns a pixel scaled by a value
skewf, where O~skewf<l , is a constant parameter for
all "width" passes through the inner-most loop:

PROCEDURE xshear(shear, w1dth, he1ght)
FOR y := 0 TO he1ght-l DO

OD

skew shear * (y+0 .5);
skew1 floor(skew);
skewf frac(skew);
oleft 0;
FOR x 0 TO w1dth-l DO

OD

p1xel P(w1dth-x, y);
left p1xmult(p1xel, skewf);

1* p1xel - left = r1ght *1
p1xel . - p1xel - left + oleft ;
P(w1dth-x+skew1, y) : = p1xel;
oleft : = left;

PCskew1, y) := oleft;

Figure 6. Shearing Algorithm for X Axis

Graphics Interface '86

This operation shears a raster of size (width,
height) by the value present in "shear", so the data
matrix P must be of sufficient width to accommodate
the shifted output data. Note that only "width" output
entries are written, so the skewed output line may be
written to frame buffer memory modulo the frame
buffer pixel width, thus requiring no additional
memory, but complicating the specification of data to
the three shear passes. A virtual frame buffer
implementation which provided a notion of "margins"
to active picture detail can maintain this offset
information implicitly.

A shear operation always has an axis of shear
invariance (it is an fact an eigenvector) . In this
implementation, the axis is the pixel boundary "below"
the fmal row of pixel data at a distance "height". This
gives rise to rotation about the interstices between pixel
centers. To rotate rasters about pixel centers, the "0.5"
half-pixel offset may be removed.

The code splits each pixel into a "left" and
"right" value using one multiply per pixel; left and
right always sum exactly to the original pixel value,
regardless of machine rounding considerations. The
output pixel is then the sum of the remainder of the
left-hand pixel, plus the computed fractional value for
the present (right-hand) pixel. The "pixmult" function
reduces to a fractional multiply or table lookup
operation with monochromatic images. More
generally, it may operate on an aggregate pillel which
might contain three calor components, or an optional
coverage factor ~P0rt84n. Because read and write
references to P occur at adjacent pixel locations during
the course of the inner-most loop, pixel indexing can be
greatly optimized.

On machines lacking hardware multiply, code to
shear a large (512x512) image may build a multiply
table at the beginning of each scan-line, and then use
table lookup to multiply. By skew symmetry,
x-shearing of line -n and line n are identical, save for
shear direction, so one table may be used for two scan­
lines, or for every 1024 pixels. With a pixel consisting
of three 8-bit components, the table length is 256, and
table fetches will exceed table loads by a factor of 12.
Since the table can be built with one addition per
(consecutive) entry , its amortized cost per lookup is
low, and decreases linearly with raster size.

Framebuffers are beginning to incorporate integer
multiply hardware, often targeted to pixel blending
applications (The Adage/Ikonas frame buffers at
Waterloo's Computer Graphics Laboratory provide a
16-bit integer multiply in hardware) . This speeds the
evaluation of the pixel blending; the majority of the
inner-loop overhead is in (un)packing the 24-bit RGB
pixel to provide suitable input for the multiplier.
Fortunately, the addition used to complete the blend
may be done as a 24-bit parallel add, because the
values to be summed, "left" and "right", have been
scaled by frac and l-ffrac respectively. Thus, the

Vision Interface '86

- 81 -

blending operation is "closed" , and no carry can
overflow from one pixel component into the next.

Finally, the shear code may more generally be
used to introduce spatial translation of the raster. By
introducing an output offset in the shear code, a
" BitBlt" [Inga78ll style operation may be included at
no extra cost. In this setting, " skewi" and " skewf"
would have integral and fractional offsets added to
them to accommodate the lateral displacement of the
raster. Displacement during data passes two and three
provides arbitrary displacement on the plane, with
orthogonal specification of the displacement parameters.

More generally , when the code is incorporated
into a larger package which provides arbitplry (affine)
matrix operations on a raster, the composite of all
intermediate image transformations are represented in
one matrix. This avoids unnecessary operations to the
image. Eventually , this matrix is decomposed into
three operations: scaling, rotation and shearing (plus an
optional translation if a 3x3 homogeneous matrix is
used). The shearing, rotation and possible translation
operations may be gathered into one three-shear
operation. The scale. pass prefaces the rotation if it
scales to a size larger than 1: 1 , otherwise it follows the
rotation. This maximizes image quality and minimizes
data to the shear (and possibly rotate) routines. Other
four pass scale/shear sequences are discussed in the
literature [Weim80l ,

COMPARISONS

As with the Catrnull-Smith approach, the
algorithm may be implemented as a pipeline for real­
time video transformation. Both approaches require
two "rotators" to transpose the data entering and
leaving the second scan-line operator, as this step
requires data in column (and not row) order.

In that approach , two scan-line passes (by x , then
by y) are made upon the input raster. These may be
modeled by the matrix transformation:

[tan~ o] [COSB
cos2BsecB 0

-s1n~] [;]

These slightly more general matncles perform a
simultaneous shear and scale along one axis , while
leaving the second axis unchanged. This approach
saves one data pass , but incurs the penality of more
complex scan-line sampling.

Because sample pixels are both sheared and
scaled, no pixel-to-pixel coherence of fractional
sampling location exists . Thus, each pixel must be
sampled at two fractional locations , doubling the
number of pixel (aggregate RGB) multiplies for each
pass. Hand analysis of our microcode showed that this
is already the dominant operation in the pixel loop.

Graphics Interface 'S6

Further, the Catrnull-Smith approach must additionally
recompute the fractional sample points for each next
pixel, or approximate their location using fixed-point
arithmetic . In our implementation, fractional sampling
points are constant per scan-line, and are calculated
exactly in floating point at the beginning of each line.

Compared generally to other work, our algorithm
finds application where a generalized "BitBlt" operation
is needed to perform rotation and translation efficiently.
More complex pixel sampling passes may justify their
added expense in allowing for generalize rotation
operations, such as Krieger's modified two-pass
approach [Krie84ll used to perform 3-D rotation with
perspective transformation, useful in texture mapping.

CONCLUSIONS

The technique outlined here performs arbitrary
high-speed raster rotation with anti-aliasing and
optional translation. The mathematical derivation
guarantees scaling invariance when rotating. The
implementation strategy allows for particularly fast
operation, while minimizing the approximation error.
This algorithm is a powerful tool in the repertoire of
digital paint and raster manipulation systems. Coupled
with state-of-the-art raster scaling techniques , it can
transform an input raster by an arbitrary 2x2
transformation matrix in near real time.

ICatrn80ll

REFERENCES

Catrnull , E ., Smith A. R. "3-D
Transformations of Images in Scanline
Order" ACM Computer Graphics
(SIGGRAPH '80) 14(3) , July 1980, pp.
279-285.

[Newm79ll Newman, W.M. , Sproull, R.F. Principles
of Interactive Computer Graphics (2nd ed) ,
pp. 28 McGraw-Hill , New York 1979.

[Inga78ll

[Krie84ll

[Port84ll

[Weim~Oll

Ingalls , D .H.H. "The Smalltalk-76
programming system: design and
implementation" Fifth ACM Symp . Prin.
Prog. Lang. , January , 1978, pp. 9-16.

Krieger, R.A. " 3-D Environments For 2-D
Animation" , MMath Essay , University of
Waterloo , Ontario, 1984.

Porter, T . , Duff, T . "Compositing Digital
Images" ACM . Computer Graphics
(SIGGRAPH '84) 18(3) , July , 1984, pp.
253-259.

Weiman , C.F.R. "Continuous Anti­
Aliased Rotation and Zoom of Raster
Images" ACM Computer Graphics
(SIGGRAPH '80) 14(3) , July 1980, pp.
291.

Vision Interface 'S6

