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ABSTRACT 

The rotation of a digitized raster by an arbitrary angle 
is an essential function for many raster manipulation 
systems. We derive and implement a particularly fast 
algorithm which rotates (with scaling invariance) rasters 
arbitrarily; skewing and translation of the raster is also 
made possible by the implementation. This operation is 
conceptually simple, and is a good candidate for 
inclusion in digital paint or other interactive systems, 
where near real-time performance is required. 

RESUME 

La rotation d 'un "raster" d'un angle arbitraire est une 
foilction essentielle de plusieurs logiciels de 
manipulation de "raster" . Nous avons implemente un 
algorithme rapide de rotation de "raster" conservant 
l'echelle de I'image. Nous d'ecrivons ce systeme qui 
permet aussi le biaisage et la translation du "raster". 
Cette operation, d'un concept simple, se revele un bon 
candidat a I'insertion dans un logiciel de "paint system" 
(ou autre systeme interactif) oil une performance quasi­
temps reel est necessaire. 
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INTRODUCI10N 

We derive a high-speed raster rotation algorithm 
based on the decomposition of a 2-D rotation matrix 
into the product of three shear matrices. Raster 
shearing is done on a scan-line basis, and is particularly 
efficient. A useful shearing approximation is averaging 
adjacent pixels, where the blending ratios remain 
constant for each scan-line. Taken together, our 
technique rotates (with anti-aliasing) rasters faster than 
previous methods. The general derivation of rotation 
also sheds light on two common techniques: small angle 
rotation using a two-pass algorithm, and three-pass 
9O-degree rotation . We also provide a comparative 
analysis of Catmull and Smith's method [Catm80n and 
a discussion of implementation strategies on frame 
buffer hardware. 

STATEMENT OF THE PROBLEM 

A general 2D counter-clockwise rotation of the 
point (x, y) onto (x', y') by angle theta is performed 
by multiplying the point vector (x, y) by the rotation 
matrix: 
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The matrix ' is orthogonal: it is symmetric, rows 

and columns are unit vectors, and the determinant is 
one. To rotate a raster image, we consider mapping 
the unit cell with center at location (1, j) onto a new 
location (1', j') . 
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Figure 1. Rotation by Raster Sampling 
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The image of the input cell on the output grid is a 
cell with (usually) a non-integral center, and with a 
rotation angle theta (B) . We adopt a "box-filter" 
sampling criterion, so the value of the output pixel is 
the sum of the intensities of the covered pixels, with 
each contributing pixel's intensity weighted in direct 
proportion to its coverage (Figure 1) . Note that the 
output pixel may take intensities from as many as six 
input pixels. Worse, the output pixel coverage of 
adjacent input pixels is non-periodic; this is directly 
related to the presence of irrational values in the 
rotation matrix. Clearly , the direct mapping of a raster 
by a general 2x2 matrix is computationally difficult: 
many intersection tests result, usually with no 
coherence or periodicity to speed program loops. 

ROTATION THROUGH SHEARING 

Now consider the simplest 2x2 matrices which 
may operate on a raster. These are shear matrices: 

X-shear Y-shear 

Shear matrices closely resemble the identity 
matrix: both have a determinant of one. They share no 
other properties with orthogonal matrices. To build 
more general matrices , we form products of shear 
matrices - these correspond to a sequence of shear 
operations 00 the ruter. Intuitively, consecutive 
shearing along the same axis produces a conforming 
shear. This follows directly: 

* 

Thus, shear products may be restricted to products 
of alternating x and y shears, without loss of generality. 
The product of three shears gives rise to a general 2x2 
matrix in which three arbitrary elements may be 
specified. The fourth element will take on a value 
which insures that the determinant of the matrix 
remains one. This "falls out" because the determinant 
of the product is the product of the determinants (which 
are always one for each shear matrix). Orthogonal 2x2 
matrices also have unit determinant, and may thus be 
decomposed into a product of no more than three 
shears. 

[
la ] [1 0] [1 "'I ] [C~B -sinB] 
o 1 plO 0 smB cosB 

Solving the general equation, we have 
a="'I=l-cos(J / sinB; p=sinB. The first equation is 
numerically unstable near zero, but can be replaced by 

Graphics Interface '86 

- 78 -

the half-angle identity: Cl="'I=-tan (B /2). Program 
code to shear and update the point (x.y) with (x',y') 
is then: 

1* X Shear *1 1* Y Shear *1 
x' : = x - sinB * y; x' . - x; 
y ' : = y; y' := y + tan(B/2) * x; 

When the output vector replaces the input, x=x' 
and y=y', so the second line of the sequence may be 
optimized out. Consecutive shears yield sequential 
program steps. Thus, a three-shear rotation is achieved 
by the three program statements: 

x .- x + Cl * y; 

y .- y + P * x; 

x .- x + Cl * y; 

[1 ] 

[2] 

[3] 

With B~o , Cohen [Newm79D uses steps [1] and 
[2] to generate circles by plotting points incrementally . 
His derivation begins be choosing Cl and p to 
approximate the conventional rotation matrix, and then 
points out that by reassigning X+Cl*y to the original 
variable x in [1], and not to a temporary value x', the 
determinant becomes one, and the circle eventually 
closes. Our analysis demonstrates formally why this is 
true: rewriting the variables constitutes a shear. and the 
sequence of shears always maintains a determinant of 
one. Augmenting the code with line [3] would convert 
the two-axis shear into a true rotation: the circle 
generator would then produce points rotated through a 
constant angle relative to the preceding point. This is 
important should the algorithm be used to produce 
circle approximations as n-gons (and not point 
drawings), where B=360/n is no longer small. 

RASTER SHEARING 

Raster shearing differs from point transformation 
because we must consider the area of the unit cell 
which represents each pixel. Fortunately, the shear 
operation modifies the pixel location with respect to 
only one axis, so the shear can be represented by 
skewing pixels along each scan-line. This simplifies the 
intersection testing that must go on to recompute the 
intensity of each new output pixel. -11 Shear 0 . 3 - ~ 

1 

Figure 2. Raster Shearing Along the X Axis 
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In general, the unit square P (1, j) OIl row 1 is 
rewritten as a unit parallelogram with side of slope l/a 
on row 1, with the former displaced by ay pixel widths. 
This displacement is not usually integral , but remains 
invariant for all pixels on the 1th scan-line. For 
illustration and implementation, it is represented as the 
sum of an integral and a fractional part (" f " in Figure 
3; " skewf' in Figure 6) . Those pixels covered by this 
parallelogram are written with fractional intensities 
proportional to their coverage by the parallelogram. 
The sum of all these pixels must equal the value of the 
original input pixel, as they represent this input pixel 
after shearing. 

We next approximate this parallelogram of unit 
area with a unit square. Placing the edges of the 
square through the midpoints of the parallelogram, we 
produce an exact approximation when the 
parallelogram covers two pixels, but not when it covers 
three. This approximation is the basis for our rotation 
algorithm. As we shall see, it can be implemented as a 
very efficient inner-most pixel blending loop, thus 
offsetting the cost of making three shearing passes, as 
compared to previous techniques, which employ two 
less efficient (though more general) passes. 

I Z I Z I Z I 
areas identical 

I fPl+l I 

Figure 3. The Parallelogram Approximation 

Based on this filtering strategy, we consider two 
approaches to rotation. First, we seek angles () for 
which the filtering is exact. Second, we analyze the 
filter for arbitrary values of () where the filter may not 
be exact. 

Filtering is exact when all parallelograms overlap 
no more than two pixels. This will always occur when 
the shear offset is of length l/n , as a periodic cycle of 
n parallelograms results , in which each spans exactly 
two pixels. Choosing this ideal filter for the first and 
third passes , we derive the second pass shear value. 
Setting a=l/n , we have () =2 ' tan- 1 (l/n) and thus by 
manipulation of inverse trigonometric functions , 
p=2n/1+n2. Setting n=l yields a=-l , 1'=1 and thus 
rotations with ()=90 degrees are exact (not possible 
with the Catmull-Smith approach). Moreover, this 
shearing matrix never generates fractional values 
(implying no anti-aliasing must take place), so 90 
degree rotation may be coded as a three pass pixel 
" shuffle" . 
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Other choices of n yield exact sampling in the two 
a passes, as a=l/n. Here 1'=2n/l+n2 (in the middle 
pass) will never be of the form l/m, so some filtering 
artifacts will be present. However, we can form small 
rational values for a and I' corresponding to various 
angular rotations, and create specialized filters, in 
which only the I' pass generates small errors on a 
periodic basis. When a and I' -are small rationals of the 
form 1/ j, then the shear values (which are used as 
blending coefficients by our algorithm) will recur every 
j scan-lines, leading to customized algorithms. Solving 
for general rational values of a and 1', we find that 
a=1/j and 1'=21j/12+j2. These tabulated values 
give rise to highly efficient filters , with approximation 
errors minimized: 

a I' () 

-1 1 I.JU.UU 
-3/4 24/25 73.74 
-2/3 12/13 67.38 
-1/2 4/5 53.13 
-1/3 3/5 36.87 
-1/4 8/17 28.07 
-1/5 5/13 22.62 

Flpre". RotatiOll by a RatiOllal Shear 

We now consider arbitrary choices of 8 , and then 
the precision of the rotation. For (»90 degrees , our 
shear parallelogram may span four pixels, and the 
filtering rapidly breaks down. Based OIl the four-fold 
symmetry of a raster, we may restrict our attentiOll to 
rotations of no more than 45 degrees, where our 
approximation has worst-case performance (because a 
and I' grow monotonically with O~()<90 degrees). Here 
a=l-\!2 :::::-.4142; and 1'=\/2/2 ~.7071. The 
second I' pass is the most error-prone. 

Probabilistically, its filter is exact 29.3% of the 
time. Otherwise, the parallelogram spans three pixels, 
and the error, as a function of fractional pixel skew, 
grows quadratically to a cusp, reaching its worst-case 
error when the parallelogram is symmetric about the 
output pixel. This error is \/2/8 or 17.7%. However, 
the sampling tile shifts as the shear value changes with 
each scan-line, so average degradation to the sheared 
raster is computed by integrating over parallelograms of 
all possible skew. Solving the equations, we find that 
the worst-case shear filter approximates intensities to 
within 4.2% of the actual intensity. For rotations less 
the 45 degrees , the approximation is even closer, as the 
the probability of the parallelogram spanning three 
pixels decreases. Where it does , the error terms are 
also smaller. 
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Fi~e 5. Approximation Error 

The nature of the error is to concentrate 
intensities from a center pixel whereas the true box­
filter approximation calls for contributing coverages 
from two neighboring pixels. Thus, the approach 
"peaks" the data: the nature of the degradation is not 
random. Further, a reasonable implementation of the 
filter guarantees that when any scan-line is skew­
sheared by a fractional amount, the contributing 
intensities of each input pixel sum to 1.0 - the filter 
parallelograms never overlap. If we consider the sum 
of the pixel intensities along any scan-line, this sum 
remains unchanged after the shear operation. Thus, 
the algorithm produces no visible shifts in intensity, and 
introduces no "holes" during rotation. The only 
rotation artifacts discernible appear with high-frequency 
data (such as lines of single pixel width), and even then 
only after magnification. This property is shared 
generally with rotation and translation algorithms which 
must resample such "sharp" rasters onto non-integral 
pillel boundaries. 

IMPLEMENTATION 

Scan line shearing is approximated by a blending 
of adjacent pixels. In the following code segment, the 
"pixmult" function returns a pixel scaled by a value 
skewf, where O~skewf<l , is a constant parameter for 
all "width" passes through the inner-most loop: 

PROCEDURE xshear(shear, w1dth, he1ght) 
FOR y := 0 TO he1ght-l DO 

OD 

skew shear * (y+0 .5); 
skew1 floor(skew); 
skewf frac(skew); 
oleft 0; 
FOR x 0 TO w1dth-l DO 

OD 

p1xel P(w1dth-x, y); 
left p1xmult(p1xel, skewf); 

1* p1xel - left = r1ght *1 
p1xel . - p1xel - left + oleft ; 
P(w1dth-x+skew1, y) : = p1xel; 
oleft : = left; 

PCskew1, y) := oleft; 

Figure 6. Shearing Algorithm for X Axis 
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This operation shears a raster of size (width, 
height) by the value present in "shear", so the data 
matrix P must be of sufficient width to accommodate 
the shifted output data. Note that only "width" output 
entries are written, so the skewed output line may be 
written to frame buffer memory modulo the frame 
buffer pixel width, thus requiring no additional 
memory, but complicating the specification of data to 
the three shear passes. A virtual frame buffer 
implementation which provided a notion of "margins" 
to active picture detail can maintain this offset 
information implicitly. 

A shear operation always has an axis of shear 
invariance (it is an fact an eigenvector) . In this 
implementation, the axis is the pixel boundary "below" 
the fmal row of pixel data at a distance "height". This 
gives rise to rotation about the interstices between pixel 
centers. To rotate rasters about pixel centers, the "0.5" 
half-pixel offset may be removed. 

The code splits each pixel into a "left" and 
"right" value using one multiply per pixel; left and 
right always sum exactly to the original pixel value, 
regardless of machine rounding considerations. The 
output pixel is then the sum of the remainder of the 
left-hand pixel, plus the computed fractional value for 
the present (right-hand) pixel. The "pixmult" function 
reduces to a fractional multiply or table lookup 
operation with monochromatic images. More 
generally, it may operate on an aggregate pillel which 
might contain three calor components, or an optional 
coverage factor ~P0rt84n. Because read and write 
references to P occur at adjacent pixel locations during 
the course of the inner-most loop, pixel indexing can be 
greatly optimized. 

On machines lacking hardware multiply, code to 
shear a large (512x512) image may build a multiply 
table at the beginning of each scan-line, and then use 
table lookup to multiply. By skew symmetry, 
x-shearing of line -n and line n are identical, save for 
shear direction, so one table may be used for two scan­
lines, or for every 1024 pixels. With a pixel consisting 
of three 8-bit components, the table length is 256, and 
table fetches will exceed table loads by a factor of 12. 
Since the table can be built with one addition per 
(consecutive) entry , its amortized cost per lookup is 
low, and decreases linearly with raster size. 

Framebuffers are beginning to incorporate integer 
multiply hardware, often targeted to pixel blending 
applications (The Adage/Ikonas frame buffers at 
Waterloo's Computer Graphics Laboratory provide a 
16-bit integer multiply in hardware) . This speeds the 
evaluation of the pixel blending; the majority of the 
inner-loop overhead is in (un)packing the 24-bit RGB 
pixel to provide suitable input for the multiplier. 
Fortunately, the addition used to complete the blend 
may be done as a 24-bit parallel add, because the 
values to be summed, "left" and "right", have been 
scaled by frac and l-ffrac respectively. Thus, the 
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blending operation is "closed" , and no carry can 
overflow from one pixel component into the next. 

Finally, the shear code may more generally be 
used to introduce spatial translation of the raster. By 
introducing an output offset in the shear code, a 
" BitBlt" [Inga78ll style operation may be included at 
no extra cost. In this setting, " skewi" and " skewf" 
would have integral and fractional offsets added to 
them to accommodate the lateral displacement of the 
raster. Displacement during data passes two and three 
provides arbitrary displacement on the plane, with 
orthogonal specification of the displacement parameters. 

More generally , when the code is incorporated 
into a larger package which provides arbitplry (affine) 
matrix operations on a raster, the composite of all 
intermediate image transformations are represented in 
one matrix. This avoids unnecessary operations to the 
image. Eventually , this matrix is decomposed into 
three operations: scaling, rotation and shearing (plus an 
optional translation if a 3x3 homogeneous matrix is 
used). The shearing, rotation and possible translation 
operations may be gathered into one three-shear 
operation. The scale. pass prefaces the rotation if it 
scales to a size larger than 1: 1 , otherwise it follows the 
rotation. This maximizes image quality and minimizes 
data to the shear (and possibly rotate) routines. Other 
four pass scale/shear sequences are discussed in the 
literature [Weim80l , 

COMPARISONS 

As with the Catrnull-Smith approach, the 
algorithm may be implemented as a pipeline for real­
time video transformation. Both approaches require 
two "rotators" to transpose the data entering and 
leaving the second scan-line operator, as this step 
requires data in column (and not row) order. 

In that approach , two scan-line passes (by x , then 
by y) are made upon the input raster. These may be 
modeled by the matrix transformation: 

[ tan~ o ] [COSB 
cos2BsecB 0 

-s1n~ ] [; ] 

These slightly more general matncles perform a 
simultaneous shear and scale along one axis , while 
leaving the second axis unchanged. This approach 
saves one data pass , but incurs the penality of more 
complex scan-line sampling. 

Because sample pixels are both sheared and 
scaled, no pixel-to-pixel coherence of fractional 
sampling location exists . Thus, each pixel must be 
sampled at two fractional locations , doubling the 
number of pixel (aggregate RGB) multiplies for each 
pass. Hand analysis of our microcode showed that this 
is already the dominant operation in the pixel loop. 
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Further, the Catrnull-Smith approach must additionally 
recompute the fractional sample points for each next 
pixel, or approximate their location using fixed-point 
arithmetic . In our implementation, fractional sampling 
points are constant per scan-line, and are calculated 
exactly in floating point at the beginning of each line. 

Compared generally to other work, our algorithm 
finds application where a generalized "BitBlt" operation 
is needed to perform rotation and translation efficiently. 
More complex pixel sampling passes may justify their 
added expense in allowing for generalize rotation 
operations, such as Krieger's modified two-pass 
approach [Krie84ll used to perform 3-D rotation with 
perspective transformation, useful in texture mapping. 

CONCLUSIONS 

The technique outlined here performs arbitrary 
high-speed raster rotation with anti-aliasing and 
optional translation. The mathematical derivation 
guarantees scaling invariance when rotating. The 
implementation strategy allows for particularly fast 
operation, while minimizing the approximation error. 
This algorithm is a powerful tool in the repertoire of 
digital paint and raster manipulation systems. Coupled 
with state-of-the-art raster scaling techniques , it can 
transform an input raster by an arbitrary 2x2 
transformation matrix in near real time. 

ICatrn80ll 
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