
- 82 -

A CEL-BASED MODEL FOR PAINT SYSTEMS 

Terry M . Higgins and Kellogg S. Booth 

Computer Graphics Laboratory, Department of Computer Science 
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 

Tel: (519) 888-4534, E-Mail: KSBooth %watCGL@Waterloo.CSNet 

ABSTRACI' 

We present a comprehensive formal model for a 
computer paint system providing capabilites beyond 
those of traditional designs. The system incorporates 
an alpha channel to enable artwork to have variable 
opacity in a manner reminiscent of "cel painting." 
Operations which may be performed on these RGBA 
images include digital painting, airbrushing, erasing, 
masking, and image compositing. These are 
implemented as instances of the digital compositing 
algebra introduced by Duff and Porter. Our 
implementation model extends a proposal by Tanner, et 
al. It is cost-effective and is based on the concept of a 
virtual frame buffer containing a higher-level 
description of the image being painted and an 
associated output transformation that maps the contents 
into a standard RGB frame buffer used only for 
viewing. Ways of implementing the model to take 
advantage of multiprocessing capabilities in various host 
and frame buffer architectures are discussed and three 
implementations are examined. 

Keywords: brush, eel, digital composltlng, mask, 
multiprocessor, output transformation, paint, virtual fram~ 
buffer, RGBA . 

Graphics Interface '86 

Nous presentons un modele formel decrivant un logiciel 
de palette de couleurs electronique ("paint system" 
offrant des possibilites allant au dela des modeles 
traditionnels. Ce systeme comprend un canal alpha qui 
perrnet au dessin d'avoir une opacite variable 
ressemblant a la technique d'animation appelee 
gouachage de cellos. Les operations pouvant etre 
executees sur ces images RGBA comprennent: dessin 
digital, airbrushing, effa~age, masquage et composition 
d'images; ces operations sont implementees suivant 
l'algebre digital de composition d'ecrit par Duff et 
Porter. Notre modele poursuit une idee de Tanner, et 
autres , et se revele peu couteux. 11 est base sur le 
concept d'un "frame buffer" virtuel contenant une 
description de "haut niveau" du dessin et d'une 
transformation qui lui est associee. Celle-ci transforme 
cette description en un format RGB servant 
excluisvement a l'affichage sur un " frame buffer" 
ordinaire. Nous discuterons des fa~ons d'implementer 
ce modele suivant les possibilites d'execution en 
parallelle de differents ordinateurs et " frame buffer" 
Trois implementations seront analysees. 

The first author's current address is: National Film Board 
of Canada, Studio A . French Animation, Box 61()(), Station 
A , Montreal, Quebec, Canada H3C 3H5, Tel: (514) 283-
9309. 

Vision Interface '86 



- 83 -

INl'RODUCI'ION 

The first computer paint system was written soon 
after· the first frame buffer came into existence. A wide 
variety of styles and techniques have been implemented 
since then for a diversity of hardware configurations. 
This paper will introduce a formal model of a paint 
system based on an artist's conceptual model similar in 
many respects to traditional cel animation techniques, 
but extended to capture new degrees of freedom 
available to animators through the use of digital 
computers. 

The work reported here is part of a joint project of 
the Computer Graphics Laboratory and the National 
Film Board of Canada. In consultation with members 
of the NFB's French Animation Studio in Montreal, the 
goal is to build a production-quality paint system. The 
system has been designed and two prototypes have been 
implemented. Since the french translation for "paint 
program" is palette de couleurs electronique, the system 
has been dubbed Palette . 

Palette is intended not only for painting 
backgrounds but also for direct animation . In direct 
animation, an image or physical model is changed 
incrementally and re-photographed to create each 
successive frame [LA YB79ll . In order to reduce the 
effort required in this labour-intensive process, Palette is 
designed to combine the direct animation potential of a 
typical paint program with the advantage of eel 
animation: composite images whose component parts are 
re-usable to save duplication of effort in those parts of 
the image that remain constant from frame to frame. 
In cel animation, this is of course achieved by painting 
each P'lrt of the image on a separate sheet of 
transparent acetate called a " cel." 

Palette operates upon "digital cels," that is , 
RGBA images [PORT84ll, that may have been painted 
with the program, digitized from photos or hand-drawn 
pictures, or produced by other computer graphics 
rendering techniques. In this respect, its functionality 
(though by no means its performance) is similar to the 
Pixar Compositor [LEVI84ll. 

The notion of a virtual frame buffer with an 
associated output transformation is central to the 
implementation model. Tanner et al. [TANN83all 
have described the speed and potential cost advantages 
of implementing RGB paint programs using a virtual 
frame buffer as a . cache in host memory separate from 
the hardware frame store used for viewing the image. 
Frame buffer values need never be read back to the 
host and the frame buffer hardware has much less 
stringent speed and depth requirements. [TANN83all 
tends to present the concept as a better way of 
implementing existing applications. The paint system 
described here is an implementation of that proposal 
which enjoys the benefits cited, but it demonstrates that 
another aspect is also important. Separating a 
"working" description of the image (in a virtual frame 

Graphics Interface "86 

buffer) from the viewing of the image (in a display 
frame buffer) affords the opportunity of extending the 
model of a paint system well beyond the set of features 
supported by today'S hardware architectures. 

The following sections present details on the 
artist's conceptual model (a brief "user's manual" for 
Palette) , the formal model of a virtual frame buffer that 
instantiates the artist's conceptual model, the techniques 
used to implement the augmented brushing styles 
proposed in the conceptual model, and a brief 
discussion of some implementation issues that arise 
when the formal model is mapped onto specific graphics 
hardware (in this case three specific multi-processor 
configurations that are being used as prototype 
implementations of Palette) . 

THE ARTIST'S CONCEPTUAL MODEL 

This section provides an overview of Palette as 
seen by its intended user, an artist. The workstation 
layout (Figure 1) consists of a tablet with stylus ~s the 
primary input device, a colour monitor on which the 
image being rendered is previewed, and an 
alphanumeric terminal with keyboard. The monitor 
displays the current image and a set of menus for 
selecting operations. In the prototype, additional 
commands and parameter specifications are made 
through the use of the alphanumeric terminal. A more 
comprehensive tablet-based menu system is planned for 
the production system. 

-
Figure 1. The Workstation Layout for Patette. 

Central to the conceptual model of Palette is the 
notion that the work surface on which the artist draws 
or paints is a transparent plane called a eel. The term 
comes from the acetate layers used in animation which 
were at one time made of "celluloid." In conventional 
2 112-0 cel animation, each frame is created by 
photographing a stack of cels laid upon opaque 
background artwork on an animation camera stand 
[MAOS69ll . Because cels are transparent except for 
areas where they have been painted , the photographic 
process results in a composite image. Employing this 
cel concept in a paint program permits creation of 
images by composition and provides artwork with the 

Vision Interface "86 



- B4 -

additional property of variable opacity. The former 
property facilitates not only computer animation but 
also a digital form of the "layout and paste-up" process 
which is fundamental to graphic arts. Figure 2 
illustrates the artist's conceptul model of painting with 
Palette . 

foreground cel 

mask 

Four separate 
layers: 

• 

The displayed Image. 

Figure 2. The Artist's Conceptual Model. 

The image visible on the monitor during a Palette 
session is the composition of two planes, the foreground 
and the backdrop. The foreground has variable opacity 
while the backdrop is opaque. The foreground level is 
initially transparent. The artist paints on the 
foreground level as though it were a "cel." The 
backdrop may be loaded with a uniform colour or an 
arbitrary image (including a composition of previously 
painted eels). The composition of the foreground "eel" 
level and the backdrop is much like the effect of 
placing a single cel over a painted background in 
conventional animation - where the foreground has 
maximum opacity only it is visible, where the 
foreground has zero opacity the backdrop is fully 
visible, and for intermediate opacities the backdrop is 
partially visible through the foreground. 

The prime motivation for the backdrop image is 
the need for something to be visible wherever the 
foreground is transparent. In addition, while the 
foreground cel is being painted, the backdrop can be 
used to hold a reference image for sequence registration 
(e.g. the previous pose of a cartoon character) or for 
context (e .g. a background matte painting) . 

Palette provides only full-colour (24-bit) fully 
antialiased brushes that have smooth edges and variable 
opacity determined by brush specifications under the 

Graphics Interface '86 

control of the artist. Essentially, a brush is just another 
variable-opacity raster image, typically smaller than the 
image being painted. The painting operation itself is a 
sequence of applications of the brush to the foreground 
image using one of a variety of compositing formats to 
blend the two. Each brush has five orthogonal 
attributes called shape, stroke, colour, density , and 
operation. The artist creates his own brush by assigning 
attributes to each of the five properties. These 
attributes determine the effect of applying the brush to 
the foreground image. 

The shape property refers to the two-dimensional 
region of pixels (not necessarily connected) affected by 
a single imprint of the brush. Palette provides a variety 
of standard antialiased square and circle brush shapes 
automatically. Alternatively, the user may paint an 
arbitrary shape to be used as a brush. 

The stroke property determines the relationship 
between the motion and pressure applied to the stylus 
and application of the brush to the cel. When the 
stroke property has the attribute "stamp," each press of 
the stylus causes a single composition of the brush with 
the foreground image. The attribute "repeat stamp" 
causes a succession of brush composites at a constant 
rate independent of the speed of stylus motion, thus the 
gap between brush imprints increases with the speed of 
the stroke. The "continuous" attribute produces a 
cootinuous antialiased stroke without the gaps of the 
"repeat stamp" stroke. The attribute "straightedge" is 
similar to "continuous" but always produces a straight 
stroke between positions indicated by momentary 
presses of the stylus. A sequence of such strokes is 
terminated by pressing the stylus at (or very near) the 
same position twice in succession. 

The colour property is the set of colours, one for 
each pixel within the brush shape, which is composited 
with the foreground image. The brush may be a single 
colour (the same at each pixel within the shape) or 
multiple colours. 

The density property is a weighting function that 
determines the extent to which a single application of 
the brush alters the image within its imprint. During 
painting , density represents the opacity at each pixel 
within the brush shape. A maximum density causes the 
colour of the brush to entirely overwrite the cel colour, 
whereas a zero density leaves the cel unchanged. 
Intermediate values cause a blending of the brush and 
image colours using the density as a weighting factor. 
Densities can be created automatically using constant, 
Gaussian, or cusp functions centered at the origin of 
the brush. A Gaussian density function , for example, 
produces an effect closely resembling conventional 
airbrush . 

The operation property specifies one of four modes 
of brushing: paint, erase, mask, or mask-erase. Paint 
mode uses the brush density to control the blending of 
tJ:e brush with the image. 

Vision Interface '86 



- 85 -

Erase mode is a unique feature of Palette and 
reveals part of the power of the underlying cel model. 
In this mode the colour of the brush is ignored, but the 
density is used to decrease the opacity of the 
foreground image each time the brush is applied . 
Thus, where the brush has maximum density , the 
foreground image becomes absolutely transparent, 
exposing the backdrop beneath, whereas repeated 
application of an intermediate density gradually 
"fades" artwork so that the backdrop becomes 
increasingly visible through it. A zero density erase 
brush leaves the foreground unchanged. 

Mask mode is analogous to graphic artists' 
conventional practice of temporarily masking areas of 
artwork by means of paper, masking tape, or frisket to 
protect them from subsequent painting or airbrushing. 
Again , the colour of the brush is ignored, but the 
density of the brush determines the permeability of the 
mask associated with each pixel in the foreground 
image. A maximum-density brush creates an 
impenetrable mask. During subsequent painting or 
erasing the effect of a brush will be reduced according 
to the degree of mask present at each pixel. Masked 
areas may be set globally visible or invisible by the 
artist. If visible, presence of a mask is signified by a 
specified global mask colour. 

Mask-erase mode functions similarly to erase 
mode, but operates on the mask rather than on the 
foreground cel. It is used to reduce the permeability of 
a mask or to do away with it entirely. . 

Palette provides functions for clearing, loading, 
and saving the foreground, backdrop, and mask 
portions of an image, for merging the foreground and 
backdrop images , and for undoing the most recent 
operation applied to the image. Images are stored in a 
file format that permits a number of other tools in use 
at Waterloo to be used on images created with Palette. 
One is a general image manipulation package 
[PAET85ll and another is a general compositing 
package [KLAS85ll implementing the full set of 
operations proposed by Duff and Porter [PORT84ll. 

This section has provided an overview of functions 
provided in the current implementation of Palette. A 
more complete description of the artist's view of the 
final system is contained in the functional specification 
[HI0083ll· 

THE VIRTUAL FRAME BUFFER 

This section discusses the actual implementation 
of that conceptual model. The key idea which is 
introduced in Palette is the notion of a virtual frame 
buffer in which the foreground cel and the backdrop, as 
well as the mask, can be represented. On page 29 of 
their text [FOLE82ll, Foley and Van Dam note that the 
traditional design philosophy of paint programs has 
been that the image being painted is precisely the image 
being displayed on the monitor - unlike the rest of 

Graphlca Interface 'S6 

computer graphics, no other representation of the image 
is maintained. They term this philosophy "what you 
see is what you get." This approach has advantages in 
terms of performance but limits paint programs to 
functionality easily supported in available hardware. 
Under this philosophy, if its conceptual model is to be 
taken seriously, implementation of Palette would 
require a substantial investment in custom hardware. 
In addition to "on the fly" compositing hardware, the 
frame buffer would require a substantial number of bit 
planes in order to store the mask, the foreground cel, 
and the backdrop. 

The model presented here breaks with the time­
worn "what you see is what you get" approach to paint 
program design. It is based on a cost-effective 
approach that separates the painting function from the 
viewing function by introducing a virtual frame buffer in 
which all painting operations are performed and an 
output transformation that maps the data in the virtual 
frame buffer into a form suitable for the video-refresh 
circuitry in a conventional frame buffer. The virtual 
frame buffer need not be accessible to the video output 
(in particular, it need be neither dual-ported nor 
accessible at standard video rates in excess of 100 or 
even 25 nanoseconds per pixel). Instead, it can be 
stored in memory that is more readily accessible to 
stroke rendering routines (either in cpu memory of the 
host or workstation or in a portion of the physical frame 
buffer not required for video refresh). Ima&e data in 
the virtual frame buffer is not subject to the dictates of 

the v~refresh circuitry and can be stored in 
whatever format is most efficient for painting 
algorithms. By employing a higher-level description of 
the image and formally defining the compositing steps 
that transform that representation to viewable ROB 
values placed in the display frame buffer, we adopt the 
approach that has served the rest of computer graphics 
so well for so long. We are able to make significant 
simplification in the programmer's view of the paint 
program while also freeing ourselves from the 
limitations of particular display hardware. 

A virtual pixel in Palette consists of 64 bits of 
information (Figure 3) , 24 bits for each of the 
foreground and background images, 8 bits for the 
foreground opacity, 7 bits for the mask, and one 
additional contrast flag that is used to implement 
temporary feedback images [NEWM79ll such as 
position markers , grid guidelines, and bounding boxes. 

Palette's output transformation defines the 
mapping from these 64 bits to a standard R-O-B 
representation of each pixel. The first step is to 
composite the cel and backdrop images according to 
Wallace's formulation [WALL81ll . If the artist has 
indicated that masking is to be visible, the second step 
is to check whether the pixel's mask value is non-zero 
and, if so, to composite the global mask colour over the 
result of the first step using the mask density value as 
the opacity. To ensure that visible masking does not 
overly obscure artwork beneath it, the mask density is 

Vlalon Interface 'S6 



- S6 -

Contrast 
Flag 811 

Fi~re 3. The Virtual Pixel Used in Palette . 

scaled so that it its opacity never exceeds one half. If 
the pixel's contrast flag bit is set, the final step is to 
apply a contrasting function to the R-G-B value to map 
it to a contrasting value that will distinguish the pixel 
from its neighbors. 

Assuming (R ,G ,B) is an R-G-B pixel value 
whose components are each in the nonnalized range 
[0,1], the contrasting function usually used in raster 
graphics is (1,1 ,1) - (R ,G,B) [NEWM79l This is 
efficiently implemented as complementation of the bit­
wise representation for the pixe!. This effectively 
complements the hue of a colour. For cases in which 
the pixel colour is highly unsaturated and mid-intensity, 
however, this function produces little apparent change. 
The worst case is a pixel value of (0.5 ,0.5,0.5) . In the 
course of formulatin, our model, Tanner IT ANN83bD 
suggested an alternative function to change a colour by 
a consistent amount regardless of its original value. 
The function is (R ,G ,B) + (0 .5,0.5,0.5) modulo 1 and 
is efficiently implemented by complementing only the 
high-order bit of each component value. 

Palette's cels are based upon the full-colour digital 
representations of cels and backgrounds for animation 
described by Wall ace [W ALL81] . In addition to 
R-G-B values , Wall ace stores an opacity value which is 
a compact approximation of the the edge information at 
each pixe!. Wallace's fonnula for associative pair-wise 
composition of cels reduces the total number of 
corn positing I'teps in a sequence of frames by allowing 
eels that remain adjacent from frame to frame to be 
pre-merged. Duff and Porter [PORT84] introduce a 
compositing algebra in which Wallace's fonnula is only 
one of a dozen operations which go beyond what is 
possible with traditional cels. They call Wallace's 
"opacity" values " alpha" values and store their images 
in a different fonnat in which each of the R-G-B 
components is pre-multiplied by the alpha value. Duff 
[DUFF85] has extended that model to include a notion 
of z-depth. 

Storing the brush and foreground cel as R-G-B 
values pre-multiplied by their opacities as recommended 
by Duff and Porter would require allocating additional 
bits for each channel in order to avoid severe roundoff 
error in the course of brush compositing. Our 

Graphic. Interface '88 

experiments indicate that at least twelve bits would be 
needed for each of red , green and blue. Rather than 
substantially increase the storage required in the virtual 
frame buffer, the cel R-G-B values are retained in their 
unscaled fonn. 

The reason originally advanced for storing R-G-B 
as pre-multiplied values is that the c()mpositing 
operations can be perfonned more quickly in that 
fonnat [PORT84]. Palette uses an alternate 
fonnulation of compositing due to Hardtke that realizes 
the same results with almost the same efficiency , while 
permitting R, G, B, and opacity to be stored as 
separate 8-bit values [HARD85]. 

The final issue concerning the virtual frame buffer 
is the frequency with which the output tran.sformation 
must be applied. Conceptually , the virtual frame buffer 
is continually being transformed from its 64-bit internal 
representation to its 24-bit representation in the physical 
frame buffer. This is not possible becallse of the 
computational bandwidth required . The practical 
approach is to perform the output transformation at 
intervals on only those virtual pixels which have been 
modified. The details of this are very depelldent upon 
the particular architecture upon which Palette is 
implemented. Examples are discussed in Section 5 . 

BRUSlDNG TECHNIQUES 

The brushes used in Palette are relatively 
complicated objects. For efficiency a brush record is 
maintained that defines the five properties shape, 
stroke, colour, density , and operation. While stroke 
and operation are easily preserved as simple scalar 
values, the shape, colour and density information 
requires more elaborate data structures_ Square and 
round brushes would be easy to handle, but rather than 
cater to special cases , brushes are kept in a general 
linked list data structure whose goal is to save storage 
and speed brushing by avoiding pixels that are not 
affected by the brush. 

Painting operations within the virtual frame buffer 
are implemented in a straightforward manner because 
the foreground cel and the backdrop are stored 
separately and only the foreground cel or the mask is 
modified by brushing. To implement the four types of 
operations, paint, erase, mask, and mask-erase, the 
brush, the mask, and the cel are treated as images 
which are combined in various ways using Duff and 
Porter's compositing algebra. Using the terminology of 
[PORT84], the paint operation is simply the 
compositing operation "(brush out mask) over- eel. " The 
erase operation is " cel out (brush out mask)." The mask 
operation is " brush-density over mask" and erase-mask 
is " mask out brush-density." As has already been 
mentioned , because Palette does not pre-m ultiply the 
R-G-B components of its RGBA images by " A " 
(alpha) as in [PORT84], it uses a slightly different 
formulation of these corn positing operations ~HIGG86ll. 

Vlelon Interface '88 



- 87 -

IMPLEMENTATION ISSUES 

Practical issues remain to be addressed , such as 
how and when to update the display frame buffer to 
reflect modifications to the working copy in the virtual 
frame buffer. Such questions rely on the particular 
hardware chosen for the implementation. We thus 
conclude with a brief overview of three particular 
architectures on which versions of Palette have or will 
be implemented: 

To date, versions of the system have been 
implemented on two hardware configurations and are 
planned for a ·third. The first implementation, a 
feasibility study, was on a Norpak VDP-l frame buffer 
attached via a DMA link to a V AX 11/780 host 
computer running VMS. A Motorola 68000 
microcomputer was attached to the VDP-l as a 
dedicated user-programmable display processor. Figure 
4 gives a schematic diagram of the system. This 
equipment is located at the National Research Council 
of Canada. 

In this implementation the entire virtual frame 
buffer and the undo buffer are located in the host 
VAX. The VAX is responsible for tablet sampling, all 
operations on the foreground cel and the backdrop, and 
the output transformation. The 68000 is responsible for 
maintaining tracking and writing R-G-B values into the 
frame buffer. Both processors are programmed in C. 

VAX 11/780 
OMA Chamol .-------.- •••••••••• --., 

F=======~==n ' 
Seriall~ 

1 
~ 

~~ I 
: C) 17 bits i 
k ___ •• _ ••• _._ •••••••••••••••• 

Figure 4. The VAXNDP-l Architecture 

Because the entire virtual frame buffer is simply 
an array residing in host memory, many of the 
bottlenecks associated with traditional host-based paint 
systems are overcome. Of particular importance is the 
fact that the VDP-l is used in a "write-only" manner; 
the values stored in the hardware frame buffer are 
never read back during painting. This is fortunate 
because, like many commercial frame buffers, the 
VDP-l does not easily support the operation of read­
modify-write on a single pixe!. This is the essence of 
the inner loop of any paint program and it must be 
made to execute efficiently. 

In the V AXIVDP implementation, a stroke is 
rendered by rubberstamping the brush at each pixel in a 
straight line between each pair of sampled tablet 
locations. Fishkin calls this the Naive algorithm 
[FISH84ll and notes that the excessive overlap of the 
brush imprints causes each pixel in the stroke to be 

Graphics Interface '86 

"visited" multiple times by the renderer. The 
bottleneck in this process is data transfer from the 
V AX to the VDP-l . In order to minimize the amount 
of data transferred, the VAX performs the output 
transformation once on pixels in the "wake" of the 
brush, that is, pixels that the renderer has finished 
"visiting." For a given brush shape, the eight possible 
wake patterns are pre-computed. Each of these define 
those pixel positions in one imprint of the brush shape 
that are unaffected by a second imprint offset from the 
first by one pixel position. (See Figure 5.) After each 
imprint of the brush shape into the virtual frame buffer 
in the course of rendering a stroke, the V AX performs 
the output transformation on the pixels in the wake 
pattern corresponding to the direction offset between 
the current imprint and the one before it. The resulting 
RGB values, the current imprint position, and a 
number identifying the wake pattern used are all 
transferred to the graphics processor which writes the 
pixel values into the frame buffer at the appropriate 
positions based on its own copy of the specified wake 
pattern. At the end of the stroke, the full brush shape 
is used rather than a wake pattern. Figure 5 shows the 
display buffer updates required for an example stroke. 
The cross-hatchings indicate the wake pattern that 
affects each pixel in the stroke. 

A noteworthy feature of this implementation is 
the fact that the VDP-l at the National Research 
Council has only seventeen bits per pixe!. The actual 
image displayed on the monitor is generated using the 

North·West North North·East 

West Master Pattern East 
(brush shape superimposed) 

South· West South South·East 

F"igure 5. Wake Patterns for Updating. 

Vision Interface '86 



- BB -

high five bits of red , the high seven bits of green, and 
the high four bits of blue. One bit is reserved for 
tracking feedback. Although this is inadequate for the 
final image, it is sufficient for viewing the image during 
its creation. The full-precision version of the image 
stored in the virtual frame buffer is the useful product. 

This first implementation proved the soundness of 
the artist's conceptual model, but left much to be 
desired in the way of performance. Reasonable 
response was precluded by Floating-point compositing 
code, time-sharing the VAX , virtual memory paging by 
the operating system, and a 2-millisecond overhead for 
each system call transferring data to the frame buffer 

The second implementation is on an Orca3000 
workstation comprising a MC68000 cpu running Unix, 
a custom bit-slice graphics processor, and a 1024-line 
8-bit frame buffer equipped with colour lookup tables 
[ORCA83ll . Figure 6 is a schematic diagram of the 
system. The workstation used for Palette has 4 
megabytes of host memory . Its frame buffer memory is 
only addressable by the graphics processor. The 
graphics processor is programmed in C using a cross­
compiler [GURD85all. 

Optional Bus Switch Comma~Slalus 
Register System Bus (nO~nll 

~==~~~"" ~,:I ~~~~ 

2 Megabytes for 
vir1uallrame buller 

138' x 5'2 x 64 b~s) 
and 2900 display file 

(128 k ilobytes) . 

Figure 6. The Orca3000 Architecture. 

Virtual memory paging by the operating system is 
not a concern in this case. The workstation's main 
memory is ample and its operating system does not 
support virtual addressing. 

An intriguing aspect of the Orca3000 is the 
manner in which inter-processor communication and 
data memory for the graphics processor are provided . 
The graphics processor has an interface to the 68000 's 
system bus and can access any location in host memory 
directly through the use of base and offset registers. An 
additional command/status register is used to 

Graphics Interface '86 

communicate with the graphics processor without 
requiring it to generate contention on the 68000 system 
bus. 

Work is more equitably allocated between the two 
processors in the Orca implementation because the 
graphics processor assumes the burden of performing 
the output transformation. Custom microcode written 
in C performs the output transformation, the tracking 
function, and menu-handling on the graphics processor. 
The 68000 host performs all other functions, including 
maintenance of the virtual frame buffer. Rather than 
using the Naive algorithm to render strokes, the 68000 
uses a more efficient algorithm which visits each pixel 
only once. This approach uses Gupta and Sproull's 
antialiased line rendering algorithm [GUYfBlll to look 
up appropriate values in Fishkin's "Sweep" arrays 
which contain pre-convolved opacities for a stroke 
nFISH84ll · 

The "wake" patterns employed in the first 
implementation of Palette are discarded. Frame buffer 
updates are instead performed by means of a paging 
scheme whereby the virtual frame buffer is divided into 
rectangular blocks that are marked whenever they are 
modified. The output transformation is periodically 
applied to those blocks that have been marked since its 
last application. 

Paging the image to the display frame buffer 
speeds communication between the two processors and 
reduces the amount of data transferred. Thlii, virtual 
frame buffer is split into blocks of 16x16 pixels. Each 
block has a corresponding dirty bit that is set by the 
68000 host whenever it modifies pixels in that block. 
After setting dirty bits, the 68000 also sets the value of 
the command/status register in order to signal the 
graphics processor which otherwise busy-waits on the 
register to avoid saturating the 68000's system bus. 
When alerted, the graphics processor checks the dirty 
bits to find each block requmng the output 
transformation. Bits are checked in round-robin 
fashion to avoid looping on blocks that change 
frequently to the exclusion of the rest. Before starting 
the output transformation, the graphics processor resets 
the block's dirty bit to avoid race conditions with the 
host. While the 68000 continues painting, the graphics 
processor accesses the block in host memory directly , 
performs the output transformation , and writes the 
resulting pixel values into the display frame buffer. 

In the Orca implementation, there is a mismatch 
in resolution between the 512x512x24-bit image 
produced by the output transformation described in 
Section 3 and the 1024xl024x8-bit frame store which 
must display it. To overcome this problem , an 
additional step involving digital half toning, is added at 
the end of the output transformation to map each 24-bit 
RGB colour to a 2x2 array of 8-bit Orca pixels. In 
essence three bits of each pixel are alloca ted to a 

Vision Interface '86 



- 89 -

halftone version of the red portion of the image, three 
to the green portion, and two to the blue portion. The 
halftone patterns are out of phase with each other to 
avoid moire effects and the values in the colourmaps 
are gamma-corrected for better antialiasing. 

Trading spatial-resolution for intensity resolution 
in this manner is equivalent to an additional two bits in 
each of the red, green, and blue channels. Thus, the 
displayed image is effectively 512x512x14 bits. This 
scheme has worked very well. In side-by-side 
comparisons with full 24-bit images, differences are 
difficult to discern at normal viewing distances. Again, 
a certain amount of discrepancy is acceptable due to 
the distinction between previewing images during 
painting and the ultimate resolution required for 
photographing or video-recording finished artwork. 
These results support the contention of Tanner, et al 
that the virtual frame buffer approach would permit 
construction of less expensive "24-bit" painting stations 
employing hardware frame buffers having fewer than 
24 bitplanes. 

The third implementation is not yet underway, 
but is worth considering briefly because it complements 
the first two approaches. The V AXNDP-l 
implementation performs almost all of the calculations 
on the host with the frame buffer serving only for 
viewing. The Orca3000 implementation offloads all of 
the output transformation to the graphics processor, 
while maintaining the virtual frame buffer within the 
host. A proposed implementation for the AdageJIkooas 
RD5-3000 frame buffer will move even the virtual 
frame buffer to the graphics processor while 
maintaining only the basic tablet routines and high-level 
control in the "host" 68000 cpu. 

The reason for this is that the RDS-3000 supports 
a full 32-bit pixel and has a 1024x1024 display 
memory. Because only one fourth of that is needed for 
the viewing image, the other three-fourths can be used 
to store the entire virtual frame buffer. A 32-bit 
custom bit-slice (similar in many respects to Orca3000's 
16-bit graphics processor) has sufficient computing 
power and high-bandwidth access to the display 
memory that we expect to be able to perform both the 
basic painting algorithm and the output transformation 
on the bit-slice without using the 68000 that is attached 
to the frame buffer. 

Because both the 68000 and the bit-slice are 
programmed in C (the bit-slice has a similar cross­
compiler [GURD85bll) we hope to move much of the 
program from the Orca3000 to the RDS-3000 with little 
modification. 

ACKNOWLEDGEMENTS 

The authors wish to thank the National Research 
Council of Canada for providing access to their 
V AXIVDP-l system for the pilot project, to Orcatech 
for providing the Orca3000 workstation on which the 

Graphics Interface '86 

prototype of Palene has been implemented, and to the 
National Film Board of Canada for supporting the first 
author during this research. Additional funding was 
provided by the Natural Sciences and Engineering 
Research Council of Canada. Special thanks are 
extended to Marceli Wein of NRC for his suggestions 
and encouragement. 

REFERENCES 

[DUFF85ll Duff, T., "Compositing 3-D Rendered 
Images," Computer Graphics, Vol. 19, 
No. 3, July, 1985, pp. 41-44. 

[FISH84ll Fishkin, K.P., "Algorithms for Brush 
Movement in Paint Systems," Proceedings 
of Graphics Interface '84, Ottawa: May 
28-June 1, 1984, pp. 9-16. 

[FOLE82ll Foley, J.D., Van Dam, A., 
Fundamentals of Interactive Computer 
Graphics, Addison Wesley, 1982. 

[GIL085ll Giloth, c., Veeder, J., "The Paint 
Problem," IEEE Computer Graphics and 
Applications, Vol. 5, No. 7, July, 1985, 
pp. 66-75. 

[GUPT81ll Gupta, S., Sproull, R., "Filtering Edges 
for Gray Scale Displays," Computer 
Graphics, Vol. 15, No. 3, July, 1981, pp. 
1-5. 

[GURD85all Gurd, R.P., Microcode C Language 
Summary - Orcatech Orca3000 Version 
1.8, copyright R. Preston Gurd, July, 
1985. 

[GURD85bll Gurd, R.P., 
Summary 
Version 4.8 
July, 1985. 

[HARD85ll Hardtke, I. 
Department 
University 
conversation 
1985 . 

Microcode C Language 
Adage (Ikonas) BPS32 

copyright R. Preston Gurd, 

(Master's student in the 
of Computet Science, 

of Waterloo), Personal 
with the author, March, 

[HIGG83ll Higgins, T . , Kochanek, D. , Langlois, D. , 
Palette de Couleurs Electronique Artist's 
Guide, Version 1.2 , August, 1983 (an 
internal document of the French 
Animation Studio of the National Film 
Board of Canada). 

[HIGG86ll Higgins, T., Painting a Cel: Digital 
Painting in a Virtual RGBA Frame 
Buffer, Master's Thesis, Department of 
Computer Science, University of 
Waterloo, Waterloo, Ontario, 1986. 

Vision Interface '86 



[KLAS85D Klassen, V. 
Department 
University 
conversation 
1985. 

- 910 -

(PhD student in the 
of Computer Science, 

of Waterloo), Personal 
with the author, March, 

[LAYB79ll Laybourne, K., The Animation Book, 
Crown Publishers, New York, 1979. 

[LEVI84ll Levinthal, A., Porter, T., "Chap - A 
SIMD Graphics Processor," Computer 
Graphics , Vo!. 18, No. 3 , July, 1984, pp. 
77-82. 

[MADS69D Madsen, R., Animated Film: Concepts, 
Methods, Uses, Interland, New York, 
1969. 

[NEWM79D Newman, W.M., SprouU, R .F., Principles 
of Interactive Computer Graphics, Second 
Edition, McGraw-Hill, 1979. 

[ORCA83D Orca3000 Hardware Reference Manual, 
Issue 2.0, Orcatech Incorporated, Ottawa, 
Ontario, December, 1983. 

[PAET85ll Paeth, A., The IM Toolkit A 
Comprehensive Raster Manipulation 
Package Presented through Design and 
Example, Master's Thesis, Department of 
Computer Science, University of 
Waterloo, Waterloo, Ontario, 1985. 

[PORT84D Porter, T., Duff, T. , "Compositing Digital 
Images," Computer Graphics, Vo!. 18, 
No. 3, July, 1984, pp. 253-259. 

[TANN83all Tanner, P. , Cowan, W., Wein, M., 
"Colour Selection, Swath Brushes and 
Memory Architectures for Paint Systems ," 
Proceedings of Graphics Interface '83, 
Edmonton: May 9-13 , 1983, pp. 171-180. 

[TANN83bll Tanner, P. , Personal conversation with 
the author, July , 1983. 

[W ALL81 D Wallace, B.A ., " Merging and 
Transformation of Raster Images for 
Cartoon Animation," Computer Graphics , 
Vo!. 15 , No. 3, July , 1981 , pp. 253-262 . 

Graphlca Interface '86 Vlllon Interface '86 


