
- 99 -

Graphics Tools in Adagio, 
A Robotics MuItitasking Multiprocessor Work station 

Stephen A_ MacKay 
Peter P. Tannert 

Laboratory for Intelligent Systems 
National Research Council of Canada 
Ottawa, Ontario KIA OR8 Canada. 

Abstract 

The development of Adagio, a robotics simulation 
workstation, has involved the implementation of several 
techniques unique to the system. Based on the 
message-passing, multitasking multiprocessor realtime 
operating system Harmony, Adagio is programmed using a 
large number of cooperating tasks. Several techniques are 
based on the concept of a server, a task that is alone 
responsible for governing a scarce resource. The Graphics 
Server task, the Data Structure Server task, and the Tracker 
Server task are responsible for the management of the frame 
buffer, the 3D geometric data structure and the screen 
tracker, respectively. Each of these servers is then a 
separate tool necessary for the implementation of the whole 
system. Each runs in parallel with other tasks and can handle 
requests for service from any task. 

Resume 

Le developpement d'Adagio, station de travail dedie a la 
simulation de robots, a conduit a l'implementation de 
techniques originale. Base sur le systeme d'operation de 
temps reel, multi-tache, multi-processeur Harmony 
(lui-meme base sur le transfert de messages), Adagio a ete 
programme en utilisant un grand nombre de taches 
cooperants entre-elles. Plusieurs de ces techniques sont 
basees sur le concept de serveur (le serveur est la seule tache 
responsable d'une certaine ressource). Les taches "Graphics 
Server", "Data Structure Server", et "Tracker Server" 
gerent respectivement la memoire d'image, la base de 
donnees geometriques 3D, et le curseur d'ecran. Chacun de 
ces serveurs est donc un outil separe, Dt!cessaire a 
l'implementation du systeme complet. Chacun s'execute en 
parallele avec d'autres taches et peut gerer des demandes 
venant d'autres taches. 

Keywords: robot simulation, realtime, multitasking, 
multiprocessing, message passing, server task, frame buffer, 
windows, 3D geometric data, user interfaces, screen tracker. 

t current address: Computer Graphics Laboratory 
University of Waterloo 
Waterloo, Ontario N2L 3Gl Canada. 

NRC number : 25461 

Graphics Interface '86 

Introduction 

Adagio is a robotics simulation workstation currently 
under development at the National Research Council. The 
workstation, when completed, will give the user the 
capability of creating and manipulating 3D objects in a robot 
environment, of specifying the robot task, and of viewing 
the results of a robot simulation. As such it will certainly be 
usable for many other applications that can make use of a 3D 
window-based near realtime display w ith extensive 
interaction capabilities. 

The use of the Harmony operating system, a multitasking 
multiprocessor real time message-passing system, as a base, 
has led to different approaches to the software architecture 
of an interactive graphics system. This paper discusses 
several of these approaches. 

Three servers, a Graphics Server, a Data Structure 
Server, and a Tracker Server follow an idea common in 
multitasking systems; i.e. each is solely responsible for a 
specific scarce resource. The Graphics Server is charged 
with the maintenance of the frame buffer, while the Data 
Structure Server maintains the 3D geometric representation 
of the robot and its environment. The Tracker Server 
communicates with the Tablet Server to provide continuous 
tablet tracker echoes. It is particularly well suited for a 
multiwindow system and provides richer user feedback than 
is currently available on most systems. 

Adagio Overview 

Goals 

Adagio [Tann85bl is a workstation being developed to 
support research in intelligent robotics. It is intended to 
provide a simulation facility for studies in the off-line 
programming of sensor-based robots. The functional 
requirements of providing the user with a view of the 
current status of the robot in its environment with near 
real time updating (i.e. 5-30 frames per second), and 
providing for rich interactive dialogues for experiments in 
interactive graphics-based robot programming, led to the 
use of a powerful frame buffer display (in our case, an 
Adage 3000 graphics system) with a window-based user 
interface. Special software for the Adage 3000 bitslice 
microprocessor has been written to support multiwindow 
near realtime line-drawing and polygon faceted 3D 
renderings of a single scene. 

Vision Interface '86 



Another goal has been to take advantage of the 
multitasking inherent in the Harmony operating system to 
improve various aspects of interactive graphics systems. 
This has resulted in implementing a highly parallel base for 
user interaction [Tann85a], a switchboard input model 
[Tann86], and the various tools described in this paper. 

Harmony 

The Adagio system design is influenced by the 
architecture of Harmony, a multitasking real time operating 
system with rapid inter-task message passing developed at 
the National Research Council of Canada [Gent85]. A few 
details of its properties are given here in order to aid in the 
appreciation of the multitask design presented in the paper. 

Programs written for a Harmony-based system tend to be 
implemented as a set of many small tasks. A task is often 
used as one would use a subroutine in a conventional 
operating system, except that an instance of the task must be 
explicitly created, and once it has been created it executes 
independently of, and in parallel with, the task that created 
it. Task primitives are relatively cheap, message 
communication takes little time, (a send-receive-reply 
sequence takes about one millisecond), and the creation and 
destruction of tasks are inexpensive. Tasks can be created 
and destroyed as needed, and often are quite small with short 
lifetimes. 

The communication and synchronization of tasks, used 
extensively throughout this workstation design, is based on 
the send-receive-reply mechanism provided by Harmony. A 
task may send information or a request for information to 
another task by issuing the _Send command, passing a 
variable-length message. If the recipient task is alive, the 
sending task then blocks until a reply arrives from the 
recipient or the recipient is destroyed. A task receives a 
message by issuing a _Receive command, which blocks until 
a message is received, or a non-blocking _Try_receive 
command. In either case, the ID of the sending task is 
returned to the recipient task (0 if no message was waiting in 
the case of _Try-receive) along with a copy of the message 
that was sent. The _Rece"ive or _Try-receive command may 
specify that mesiiages are to be received from a specific task, 
or from any task. A task that has received a message from 
another task may reply to the sending task with the _Reply 
command. The _Reply command unblocks the sending task 
and causes a variable-length message to be replied to it. A 
task need not reply to a sending task immediately, replies 
may be issued at any time and in any order necessary to 
achieve synchronization. 

The send-receive-reply paradigm also encourages the use 
of server tasks, based on the administrator concept [Gent81], 
to perform various duties for other client tasks, such as the 
managing of scarce resources. A typical server never sends 
messages, it only receives and replies to requests. It often 
will have one or more worker tasks doing the time 
consuming work so that the server can respond to requests as 
quickly as possible. Because most servers do not send 
messages, two servers that must communicate usually do so 
through a courier task created for the purpose. A courier 
alternates between sending a request for information to one 
task and sending the resulting information to the other. The 
Graphics Server, the Data Structure Server and the Tracker 

Graphics Interface '86 

- 99 -

Server described below are three examples of servers used 
in Adagio. 

Hardware Configuration 

The Harmony operating system is particularly suited for 
running on a multiprocessor. Such a machine, a Chorus 
multiprocessor, consists of three single board computers, 
using Motorola 68000 processors on a Multibus backplane. 
Providing the graphics processing for the workstation is an 
Adage/Ikonas 3000 graphics system, a powerful frame 
buffer display with a 32-bit bitslice processor, a single 
68000 also running Harmony, and an image memory 1024 
by 1024 by 24 bits (512 by 512 visible). 

Interaction Model 

Adagio's design is based on the concept of a switchboard 
[Tann86]. The Switchboard, shown in Figure 1, is a server 
that corresponds with a number of input device servers, 
through couriers, and a number of client tasks that make use 
of the values from these devices. The client tasks request 
input from the Switchboard, which in turn routes to these 
tasks input from devices to which they are connected. A 
flow of messages is thus established going back and forth 
between the producers and the consumers of input. 

Graphics Server 

The Graphics Server, shown in Figure 2, replaces the 
graphics subroutine support package traditionally used in a 
single-task graphics program. Running as an independent 
task with the role of managing the frame buffer and the 
Adage bitslice processor, this server handles three types of 
request messages - window manipulation messages, 2D 
graphics messages, and 3D graphics messages. 

Screen Windows 

Screen windows in Adagio are implemented in a manner 
different from those of many other window based systems 
[Tann86]. All windows are tightly coupled, assisting in the 
single job of creating and manipulating a data structure 
defining the robot, its environment, and the actions of the 
robot. A tiled window approach is used to simplify rapid 
screen updates. The system supports the display of two 
different types of windows, 2D and 3D. Each 2D window, 
used for displaying text and 2D symbolic graphics, has its 
own associated task responsible for all activities in the 

Figure 1. The Switchboard task. (Note 
that arrow-heads point away from the 

task making the request.) 

Vision Interface '86 



- 100 -

Figure 2. The Graphics Server. 

window. All 3D windows, used for displaying different 
views of the robot and its environment, are controlled by a 
single task, the Data Structure Server, through the Display 
List Courier, because each window is a different 
representation of the same robot data structure. 

The Graphics Server is responsible for displaying the 
contents of both types of windows. As well, it must change 
the way in which the windows are displayed on the screen in 
response to window manipulation messages from the 
Window Manipulator task that request the creation and 
modification of the window structures maintained by the 
Graphics Server. 

2D Graphics 

The 2D graphics messages request text or symbolic 
output to be directed to the screen window associated with 
the requesting task. The Graphics Server is responsible for 
translating from the virtual coordinate system of the 
requestor to the screen coordinates of its window. If 
required, the messages to a window may be stored and then 
reinterpreted if a window is modified in size, or if a picture 
segment that potentially blocks part of the window is moved. 
This is different from many other tiled window systems that 
require the application running in the window to become 
involved with the redraw of a window that has been changed 
in size. 

3D Graphics 

The 3D graphics messages are in the form of commands 
for the Graphics Server to modify the display list. The 
display list is in turn interpreted by the Adage bitslice 
processor to render the 3D image into the frame buffer 
[Lo086]. While the microcode running in the bitslice 
processor is not strictly speaking a Harmony task, and shared 
memory is used for communication, rather than the 
send-receive-reply message passing primitives, it can still be 
viewed externally like any other independent Adagio task. 

Graphics Interface '88 

The Graphics Server acts as an agent task, as described in 
Plebon and Booth [Pleb82], for the task running in the 
bitslice processor, providing an interface to the other 
processor and managing the communication between and 
shared resources of the two processors. Because requests 
for the bitslice processor to update the display list are 
buffered by the Graphics Server until the bitslice is ready to 
begin another update, client tasks requesting the services of 
the Graphics Server do not remain blocked f{)r long. 

Currently, the bitslice processor cannot interrupt the 
68000 to signal completion of a screen update, so a worker 
task, the Bitslice Notifier, is created by the Graplllcs Server 
with the sole responsibility of informing the Graphics 
Server when the task running in the bitslic.e processor has 
finished. It sleeps most of the time, occasionally waking to 
poll a flag and sending a notification message to the Graphics 
Server when the screen update is finished. The incoming 
requests to modify the display list that the Graphics Server 
had been buffering are then satisfied, the bitslice processor is 
released to update the display, and the Graphics Server 
replies to the Bitslice Notifier thus releasing it to run again. 

The display list supports multiple views of a single 
environment where these views may differ in their 
viewpoints as well as their display parameters. Modifying 
display parameters from one 3D window to .another permits, 
for example, the posting of shaded images of the robot in one 
window and a simple stick figure of only the axes of rotation 
of each of the joints in another - both relldered from the 
same display list Messages, resulting from user actions or 
simulation of robot activity, can request the rotation or 
translation of robot links. These require only a change of 
the appropriate transformation matricies in the display list 
and a signal to the bitslice processor to re-render the image. 

Data Structure Server 

With the multitasking approach to the workstation, it is 
quite feasible that more than one task would wish to update 
or query the structure representing the 3D geometry of the 
robot and its environment. To prevent corruption of the 
data by concurrent accesses, the data structure is known only 
to a single task, the Data Structure Server, shown in Figure 
3. All requests for information from the data structure, for 
data structure updates, and for manipulation of 3D windows 
are fielded by the Data Structure Server. Any update that 
requires a modification of the screen image is forwarded by 
the Data Structure Server to the Graphics Server, through 
the Display List Courier to avoid blocking for a long time. 
When a major portion of the graphics data structure must be 
sent to the Graphics Server for the creation of the display 
list, a pointer to the structure is sent, thus making the 
structure temporarily known to another task. However, 
until the Display List Courier reports the completion of the 
screen update, the Data Structure Server will satisfy only 3D 
data information requests. Requests to change the data will 
be held until it is safe to do so. 

Tracker Server 

Management of user feedback is an important element in 
any interactive system. The user must often keep in touch 
with several activities simultaneously. He must know what 
actions are available to him and what the system is doing, and 
he needs reassurances that all is progressing as it should. 

Vlelon Interface '88 



- 101 -

Figure 3. The Data Structure Server. 

One element of system feedback is the screen cursor or 
tracker. Always displayed at or near the user's centre of 
attention, a well designed tracker that changes in response to 
system activity is a powerful indicator of the state of the 
world. Tilbrook [Tilb76], [Baec80] shows that a tracker can 
provide much more information than simply the X, Y 
position of a locator device. Plebon and Booth [Pleb82, pp. 
26-28] provides additional information on the use of 
trackers as feedback and gives further references. 

The term tracker is used for describing the feedback 
showing the current X, Y position of a locator device 
(mouse, tablet, joystick, etc.), because it is simple, it 
correctly describes the activity (tracking a locator device), 
and it avoids ambiguity. Although cursor is the most widely 
used term for locator feedback, it also has been associated 
with the flashing bar, line or box found on most 
alpha-numeric terminals to prompt for text input, with the 
hand-held physical device used for positioning on a graphics 
tablet (puck), and even with the the cross-hair wires at the tip 
of the puck. 

The Locator Model 

The Tracker Server assumes a locator model such as the 
one provided by the Adagio Tablet Server [Tann85b]. In 
addition to X, Y coordinates, the Tablet Server returns a 
window, or ID of a predefined region on the tablet surface; 
and a status of the pointing device. The status is dependent 
on both the current state of the tablet and the state during the 
previous read operation, and may be one of: UP /U P , 
UP/NEAR, NEAR/NEAR, NEAR/DOWN, DOWN/DOWN, 
DOWN/NEAR, or NEAR/UP. 

Icons 

In an environment where many activIties may be 
controlled by a single input device, in particular a window 
based system, the tracker must be able to provide feedback 
indicating the action being performed. Having the tracker 
displayed as one of several possible graphical icons, or 
pictorial symbols, can help accomplish this. These icons, 
drawn from a set of icons defined for the system, (not all of 
which are used for trackers) , enrich the interaction because 
different ones may be used to indicate the window where the 
tracker currently resides , the state of the task for that 
window, and perhaps the button most recently pushed. 
Figure 4 shows some currently used icons. 

Graphics Interface '86 

+ X.J R 
~~~/~ 

I/j) ~ • OK? ? 
Figure 4. Some Adagio icons. 

The Server Task 

The Adagio Tracker Server, shown in Figure 5, offers 
advantages over some other approaches to tracker 
management. For example, the University of Waterloo 
Paint program [Pleb82] [Beac82] also uses a single tracking 
task, but it is a small worker task, created whenever 
interaction is permitted and destroyed when it is not. Paint 
provides little control over icons, they are compiled into the 
program. The worker task has only three kinds of trackers 
and relies on a few global variables for information about 
the trackers. 

The Tracker Server, taking advantage of the powerful 
Harmony server model, maintains the data structure of all 
icons in Adagio, allowing icons to be designated or added, to 
be removed, or to be modified. Any icon may be invoked or 
made known to the graphics hardware as the current tracker. 
The Tracker Server can bind an icon with a particular screen 
window, the status of a locator device and the button value of 
the locator (together called an icon bundle). 

Icon bundles allow different trackers to be used for 
different states of the system so that the tracker best reflects 
the user's current activity. Bundles can be stacked, so that 
old bundles can be remembered if a temporary action needs 
to use the same window, status and button information as a 
previous action. This temporary action could be, for 
example, the changing of the tracker icon to Tilbrook's 
Buddha or Macintosh's wristwatch indicating that the 
window is busy, or when, through some mode selection, a 
different tracker is required to indicate the new mode. 
Bundles subsequently can be removed to restore the previous 
bundle or to break the icon-window-status-button 
association. 

Figure 5. The Tracker Server. 

Vision Interface '86 



The Tracker Server allows trackers to be positioned in 
two ways, either by bundle or by naming the icon. Also, the 
server allows the tracker to be turned on or off as needed. 
The Tracker Server is device independent, it relies on the 
device dependent Tracker Display worker task to position 
the tracker on the screen. 

Complete System 

Figure 6 shows many of the tasks discussed in this paper. 
(Currently one may have 40 to 50 tasks concurrently active.) 
It is obvious from this figure that rapid message passing is 
crucial if the user is to see the results of his actions reflected 
in the image on the screen in a reasonable amount of time. 
Harmony does indeed provide such a basis, and its existance 
has encouraged the experimental techniques developed in 
this project. 

Conclusion 

The paper has described a number of servers currently in 
use in Adagio, each responsible for a certain resource. The 
use of these servers offers an abstraction between the 
specific features of the resource and the users or clients of 
the resource. The Graphics Server offers device 
independence as do many available graphics subroutine 
packages. However the Data Structure Server extends the 
idea of independence into the realm of data structures. The 
Tracker Server hides from its clients the peculiarities of the 
particular hardware tracker. 

- 102 -

A second advantage of the server approach, coupled with 
the use of clients, couriers, and notifiers, is the degree to 
which it makes it simple and natural for people to structure 
and code programs for multiple tasks and multiple 
processors. Resulting programs exhibit a high degree of 
parallelism, making possible the efficient use of 
multiprocessors - a necessity considering the direction of 
hardware development. 

A high degree of modularity also results from the use of 
servers. The server model encourages the building of tools 
that are almost completely self-contained. All details 
concerning a resource can be easily encapsulated in a single 
unit. The interface is usually as simple as sending one of a 
predefined set of messages to the server and expecting one of 
a small set of predefined replies in return. 

Multitasking models of programming for interactive 
systems are not only useful for reasons of computing 
efficiency, but provide a far more appn>priate base for 
computer-human interaction. Contrary to the belief of 
many system designers [Kern&4], a human is not a file to be 
read. The narrow "user is a file" belief has led to the 
traditional interactive dialogue where the human uses a 
specific device in reaction to the systems commands. A 
multitasking system, made more simple t() program using 
tools such as servers, can easily give far more control to the 
user by providing him with a variety of tools waiting to 
serve him. 

Figure 6. A ty pical configuration of the complete system. Only major tasks are shown, 
worker tasks, for example, are omitted. Significant couriers are shown as small 

unlabelled ovals . 

Graphics Interface '86 Vision Interface '86 



- 103 -

Bibliography 

[Baec80] R.M. Baecker, D.M. Tilbrook, M.I. Tuori, D. 
McFarland, "Newswhole," SIGGRAPH video 
review #1,1980. 

[Beac82] RJ. Beach, le. Beatty, K.S. Booth, E.L. Fiume, 
and D.A. Plebon, "The message is the medium: 
MUltiprocess structuring of an interactive paint 
program," Computer Graphics, vol. 16, no. 3, 
pp. 277-287, July 1982. 

[Gent81] W.M. Gentleman, "Message passing between 
sequential processes: the reply primitive and the 
administrator concept," Software Pract. & 
Exper., vol. 11 , pp. 436-66,1981. 

[Gent85] W.M. Gentleman, "Using the Harmony operating 
system," Report of DEE, National Research 
Council of Canada, NRCC-ERB-966, Ottawa, 
Ont., Dec. 1983, revised May 1985. 

[Kern84] B.W. Kernighan and R. Pike, The Unix 
Programming Environment, Prentice Hall, 1984. 

[1..0086] R. Loo, "ARIA - A near-real-time graphics 
package," M.Math Thesis, Univ. of Waterloo, 

Graphics Interface '86 

Dept. of Computer Science, 1986. 

[Pleb82] D.A. Plebon and K.S. Booth, "Interactive picture 
creation systems," Univ. of Waterloo, Dept. of 
Computer Science, CS-82-46, Dec. 1982. 

[Tann85a] P.P. Tanner and M. Wein, "Parallel input in 
computer-human interaction," Proc. 18th Annual 
Meeting, Human Factors Association of Canada , 
Hull, Quebec, Sept 1985. 

[Tann85b] P.P. Tanner, M. Wein, W.M. Gentleman, S.A. 
MacKay, and D.A. Stewart, "The user interface 
of Adagio, a robotics multitasking multiprocessor 
workstation," Proc. 1 st International Conference 
and Exhibition on Computer Workstations, San 
Jose, Calif., 1985. 

[Tann86] P.P. Tanner, S.A. MacKay, D.A. Stewart, and M. 
Wein, "A multitasking switchboard approach to 
user interface management," to appear in 
Computer Graphics, vol. 20, no. 3, August 1986. 

[Tilb76] D.M. Tilbrook, "A newspaper pagination 
system," M.Sc. Thesis, Univ. of Toronto, Dept. of 
Computer Science, 1976. 

Vision Interface '86 


