
- 104 -

EXPLOITING CLASSES IN MODELING AND DISPLAY SOFfWARE

Turner Whitted and Eric Grant

Department of Computer Science
The University of North Carolina

Chapel Hill, N()rth Carolina

Abstract

The class concept is one component of object-oriented pro­
gramming systems which has proven useful in organizing
complex software. In experimenting with the use of classes
for geometric modeling applications, we have devised a class
hierarchy that yields some conceptual order in the midst of
diverse representations of shapes. Rather than searching for a
uniform primitive representation, we accept the diversity and
build a framework in which dissimilar models are combined
in an orderly manner.

KEYWORDS: geometric modeling, procedure models,
object-oriented programming

Introduction

Geometric modeling systems can become extremely
complex when design applications demand flexibility in the
representation of shapes. A major challenge for programmers
who create such systems is to preserve order in spite of this
complexity. Trends in this direction include moves toward
uniform data representation and very general mathematical
representations of shapes. However, the advent of special­
ized procedural modeling techniques is a step away from uni­
formity which strains programmers' abilities to cope with the
diversity that it presents. We feel that using an object­
oriented programming methodology helps to solve this prob­
lem.

In spite of the recent interest in object-oriented program­
ming, we have seen only a few published examples of 3-D
graphics systems built in an object-oriented environment
[Hedelman, Lorenson]. For the most part, the examples that
we have seen emphasize the message passing aspects of
Smalltalk-like languages and do not pay much attention to
the effective specification of classes.

In this paper we describe the class hierarchy of an
experimental modeling and display system which we have
assembled in order to study the problems of constructing
extremely complex geometric objects. We emphasize identi­
fying common elements of geometric procedures which can

Graphics Interface '86

be shared among representations. Our guiding principle is
that methods should be shared by as many classes as possible
and that they should belong to classes as high up in the class
hierarchy as possible. In a following section we describe our
attempt to define a class hierarchy that meets this criterion.

Diversity of Geometric Represelltati()DS

Geometric models used in computer graphics have
become so diverse that they don't seem t() fit my rational
scheme of classification. There has been a substantial
amount of development of modelers that manipulate polygo­
nal meshes, models that produce parametric surfaces or alge­
braic surfaces, and unified modeling systems that handle all
three representations. Some of these have gone s() far as to
devise a common representation to ease the difficuJty of stor­
ing and manipulating the diverse representations.

The widespread use of procedure models [Newell] has
complicated the issue even further since the procedures are
often restricted to such narrow purposes as creating trees
[Bloomenthal], terrain [Fournier], or grass [Reeves]. To be
sure, there are general purpose procedures such as sweeping,
and there are generalizations such as graftals [Smith] which
provide a common framework for a variety of individual
geometric procedures.

The common simplification of reducing all complex
shapes to polygonal approximations is n() longer feasible
when the number of primitive elements exceeds a few tens of
thousands. Modification of such complex collections by
users is nearly impossible. Common operati()RS such as
interference checking and display are confronted with mas­
sive amounts of data in this case.

Classes

One of the more successful mechanisms for coping with
the complexity of programming is the use of classes. Origi­
nally a feature of the Simula language, classes are a central
feature of Small talk [Goldberg]. Their value is more
apparent when one considers that mature languages such as
Lisp [Cannon] and C [Stroustrup] have been extended to
include classes.

Vision Interface '86

- 105 -

Classes are defined by a set of instance variable declara­
tions and a collection of methods [Robson]. Objects are
instances of a class. In a procedural geometric model, the
model itself is an object.

The obje.ct-oriented organization gives a programmer the
benefits of encapsulation and inheritance. To us, the more
important property is the inheritance of methods and instance
variable declarations. This means that objects that differ only
slightly can be cast as members of distinct subclasses of the
same superclass. Shared methods and instance variable
declarations belong to the superclass. This code sharing has
the beneficial side effect of reducing the overall code size.
More importantly, development effort is reduced since pro­
grammers don't spend time writing the same methods over
and over.

Evolution of the Intelligent Modeler

The overall goal of our research is to create detailed
geometric models from sparse non-geometric inputs. We
share this goal with several similar projects [Feiner, Holyn­
ski, Friedell] . Our original intent was to produce a more or
less conventional interactive modeling program with an
geometric knowledge base as its central element. In opera­
tion, the modeler would interpret guidelines provided by the
user to invoke rules in the knowledge base which would in
turn generate geometric primitives.

This approach was abandoned when we recognized it as
an immense, monolithic procedure model. We then settled
on a divide and conquer approach to reduce individual com­
ponents of the modeler to manageable proportions. This then
raised the additional problem of coordinating the actions of a
multitude of autonomous procedures. For recursive pro­
cedures, such as subdivision, which maintain a geometric
hierarchy as a product of their operation, we include methods
by which mutually constrained objects agree on how each
affects the other [Ambum] . So far we have no methods to
satisfy mutual constraints for non-recursive procedure
models.

Reducing the size of individual intelligent procedure
models does not diminish the overall complexity of the
modeler. For this we need the class hierarchy described in
the following section.

Elasscs for a ModeIing and Display Package

We have built (and continue to expand) an experimental
modeling and display package based largely on generic pro­
cedure models. A description of the display system is
included in this discussion because modeling operations play
such an important role in its operation. Figure 1 shows the
class hierarchy of the modeling portion of the package.
While it may seem logical to organize the classes based on
similar properties (i.e. one superc1ass for curved surfaces,
another for polyhedra, etc.), our organization is based on
common methods.

Diverse geometric representations can lead to a broad,
fiat organization of classes. However, our subtree for pro-

Graphics Interface '86

object

geometry 1

I \
p~ral 11 pa~~e 1

I ~j\~
EJ +EJ
B

Figure 1. Geometry class hierarchy.

cedural geometry is five levels deep. This is achieved by
factoring methods and placing the generic component as high
in the tree as possible. Figure 2 is a condensed listing of
four levels of one subtree (the Object class at the root of the
entire class tree is omitted). At the lowest level is the Bezier
subclass. Only methods specific to the Bezier subclass actu­
ally belong to it.

To illustrate how methods can effectively be shared,
consider the class of subdividable surfaces (the lower three
levels of figure 2). A typical display algorithm for this type
of surface calls for recursive subdivision to a predetermined
level of detail followed by the tiling of polygons formed
from the mesh of points generated by the last subdivision
stage (figure 3). The subdivision method belongs to the indi­
vidual subclass. The tiling method, on the other hand,
belongs to the class of subdividable surfaces instead t ~ tl-.v
individual subclasses. Likewise the test for level of detail
belongs to the superclass rather than its descendants. This
method inheritance is possible because the result of subdivi­
sion is a collection of vertices and neither the tiler nor the
level of detail test care how the vertices were produced.

The display classes outlined in figure 4 are quite
different from ones proposed early · in the project. The initial
hierarchy had fewer levels and far more classes than the final
design. For example, we originally proposed a separate

Vision Interface '86

- 106 -

liThe cl ••• ot .. 11 qeometric ele_nt.
cIa • • Geo_try

(

1 I GEOMETRIC INFORMATION

lnt numVert.;
vertex •• v ;

BOOL bBoxSot; 11 boolean tor whether bBox i •• et
boundingBox bSox; 11 bounding box par&meter.

matrix ttora;

1 I SUlU'ACE PROPERTIES

pro~rtl •• "'col or; 11 aurtaee calor intoraaation

11 RENDERING INFORMATION

rendParaa rendInfo ; 1/ rendering par ... t.ra (.had.1ng)
float detail ; 1/ lev.l ot detdl

11 note : Actual po.ltion infonaatlon i. defined by .ubcl ••••• .
11 'v' .hould be •• t up to point to po.itlon lnforaatlon.
11 Thl. allow. common .. thod. to be Uipl_nted .or ••• ally.

public:

11 GEOMETRIC INFORMATION

boundingBox getBBox (); / / r.turn bounding boz i.nfo
normal getHoraal 0; 11 r.turn .urf.ce nor.al

11 TRANSFORM GEOMETRY

void rot.te (axi., float) ;
void tran.l.te (flo.t , flo.t , float) ;
void .cal. (float , tloat . flo.t);
void tranaform(matrlx); / I tranafora according to aupplled mat]

v o id tile () ;

void expand();

11 generate render1.nq priaLitlve.

11 expand geaa..try it pouible
11 tor example : .ubdJ.vida

v o id collap.e () : 11 reduce geometric complexity

v o id textDWlIpGeometry () ; 11 ahow geometric 1.nto in varioua form.
void graphDumpe;eometry () ;
};

11 The c I a. a of procedur ally modeled qeometry
clas. ProcedureGeometry : public Geometry

(

};

1/ The cIa •• of all aubdividable procedure model.
c laa. SubGeometry: public ProcedureGeometry

int level ; 11 nuJDber of time •• ubdivided

pUblic:
void .ubdivide (float):

BOOL termin.tionT •• t (float) ; 11 l evel of d-atail te.t
void changeSa.is (int) ;
void tile () ;
} ;

/1 The class of subdividable bicubic Bezier patch ••
c lass Barier: public SubGeometry

(

Barier .parent ;
vertex cpoint a(4] [4);
float um1.n ;
float umax ;
float vmi..n ;
float vma.x ;
B40z1. r *children!4] ;

public:

I1 pointer to parent of this patc h
l ithe cont r ol point.
/ 1 u p Arameter range in original patc h

I1 v parameter range in origin a l patch

11 pointers to .ubpatch •• of thi8 patch

v oid subdivide (float) ; / 1 redefine supercla •• methods
} ;

Figure 2. Geometry class definitions in the C++ langauge
with sample subclasses.

Graphics Interface 'S6

// expand: • q ric .. ubdivi.ion _thod
// cl : SubGeOlll.try

if (thi .. ->tarminationTest(this->detail) =- DONE)
thi .. ->tile () ;

el .. e
thi.->expandlt()

// .xpandIt : q.omatry .p.cific subdivi.ion
// cl ••• : Bazier

Bazier . expandIt ()
(

// split current patch imto four
// .. ubpatche. and expand each
// one in turn

n.w patchl ; p.tchl . fOO(thi ..)
p.tchl.expand() ; delete p.tchl

n.w patch2 ; patch2.fOl(th! ..) ;
patch2.expand() ; delete p.tch2

n.w p.tch3 ; patch3.flO(thi ..) ;
patch3. expand () ; delete p.tch3

~.w patch4 ; p.tch4.fll(thi ..) ;
patch4 . expand() ; delete patch4

Figure 3. A subdivision procedure divided into a generic
method and a subclass specific method.

/

I a·buffer I I z·buffer I

Figure 4. Display classes.

Vision Interface 'S6

object

display

display list
driven

- 107 -

display class for BSP trees [Fuchs). However, the BSP tree
display algorithm is really a sorting method for geometric
objects followed by a tiling method which deposits polygons
in an image buffer. After factoring the algorithm into its
constituent elements, and defining each element as a method
of the most appropriate class, we can easily use the BSP tree
sorting method in ray tracing to reduce the number of ray­
surface intersection tests.

There are a number of commonly used algorithms, such
as ray tracing, which are being ripped apart and reconstituted
as methods belonging to various geometry and display
classes. In general, as we recognize the common elements in
different classes, the class tree becomes deeper and narrower.

Conclusion

This paper is not a sermon on the virtues of object­
oriented programming. It is concerned instead with its appli­
cation to modeling and display problems.

Organizing modeling representations into a class hierar­
chy has drastically altered the way we view geometric
models. In particular, we have factored methods into generic
and specific parts so that the generic parts can be shared.
We have also found ourselves looking for ways to apply
those methods that we have on hand to a broader range of
geometric problems. We feel that our approach not only
makes the programming of the modeling and display package
more manageable, but it expands the range of features that
the package can support.

Acknowledgement

Our colleague Phil Amburn is responsible for much of
the work reported here. We thank Tim Rentsch for his
review of the draft. This research is supported in part by
Schlumberger-Doll Research.

References

[Amburn]
Amburn, Phil, Eric Grant, and Turner Whitted, "Manag­
ing Geometric Complexity with Enhanced Procedural
Models," to appear in Proceeding of Siggraph '86.

[Bloomenthal]
Bloomenthal, Jules, "Modeling the Mighty Maple,"
Computer Graphics. vo!. 19, No. 3 July 1985 pp. 305-
311.

[Cannon]
Cannon, Howard, "Lisp with Flavors," Symbolics Inc.,
internal report.

[Carlson]
Carlson, Wayne, "An Advanced Data Generation System
for Use in Complex Object Synthesis for Computer
Display," Proceedings of Graphics Interface ' 82, May
1982, pp. 197-204.

Graphics Interface '86

[Feiner]
Feiner, Steven, "APEX: An Experiment in the
Automated Creation of Pictorial Explanations," IEEE
Computer Graphics and Applications, vo!. 5, no. 11,
November 1985, pp. 29-37.

[Fournier]
Fournier, Alain, Don Fussell, and Loren C. Carpenter,
"Computer Rendering of Stochastic Models," Communi­
cations of the ACM. vo!. 25, No. 6 June 1982 pp. 371-
384.

[Friedell]
Friedell, Mark, "Automatic Synthesis of Graphical
Object Descriptions," Computer Graphics, vo!. 18, no.
3, July 1984, pp. 53-62.

[Fuchs]
Fuchs, Henry, Gregory D. Abram, and Eric D. Grant,
"Near Real-Time Shaded Display of Rigid Objects,"
Computer Graphics, vo!. 17, No. 3 July 1983 pp. 65-72.

[Goldberg]
Goldberg, Adele, and David Robson, Smal/talk-BO, The
Language and its Implementation, Addison-Wesley,
1983.

[Hedelman]
Hedelman, Harold, "A Data Flow Approach to Pro­
cedural Modeling," IEEE Computer Graphics and Appli- .
cations, vo!. 3, no. 9, December 1983, pp. 18-25.

[Holynski]
Holynski, M., "Meaning Oriented lmaging for Graphics
Interface," Proceeding of Graphics Interface '86.

[Lorenson]
Lorenson, William, "An Object Oriented Design of a
Graphics Animation System," General Electric CR&D,
Internal Report, 1984.

[Newell]
Newell, Martin, "The Utilization of Procedure Models in
Digital Image Synthesis," PhD dissertation, Department
of Computer Science, University of Utah, 1975.

[Reeves]
Reeves, William T., and Ricki Blau, "Approximate and
Probabilistic Algorithms for Shading and Rendering
Structured Particle Systems," Computer Graphics. vo!.
19, No. 3 July 1985 pp. 313-322.

[Robson]
Robson, David, "Object-Oriented Software Systems,"
Byte, vo!. 6, no. 8, August 1981, pp. 74-86.

[Smith]
Smith, Alvy Ray, "Plants, Fractals, and Formal
Languages," Computer Graphics, vo!. 18, no. 3, July
1984, pp. 1-10.

[Stroustrup]
Stroustrup, Bjarne, The C++ Programming Language,·
Addison-Wesley, 1986.

Vision Interface '86

