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Abstract 

The class concept is one component of object-oriented pro­
gramming systems which has proven useful in organizing 
complex software. In experimenting with the use of classes 
for geometric modeling applications, we have devised a class 
hierarchy that yields some conceptual order in the midst of 
diverse representations of shapes. Rather than searching for a 
uniform primitive representation, we accept the diversity and 
build a framework in which dissimilar models are combined 
in an orderly manner. 
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Introduction 

Geometric modeling systems can become extremely 
complex when design applications demand flexibility in the 
representation of shapes. A major challenge for programmers 
who create such systems is to preserve order in spite of this 
complexity. Trends in this direction include moves toward 
uniform data representation and very general mathematical 
representations of shapes. However, the advent of special­
ized procedural modeling techniques is a step away from uni­
formity which strains programmers' abilities to cope with the 
diversity that it presents. We feel that using an object­
oriented programming methodology helps to solve this prob­
lem. 

In spite of the recent interest in object-oriented program­
ming, we have seen only a few published examples of 3-D 
graphics systems built in an object-oriented environment 
[Hedelman, Lorenson]. For the most part, the examples that 
we have seen emphasize the message passing aspects of 
Smalltalk-like languages and do not pay much attention to 
the effective specification of classes. 

In this paper we describe the class hierarchy of an 
experimental modeling and display system which we have 
assembled in order to study the problems of constructing 
extremely complex geometric objects. We emphasize identi­
fying common elements of geometric procedures which can 
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be shared among representations. Our guiding principle is 
that methods should be shared by as many classes as possible 
and that they should belong to classes as high up in the class 
hierarchy as possible. In a following section we describe our 
attempt to define a class hierarchy that meets this criterion. 

Diversity of Geometric Represelltati()DS 

Geometric models used in computer graphics have 
become so diverse that they don't seem t() fit my rational 
scheme of classification. There has been a substantial 
amount of development of modelers that manipulate polygo­
nal meshes, models that produce parametric surfaces or alge­
braic surfaces, and unified modeling systems that handle all 
three representations. Some of these have gone s() far as to 
devise a common representation to ease the difficuJty of stor­
ing and manipulating the diverse representations. 

The widespread use of procedure models [Newell] has 
complicated the issue even further since the procedures are 
often restricted to such narrow purposes as creating trees 
[Bloomenthal], terrain [Fournier], or grass [Reeves]. To be 
sure, there are general purpose procedures such as sweeping, 
and there are generalizations such as graftals [Smith] which 
provide a common framework for a variety of individual 
geometric procedures. 

The common simplification of reducing all complex 
shapes to polygonal approximations is n() longer feasible 
when the number of primitive elements exceeds a few tens of 
thousands. Modification of such complex collections by 
users is nearly impossible. Common operati()RS such as 
interference checking and display are confronted with mas­
sive amounts of data in this case. 

Classes 

One of the more successful mechanisms for coping with 
the complexity of programming is the use of classes. Origi­
nally a feature of the Simula language, classes are a central 
feature of Small talk [Goldberg]. Their value is more 
apparent when one considers that mature languages such as 
Lisp [Cannon] and C [Stroustrup] have been extended to 
include classes. 
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Classes are defined by a set of instance variable declara­
tions and a collection of methods [Robson]. Objects are 
instances of a class. In a procedural geometric model, the 
model itself is an object. 

The obje.ct-oriented organization gives a programmer the 
benefits of encapsulation and inheritance. To us, the more 
important property is the inheritance of methods and instance 
variable declarations. This means that objects that differ only 
slightly can be cast as members of distinct subclasses of the 
same superclass. Shared methods and instance variable 
declarations belong to the superclass. This code sharing has 
the beneficial side effect of reducing the overall code size. 
More importantly, development effort is reduced since pro­
grammers don't spend time writing the same methods over 
and over. 

Evolution of the Intelligent Modeler 

The overall goal of our research is to create detailed 
geometric models from sparse non-geometric inputs. We 
share this goal with several similar projects [Feiner, Holyn­
ski, Friedell] . Our original intent was to produce a more or 
less conventional interactive modeling program with an 
geometric knowledge base as its central element. In opera­
tion, the modeler would interpret guidelines provided by the 
user to invoke rules in the knowledge base which would in 
turn generate geometric primitives. 

This approach was abandoned when we recognized it as 
an immense, monolithic procedure model. We then settled 
on a divide and conquer approach to reduce individual com­
ponents of the modeler to manageable proportions. This then 
raised the additional problem of coordinating the actions of a 
multitude of autonomous procedures. For recursive pro­
cedures, such as subdivision, which maintain a geometric 
hierarchy as a product of their operation, we include methods 
by which mutually constrained objects agree on how each 
affects the other [Ambum] . So far we have no methods to 
satisfy mutual constraints for non-recursive procedure 
models. 

Reducing the size of individual intelligent procedure 
models does not diminish the overall complexity of the 
modeler. For this we need the class hierarchy described in 
the following section. 

Elasscs for a ModeIing and Display Package 

We have built (and continue to expand) an experimental 
modeling and display package based largely on generic pro­
cedure models. A description of the display system is 
included in this discussion because modeling operations play 
such an important role in its operation. Figure 1 shows the 
class hierarchy of the modeling portion of the package. 
While it may seem logical to organize the classes based on 
similar properties (i.e. one superc1ass for curved surfaces, 
another for polyhedra, etc.), our organization is based on 
common methods. 

Diverse geometric representations can lead to a broad, 
fiat organization of classes. However, our subtree for pro-
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Figure 1. Geometry class hierarchy. 

cedural geometry is five levels deep. This is achieved by 
factoring methods and placing the generic component as high 
in the tree as possible. Figure 2 is a condensed listing of 
four levels of one subtree (the Object class at the root of the 
entire class tree is omitted). At the lowest level is the Bezier 
subclass. Only methods specific to the Bezier subclass actu­
ally belong to it. 

To illustrate how methods can effectively be shared, 
consider the class of subdividable surfaces (the lower three 
levels of figure 2). A typical display algorithm for this type 
of surface calls for recursive subdivision to a predetermined 
level of detail followed by the tiling of polygons formed 
from the mesh of points generated by the last subdivision 
stage (figure 3). The subdivision method belongs to the indi­
vidual subclass. The tiling method, on the other hand, 
belongs to the class of subdividable surfaces instead t ~ tl-.v 
individual subclasses. Likewise the test for level of detail 
belongs to the superclass rather than its descendants. This 
method inheritance is possible because the result of subdivi­
sion is a collection of vertices and neither the tiler nor the 
level of detail test care how the vertices were produced. 

The display classes outlined in figure 4 are quite 
different from ones proposed early · in the project. The initial 
hierarchy had fewer levels and far more classes than the final 
design. For example, we originally proposed a separate 

Vision Interface '86 



- 106 -

liThe cl ••• ot .. 11 qeometric ele_nt. 
cIa • • Geo_try 

( 

1 I GEOMETRIC INFORMATION 

lnt numVert.; 
vertex •• v ; 

BOOL bBoxSot; 11 boolean tor whether bBox i •• et 
boundingBox bSox; 11 bounding box par&meter. 

matrix ttora; 

1 I SUlU'ACE PROPERTIES 

pro~rtl •• "'col or; 11 aurtaee calor intoraaation 

11 RENDERING INFORMATION 

rendParaa rendInfo ; 1/ rendering par ... t.ra (.had.1ng) 
float detail ; 1/ lev.l ot detdl 

11 note : Actual po.ltion infonaatlon i. defined by .ubcl ••••• . 
11 'v' .hould be •• t up to point to po.itlon lnforaatlon. 
11 Thl. allow. common .. thod. to be Uipl_nted .or ••• ally. 

public: 

11 GEOMETRIC INFORMATION 

boundingBox getBBox (); / / r.turn bounding boz i.nfo 
normal getHoraal 0; 11 r.turn .urf.ce nor.al 

11 TRANSFORM GEOMETRY 

void rot.te (axi., float) ; 
void tran.l.te (flo.t , flo.t , float) ; 
void .cal. (float , tloat . flo.t); 
void tranaform(matrlx); / I tranafora according to aupplled mat] 

v o id tile () ; 

void expand(); 

11 generate render1.nq priaLitlve. 

11 expand geaa..try it pouible 
11 tor example : .ubdJ.vida 

v o id collap.e () : 11 reduce geometric complexity 

v o id textDWlIpGeometry () ; 11 ahow geometric 1.nto in varioua form. 
void graphDumpe;eometry () ; 
}; 

11 The c I a. a of procedur ally modeled qeometry 
clas. ProcedureGeometry : public Geometry 

( 

}; 

1/ The cIa •• of all aubdividable procedure model. 
c laa. SubGeometry: public ProcedureGeometry 

int level ; 11 nuJDber of time •• ubdivided 

pUblic: 
void .ubdivide (float): 

BOOL termin.tionT •• t (float) ; 11 l evel of d-atail te.t 
void changeSa.is (int) ; 
void tile () ; 
} ; 

/1 The class of subdividable bicubic Bezier patch •• 
c lass Barier: public SubGeometry 

( 

Barier .parent ; 
vertex cpoint a(4] [4); 
float um1.n ; 
float umax ; 
float vmi..n ; 
float vma.x ; 
B40z1. r *children!4] ; 

public: 

I1 pointer to parent of this patc h 
l ithe cont r ol point. 
/ 1 u p Arameter range in original patc h 

I1 v parameter range in origin a l patch 

11 pointers to .ubpatch •• of thi8 patch 

v oid subdivide (float) ; / 1 redefine supercla •• methods 
} ; 

Figure 2. Geometry class definitions in the C++ langauge 
with sample subclasses. 
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// expand: • q .... ric .. ubdivi.ion _thod 
// cl .... : SubGeOlll.try 

if (thi .. ->tarminationTest(this->detail) =- DONE) 
thi .. ->tile () ; 

el .. e 
thi.->expandlt() 

// .xpandIt : q.omatry .p.cific subdivi.ion 
// cl ••• : Bazier 

Bazier . expandIt () 
( 

// split current patch imto four 
// .. ubpatche. and expand each 
// one in turn 

n.w patchl ; p.tchl . fOO(thi .. ) 
p.tchl.expand() ; delete p.tchl 

n.w patch2 ; patch2.fOl(th! .. ) ; 
patch2.expand() ; delete p.tch2 

n.w p.tch3 ; patch3.flO(thi .. ) ; 
patch3. expand () ; delete p.tch3 

~.w patch4 ; p.tch4.fll(thi .. ) ; 
patch4 . expand() ; delete patch4 

Figure 3. A subdivision procedure divided into a generic 
method and a subclass specific method. 

/ 

I a·buffer I I z·buffer I 

Figure 4. Display classes. 
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display class for BSP trees [Fuchs). However, the BSP tree 
display algorithm is really a sorting method for geometric 
objects followed by a tiling method which deposits polygons 
in an image buffer. After factoring the algorithm into its 
constituent elements, and defining each element as a method 
of the most appropriate class, we can easily use the BSP tree 
sorting method in ray tracing to reduce the number of ray­
surface intersection tests. 

There are a number of commonly used algorithms, such 
as ray tracing, which are being ripped apart and reconstituted 
as methods belonging to various geometry and display 
classes. In general, as we recognize the common elements in 
different classes, the class tree becomes deeper and narrower. 

Conclusion 

This paper is not a sermon on the virtues of object­
oriented programming. It is concerned instead with its appli­
cation to modeling and display problems. 

Organizing modeling representations into a class hierar­
chy has drastically altered the way we view geometric 
models. In particular, we have factored methods into generic 
and specific parts so that the generic parts can be shared. 
We have also found ourselves looking for ways to apply 
those methods that we have on hand to a broader range of 
geometric problems. We feel that our approach not only 
makes the programming of the modeling and display package 
more manageable, but it expands the range of features that 
the package can support. 
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