
- 7 -

SOME IMPLICATIONS OF DYNAMIC 
STRUCTURAL ANALYSIS 

J. A. Hoskins and W. D. Hoskins 

Department of Computer Science 

University of Manitoba 
Winnipeg, Manitoba 

1. Introduction. 

The interlacement structure exhibited by a woven textile 
has traditionally, and conveniently, been represented by a 
binary array. Graphically, this has taken the form of a cartesian 
grid with cells coloured either black or white [Figure I). This 
binary structural array can, in fact be considered as the product 
of three matrix factors . These factors are normally also binary 
matrices and, in most cases, their product arises as a result of 
conventional matrix multiplication [1] . The factorization 
process is of great practical interest, since these matrix factors 

FIGURE 1 

Graphics Interface '86 

correspond to parameters for the production of the 
corresponding structure [2], as well as being of considerable 
theoretical interest The development of fast efficient factoring 
algorithms has been considered and has resulted in the 
processes described in [3,4]. 

In analysing an interlacement structure in this way, the 
data structure is first created using interactive graphical input to 
colour the cells of the corresponding grid [5,6] . When the data 
structure is complete, the factorization algorithm is invoked and 

Vision Interface '86 



- 8 -

FIGuaE 2 

the a posteriori matrix facto~ computed The graphical display 
is then updated to include their graphical display [Figure 2]. 
The main advantage to this approach is that data design updates 
are rapid, since no analysis-processing takes place at the time of 
design creation. This was of particular importance in previous 
implementations on small low speed rnicroprocesso~, where an 
emphasis was placed on the design environment [7]. However, 
a serious disadvantage is that, as the structural array is 
modified, there is no continuous feedback as to the structural 
implications of design modifications on the corresponding 
matrix factors. In this paper, algorithms for performing 
continuous dynamic factorization in response to incremental 
data modifications, are considered, along with the ensuing 
implications for the corresponding graphical display. 

2. Dynamic Analysis Model. 

The analysis process can be considered to consist of 
three distinct phases, corresponding to each of the three matrix 
facto~ . The first phase requires that all of the columns of the 
structure array be sorted into distinctness classes [3 ] . Each 
distinct column is allocated a separate row in the threading 
matrix (top left in Figure 2), and all identical columns of the 
structure array have the single non-zero element in the 
corresponding columns of the threading array in the same row. 
The second phase of the algorithm requires that the rows of the 
structure array be sorted in the same manner, and that each 
distinct row be allocated a separate column of the shed sequence 
matrix (bottom right in Figure 2). The third phase involves 
determining a mapping between the distinct columns and rows 
of the structure array . This information is recorded in the tie-up 
matrix (top right in Figure 2), and can normally be generated 
simply as the intersection of one representative of each distinct 
column with one representative of each distinct row, without 
further processing. 

Graphics Interface '86 

The expensive part of this al!orithm is the bit-wise 
compui5Ol1 of all the columns of the structure array. Although 
the rows also require a bit-wise comparison, having deterntinod 
the distinct columns of the array, only one representative of 
each distinct column set need be considered and the number of 
elements in each row is greatly reduced. The sorting process 
can be represented graphically, very effectively, using a digital 
trU [7] for the columns and for the rows. 

In constructing the array in Figure I, initially all of the 
cells are coloured white, all of the columns are in a single node 
of the threading trie; and all of the rows are in a single node of 
the shed sequence trie. The single node, a leaf in this case, of 
the threading trie contains all of the column indices along with 
the binary sequence {OOOOOOOO}, while the single node of the 
shed sequence trie contains all of the row indices along with the 
binary sequence {O}. As each change is made to the data 
structure, new branches are added, between the appropriate 
elllisting leaf and the new point of disagreement between two 
previously identical columns. The leaf column indices and 
binary sequences are also updated. After updating the threading 
trie, the shed sequence trie is modified. At each stage, the 
binary sequences contained in the leaves of the slu!d sequence 
trie correspond to the columns of the tie-up matrix. The digital 
tries corresponding to the structure array of Figure I are given 
in Figures 3 and 4. 

It can be noted that the traditional binary tree graphical 
representation consumes a great deal of space, particularly as 
sequences become more complex. An alternative method of 
display is given by a combed trie representation, where all 
'zero branches' are vertical and where 'one branches' appear to 
the right of any 'zero branches' at the same depth. Figures 5 
and 6 show a combed trie representation of the structure array 
of Figure 1. 

This data structure provides a means of rapidly updating 
the matrix factors corresponding to a given structure array in 
direct response to modifications to that array. It alS() supports 

Vision Interface '86 



{4.12} 

{OOIlOIIO} 

- 9 -

P .II} {1,s.9} {S.S} 

{OIOOIOOI} {OIIOOOIl} {1001l100} 

{6} 

{IOIOOOIO} 

FIGURE 3 

an excellent graphical representation of the analysis process 
which can, in fact, be monitored to determine where changes to 
the algorithm structure or implementation will result in 
increased efficiency [8,9]. 

3. Some.Implications for the User Interface. 

By using the digital trie data structure, the binary 
structure array and its corresponding three matrix factors can 
always be self-consistent. In addition, the rank of the factors 
can always be minimal and thus, in some sense, optimal. This 

{3.7 } 

{OOIIOI} 

{2.8} 

{011010} 

Graphics Interface '86 

pre-supposes, however, that the user will only update the 
structure array and will never wish to modify any of the three 
factors . This is definitely not the case. One of the tremendous 
utilities of such an interactive graphical system is the ability to 
modify anyone of the four components and receive immediate 
visual feedback as to the implications of this action. This 
requires that a hierarchy of data elements be maintained by the 
software, with user-defined cells taking precedence over those 
set as a consequence of the analysis algorithm. This means that 
user-defined elements are not moved if, at some stage in the 
factorization process,.· their corresponding structure array 

{4.6} 

{I00I00} 

FIGURE 4 

{!,S} 

{IIOOOI} 

{5} 

{I10010} 

Vision Interface '86 



- 10 -

FIGURE 5 

column or row becomes identical to another one. While this 
results in the factors not necessarily being of minimal rank, it 
does cause the user interface to confonn to the design principle 
of predictability [10]. 

The consequences of this differential treatment of the 
user defined components of the partially determined factors, 
develops in complexity as the design process continues, and of 
course ultimately begins to limit the choices of the user. 
Contending with the accruing weight of these limitations places 

FIGURE 6 

Graphlca Interface '86 

an increasing burden on the intcnlctive response capabilities of 
the system and much further won needs to be done tc:> resolve 
these problems. 

References. 

1. J.A. Hoskins and W.D. Hoskins, The Solution of 
Certain Matrix EQuations Arisin~ from tbe Structural 
Analysis of Woven Fabrics, Ars Combinatoria 11 
(1981),51 - 59. 

2. J.A. Hoskins and W.D. Hoskins, ~ 
Microcomputer for the Desi~n and Analysis of Woven 
llitiks, 1983 ACM Conference on Pers()nal and Small 
Computer, San Diego, California, 1983. 

3. J.A. Hoskins and W.D. Hoskins, A Fasler AI~orithm 
for Factorin~ BiOiuj' Matrices, Ars Combinatoria ~ 
(1983),341 - 350. 

4. Janet Anne Hoskins, Isonemal Amys and Textile 
Computer Graphics, Ph.D. thesis, 1985, University of 
Manitoba. 

5. J.A. Hoskins and M.W. King, Interactiye Desip of 
Woven Textiles, Proceedings of the International 
Computer Color Graphics Conference, TaIlahassee, 
Florida, 1983. 

6. J .A. Hoskins and M. W. King, An Interacti ve Database 
for Woven Textile Desi~, Textile Institute Annual 
Conference "Computers in the World of Textiles" , 
Hong Kong, 1984. 

7. Alfred V. Aho, John E. Hopcroft and Jeffrey D. 
Uilman, Data Structures and AI~orithms, (Reading, 
Mass.: Addison-Wesley, 1983) 

8. Marc H. Brown, A System for AI~orithm Animation, 
Proceedings of the SIGGRAPH 'S4 Conference, 
Minneapolis, 1984, 177-186. 

9. Gretchen P. Brown, Christopher F. Herot and David A. 
Kramlich, Pro~ram Visualization ' Graphical Support for 
Software Development, Computer 18 (8), 1985,27-35. 

10. J.D. Foley and A. VanDam, Fundamentals of 
Interactive Computer Graphics. (Philippines' AddjsQn
Weslc;y Publishing Company, 1982). 

Vlalon Interface '86 


