
- 131 -

Goal Directed Animation using English Motion Commands

Karin Drewery
John Tsotsos

Dept. of Computer Science
Univenity of Toronto

ABSTRACT

This paper describes a prototype 3D animation system which can execute limited types
of english motion commands by solving simple goals and directions.

This system has a frame-based knowledge base (KB) to describe objects and another to
describe motions. A hierarchical planning system uses the motion descriptions as forward
production rules to form a plan for a goal task. Directional commands relative to the object
or a reference object can also be processed by refering to the directional description in the
motion KB and the object's reference frame.

The underlying objective is to devj::lop a method to incorporate goals into a graphical
animation system so that it will be a task level system [ZeltS5), where a behaviour is
described in terms of events and relationships and frees the user from specifying all details
of a motion.

Keywords: KB graphics, animation, motion description, goals.

1. Bacqroud

Developing animation systems which are task level
systems is a relatively new research area in compu!er
graphics and a complete one does not yet eXIst.
Currently some animator level systems [Zelt85) in which
the behaviours of the objects are described algorithmi
cally in a programming language, exhibit properties that
would be useful to a task level system.

In Reynold's actor-based [Reyn7S) and Murtagb's
object-based [MurtS5) systems, objects can pass mes
sages which allows adaptive motion. Adaptive motion
occurs when the control processor uses information
about the objects and their environment to control the
objects' movements [ZeltS5). In MIRA [Thal83,
Magn84 , MagnS5) attributes of the objects can be
updated and examined also allowing adaptive motion.

Badler [BadlSO, BadlSl, BadlS2] has been involved
in representing human motion and developed Tempus.
This system contains resolved motion algorithms for
limb positioning and approaches task level animation.
Zeltzer [ZeltS2, ZeltS3] developed SAS which uses local
motor primitives (LMP's) to execute movement func
tions which have preconditions and has described ideas
for a KB system which would be a task level animation
system.

In the meantime work in Artificial Intelligence
concerning motion descriptions was being done. Using
Miller's [Mill72] classification of motion verbs, Badler

Graphics Interface '86

[BadI75) and Tsotsos (TsotSO) added their own
modifications to create motion description and analysis
systems. The KB for our system GEMS was derived
from a modification of the frame based system proposed
by Tsotsos.

A frame [Mins75, Gold79) is a representational
structure which consists of slots which can decribe parts
of the item being represented and can contain informa
tion describing the relations between the slots. The
slots form a PART-OF hierarchy. The frames form an
IS-A hierarchy defining general to specific information
(see example 1).

A frame based system was proposed because it can
express hierarchical descriptions, allows general to
specific levels of detail and conveys inheritance of pro
perties. A frame which is below another frame in the
IS-A hierarchy inherits the properties ' of the one(s)
above it .

G EMS arose by incorporating a motion processing
queue scheme similar to Zeltzer's [ZeltS2) to process
the information in the frames of the KB.

2. Overview

The user must first define a KB for 3D hierarchical
objects and a KB for their motion descriptions. To
begin an animation the user must instantiate objects
from the frames defined in the object KB.

Vision Interface '86

- 132 -

The next phase involves a motion processor which
accepts motion commands in this format:

subject motion-verb reference I directional adverb
or

a~ent motion-verb subject reference I directional adverb

The command is parsed and existence checks (la
the objects are done by searching the object KB.

The task manager then consults the motion KB tD
process the motion verb. This is done by traversing the
hierarchies described in the frame structured KB. From
the hierarchical descriptions, the motion verb is brokell
down into its underlying primitives, which are internally
defined procedures. If the motion has preconditioJls
then the planning system may be called.

The planning system is modelled after ABSTRIPS
[Sace74,Nils80] a simple hierarchical planning system_
A hierarchical planner was chosen because in many
situations a subgoal condition of a goal can be regarded
as a detail and does not need to be solved until the
major steps of the plan are solved. Thus the plan is
developed level by level.

A goal directed motion task in the KB will have a
precondition list with priorities assigned to each precon·
dition to indicate which ones should be solved first. A
precondition is an action or state which must be exe·
cuted before the task can be done.

The task will also have delete and add state lists.
The delete list refers to states which are no longer true
after the task has been completed and the add states are
those which are now true. These lists are used by the
planner to keep track of the current state situation.

The planner begins with the initial state situatioJl
and applies the appropriate motion tasks, which are
actually forward production rules, to achieve the .
desired goal. A task is selected to be a possible elemen.t
of the plan if a state in its add list matches the top of
the goal stack. If this task has preconditions whose
priorities are greater or equal to the current maximum
priority value then they are placed on the stack. Other
wise the current state description is updated by remov
ing states which are in the task's delete list and addinS
those listed in the add list. The chosen sequence of
motion tasks forms a plan to achieve the original goal.
Details of the planning algorithm can be found in the
references mentioned.

The user may specify precisely which motion will
supply the precondition needed, by using an if state
ment. Or instead, the user may specify only the states
that are preconditions and the planner will determine
the motions that will achieve these states. Using the
plan and hierarchical information from the KB, a
motion queue for each object that was referenced in the
command is built.

A clock is run and at evenly spaced time intervals
checks are done on each queue to determine which
motion, if any the object should be undergoing. Interac
tion conditions are evaluated as the motion is executed

Graphics Interface '86

and may cause nodes to be added or removed from the
queue. During this, current state information must also
be updated. For each frame of the ~ation a.file con
taining the appropriate transformations and object data
is created and can later be passed to a rendering system.

3. Object DescriptioD

An object frame consists of a description and a
dependent section. The description section contains slots
which define an object's parts. A part has a name and a
type which is either another user defined frame in the
object KB or a system defined object primitive such as a
cube, a sphere, a vector etc. If the object's parts are
joined then the joint may be specified by the the use of
a co1l1lt!cted-to expression. Constraints on the rotation
angles can be defined. A slot may also contain con
straints on dependent variables.

An object's geometry type is indicated by a slot
type or in a "IS-A" expression. The type can be a 3D
primitive or a user defined polyhedra or mesh, both of
which can be defined in the KB or input from a file.

The dependent section contains definitions for vari
ables which are dependent on the object's structure.
An object in this system must have a centroid, a bound
ing box and direction vectors. Direction vectors are
formed from the centroid to each face of the bounding
box to discern the top, bottom, left, right, front and
back of an object.

Example 1 shows some of the frames which could
be used to describe a robot with joints. Notice that the
constraints on the slots appear between the square
brackets.

4. MotiOD DescriptioD

A motion frame consists of a descriptio", dependent,
preconditions, interactions, delete and add state sections.
The description section (similar to an object's) contains
slots which describe the parts of the motion. Each slot
contains a name or label for the part followed by a type
which is either another user defined motion from the
KB or a primitive motion type (rotate, translate, scale).
This may be followed by constraints on the type's
dependents such as timing or speed.

There is also a subj slot to allow the user to define
the type . of object that exhibits the motion. An agent
slot allows the user to specify the type of object that
produces the motion. Similarly there is a re! slot where
the user can define the type of object (if any) that the
motion references.

The dependent section contains slots which define
the parameters or variables of a motion. The label of
the slot is the dependent's name followed by its type
which must be a system defined primitive.

The preconditions, add and delete lists are used by
the planning system as mentioned. A precondition
allows the user to specify in the KB, which motions or

Vision Interface '86

- 133 -

states must be done before the desired command can be
executed. Suppose that the command WRobotA EXIT
roomBw was given. Example 2 describes a frame for
EXIT and specifies its preconditions.

In this example the preconditions are listed as
states. The numbers in the labels indicate their priori
ties. First RobotA must be inside roomB as indicated
by pI. The second precondition requires that the room
have a door, otherwise we shall assume that the robot
cannot exit the room. Then, in order to exit the room
the robot must be standing and he must be near the
door. A motion frame such as APPROACH would direct
the robot to the door. The last precondition requires
that the door be open.

The action of exiting the room is done by the
frame WALK_THROUGH specified in the motion
description. Notice that after the robot has exited the
room the states OUTSIDE_OF (subj,ref) and STANDING
(subj) must be added to the current state list .

The user must create motion frames in the KB with
many preconditions to create more realistic goal
oriented descriptions.

Interaction conditions are tested while an action is
occuring. In Example 3, the frame description for
FUGHT of a missile rocket, the interaction condition is
to check if the rocket contacts any object in space. If it
does then it will explode. In this example the user
specifies precisely w.hich action will occur using the if
statement rather than just specifying states as in the
previous example.

5. Conclusions and Enensions

GEMS presents a method to execute goal-directed
graphics by using an object and a motion KB and a sim
ple planning algorithm . The preconditions. add and
delete lists in the motion KB enable the system to form
a plan for the motion. Internal procedures calculate
directions and relationships, and perform graphical
motion primitives needed to display the plans. It would
be a more powerful system if it could define these inter
nal procedures.

The planning system used is limited. It does not
account for the interaction of many agents which is
needed in some animations. It is based on state changes
and assumes that any state not mentioned in the delete
and add lists are unchanged. A more recent work by
Stuart [Stua85] has developed the idea of synchronizing
multi-agent activities.

To incorporate a larger class of goal oriented com
mands GEMS should be extended to contain a reach
algorithm for jointed limbs [ORou78, Kore82] and a
complex path planning algorithm [Loza79].

Example 1 Description of an Object

Frame ROBOT is-a 3D_LlNKED_OBJECT, MOBILE
Description:

head: HEAD [body connected_to head at (0,5,0)];
body: 3D _RECT [xwidth = 4.0;

ywidth = 6.0;
zwidth = 2.0;];

right_leg: RIGHTLEG
[body connected_to righUeg at (1,6,0),

rotx < 90, rotx > -90,
roty < 90, roty > -90,
rotz < 90, rotz > -90];

etc.
end Frame

Frame HEAD is-a ELLIPSOID
Description :

cl: [xradius = 3, yradius = 4, zradius = 3];
end Frame

Graphics Interface 'S6 Vision Interface 'S6

- 134 -

Example 2 for WRobotA E"IT roombw

Frame EXIT is-a 3D_SEQUENTIAL_MOTION
subj: ROBOT;
ref:ROOM;

Preconditions,Delete:
pI: INSIDE (subj.ref);
p2: PART_OF (ref,door);
p3: STANDING (1ubj);
p4: NEAR (subj ,roef);
pS: OPEN (ref.door);

Description:
dI: WALK_THROUGH [ref = ref.door,

dur = 2];

Add: OUTSIDE_OF (slIbj,ref), STANDING (subj);
end Frame

Example 3 for W Missile FL.IGHT to Moon W

Frame FLIGHT is-a 3D_SEQUENTIAL_MOTION

Interactions:
pt: If (CONTACTS(subj,ANY» then EXPLODES;

Description:
subj: ROCKET;
ref: OBJECT_II'{_SPACE;

launch: LAUNCH [start_time = 5,
dUlation = 30,
speed = tOO units/sec];

phaseI: PHASEt [duration = 90,
speed = 200 units/sec];

phase2: PHASEZ [duration = SO,
speed = 300 units/sec];

end Frame

Graphics Interface '86 Vision Interface '86

- 135 -

BIBLIOGRAPHY

Badl75 Badler, N., "Temporal Scene Analysis: Conceptual Description of Object Move
ments", PHD Diss., University of Toronto, Feb, 1975

Badl80 Badler, N., O'Rourke, J., Kaufman, B., "Special Problems in Human Movement
Simulation", IEEE Computer Graphics, vol 14, #3, 1980

Badl81 Badler, N., "Understanding Human Movement Synthesis and Analysis", Proceedings
of the Conference on Information and Systems, 1981

Badl8l Badler, N., "Design of Human Movement Representation Incorporating Dynamics
and Task Simulation", Sig'82 Tutorial, July, 1982

Badl84 Badler, N., Korein, J., "TEMPUS: A Sytem for the Design and Simulation of
Human Figures in a Task-Oriented Environment", Unpublished, Dept. of Computer

Gold79 Goldstein, "Using Frames in Scheduling", AI: An MIT Perspective, Brown MIT
Press, 1979, pg 256

Hewi73 Hewitt, C., Bishop, P., Steiger, R., "A Universal Actor Formalism for AI", DCAI,
1973, pg 235

Kore8l Korein, J., Badler, N., "Techniques for Generating the Goal-Directed Motion of
Articulated Structures", IEEE Computer Graphics,Nov.1982, pg.71

Loza79 Lozano-Perez, T., Wesley, M.; "An algorithm for Planning collision free paths
among Polyhedral objects", Communications of the ACM, Vol. 22, #22, Oct. 1979,
pg 560

Maga83 Magnenat-Thalmann, N., Thalmann, D., "The Use of 3D High-level Graphic,u
Types in the MIRA Animation System", IEEE Computer Graphics and Applica
tions, Vol. 3, No. 9, 1983, pg 9

MagaBS Magenat-Thalmann, N., Thalmann, D., Fortin, M., "Miranim: An extensible
Director-oriented system for the animation of realistic images", IEEE Computer
Graphics and Applications, Vol. 4 #3, March 1985.

Mill71 Miller, G., "English Verbs of Motion: A case study in semantics and lexical
memory", ed. by Martin and Meltin, V.H. Winston and Sons, Washington, 1972.

MiDs75 Minsky, M., "A Framework for Representing Knowledge", Psychology of Computer
Vision, McGraw-Hill, New York, 1975

ORou78 O'Rourke, Joseph, "Three Dimensional Motion of a 3-link System", Movement
Report No. 11, MS-CIS-78-31, University of Pennsylvania, 1978.

ReYD8l Reynolds, C., "Computer Animation with Scripts and Actors", Procedings of
Sigraph, 1982, pg 289

StuBS Stuart, C., "An Implementation of a Multi-Agent Plan Synchronizer", Proc. DCAI-
85, vol. 2, 1985

Tbal83 Thalmann, D., Magenat-Thlamann, N., "Actor and Camera Data Types in Com
puter Animation", Graphics Interface, 1983

Tsot80 Tsotsos, J., "A Framework for Visual Motion Understanding", PHD Diss., Univer
sity of Toronto, 1980

ZeltBl Zeltzer, D., "Motor Control Techniques for Figure Animation", IEEE Computer
Graphics, Nov., 1982, pg 53

ZeltBl Zeltzer, D., "A Motion Planning Task Manager for a Skeleton Animation System"
Si graph 1982 Tutorial, July, 1982

Zelt83 Zeltzer, D., "Knowledge-Based Animation", ACM Sigraph/Sigart Inter-disciplinary
Workshop on Motion, Toronto, 1983, pg 187

ZeltB5 Zeltzer, D., "Towards an Integrated View of 3-D Character Animation", Proc.
Graphics Interface '85, May, 1985, pg 105

Graphics Interface '86 Vision Interface '86

