
- 141 -

VIRYA - A MOTION CONTROL EDITOR FOR KINEMATIC AND DYNAMIC ANIMATION

Jane Wilhelms
Computer Graphics and Imaging Laboratory
Computer and Information Sciences Board

University of California, Santa Cruz, CA. 95064, U.S.A.

Abstract

Virya is an interactive graphical motion control editor for
kinematic and dynamic animation. Most animation is con
trolled kinematically, by designating objects' positions taken
over time without consideration for the causes of the motion.
An alternative is dynamic motion control, where objects are
seen as masses moving under the influence of forces and
torques. Dynamic motion control has some advantages in that
motion more naturally simulates real world conditions and
many complex motions can be automatically calculated,
though calculating motion is quite expensive and control is
sometimes less intuitive. The editor Virya works both for
kinematic and dynamic motion control. It has two main tasks:
to specify control functions representing positions (kinematic)
or forces and torques (dynamic) controlling motion, and to
specify control modes which designate how control functions
are interpreted or whether joints are frozen in place, relaxed, or
balanced. Using these control modes, the user can designate
motion using a convenient kinematic method and still use
dynamic analysis as a final step to constrain and add realism.

KEYWORDS: computer animation, human modeling, dynam
ics, simulation

1. Kinematic Motion Control Methods

Motion control is a central problem in computer anima
tion and is the one aspect of animation that most sets it off
from other areas of computer graphics. Common kinematic
approaches to motion control are 3-D key framing, motion con
trol functions, parametric control, and animation languages
(these approaches can, and often are, combined).

In 3-D keyframing, the user typically positions the objects
in the scene interactively, designating a sequence of
configurations and the times when they should occur [10,11]
The animation system then interpolates between these key
frame configurations to generate the inbetween configurations.
3-D keyframing is ilJnerently superior to 2-D key framing for
3-D animation because the problems of information loss do not
·:)ccur. However, key framing is limited by the necessity of
creating many keyframes and the lack of complete control over
the interpolation process defining the path and speed of motion
between keyframes.

Graphics Interface '86

Parametric motion control involves designating certain
parameters whose values define a particular configuration of
the objects in the world [5]. For example, in the case of facial
animation, parameters may designate the position of the
mouth, the elevation of the eyebrows, etc. [8]. Parameters are
convenient to use and allow association of reasonably complex
motions (such as smiling) with one or a few parameters.
Choosing parameters that cover the desired range of motion
can be problematic, so the user may have to sacrifice complete
motion control for ease of use.

Animation languages are an attractive alternative because
complex motion can be described in the form of scripts [9].
Some languages are fairly low-level and merely provide a con
venient interface to specify simple motions [7]. Higher-level
languages would allow the user to specify motion in general
terms (e.g. "walk forward") and depend upon an intelligent
hierarchical interpretation system to find the specific low-level
directions needed to draw the frames [16]. While high-level
languages may provide the most convenience to the user in the
long run, at present many issues involved in high-level motion
control remain unresolved. Again, use of a script may limit the
amount of control the user has over the motion.

Kinematic motion control functions represent motion at
each degree of freedom in the form of position versus time
curves. The control functions can be simply generated and
succinctly stored using control points which generate the
curve. These control functions are low-level and represent
motion at individual degrees of freedom, but do allow very
detailed specification of motion. An advantageous feature of
control functions is that the final motion description of the
other methods (changes to particular degrees of freedom over
time) can be easily represented in this form. The use of an
interactive control function editor allows the user to make indi
vidual changes to motion at the lowest-level and at the last
minute, and can make up for some of the loss of exact control
often concomitant with the above methods.

2. Dynamic Animation

Most animation systems at present are kinematically
based, that is, motion is considered as the relation of position
versus time without consideration of the environmental
influences causing the motion. Virya, the motion control editor
described here, was designed mainly for use with the dynamic
animation system Deva. In Deva, objects are considered as
extended masses which act under the influence of forces and

Vision Interface '86

- 14-2 -

torques. Using dynamic analysis, this relationship is fonnu·
lated as the dynamics equations of motion; the solution of
these equations is a kinematic description of the motion that
would occur under the specified conditions in a "real" (simll
lated) world [13,14] .

Dynamic animation has certain advantages lacking in
kinematic systems. Motion is automatically constrained to
respond to environmental conditions. For example, it is
kinematically difficlllt to animate a body, such as a human
figure, naturally responding to collisions, such as hitting the
ground. One problem is that colliding objects should not move
through each other. The user can avoid this, at considerable
expense, by visually checking for unrealistic intersections,
doing automatic collision detection, or implementing con
straints using inverse kinematics [4]. Another problem is that
when an articulated body collides, the motion of its many con
nected segments can be extremely complex and difficult to
predict. Using dynamics, such collisions can be automatically
simulated by applying an opposing force against the body
when it collides. Taking this force into account during
dynamic analysis results in a natural response to the collision,
including a certain amount of bouncing and correct reaction of
other connected body parts. Bodies will also automatically
respond to gravity or the motion of connected body parts or
external influences.

Dynamic animation does has some disadvantages as well.
It is computation ally much more expensive than kinematic ani
mation [1,14]_ When the system dynamics are complex, as in
the case of articulated bodies with many degrees of freedom,
numerical instability can be a problem. Dynamics also requires
initial determination of object and environmental characteris
tics such as masses, joint limits, scale factors for springs and
dampers used in collisions, etc. Perhaps the most serious
disadvantage occurs in simulating controlled motion. While
bodies respond naturally to environmental conditions, it is
difficult to find when, where, and how strongly to apply inter
nal forces and torques simulating muscles in humans and other
animals. These issues are explored in detail elsewhere
[13,14,15]. Suffice it to say that while dynamic animation is
still in its exploratory stages, it does offer a method with con
siderable potential for simulating realistic motion.

3. Virya Motion Control Functions and Modes
Virya is a motion control editor used to develop, modify,

and store motion control information in the form of control
functions and control modes. Virya was designed to work
within the dynamic animation system, Deva. Some of its
features are only relevant to dynamic animation systems; other
features are relevant to both kinematic and dynamic systems.
Deva and Virya were specifically designed to explore the prob
lems of controlling the motion of articulated bodies such as

. animals and robots. Though the same principles apply to con
trolling other, simpler objects, discussions will largely be from
the standpoint of controlling articulated bodies.

Virya control functions can either be kinematic, represent
ing positions over time for each degree of freedom, or
dynamic, representing forces (sliding joints) or torques (revo
lute joints) for each degree of freedom. In Virya , control func
tions are represented by cubic interpolatory spline curves,
piece wise curves that interpolate a sequence of user-defined
control points with first and second derivative continuity [2,3) .

Graphics Interface "86

Cubic interpolatory splines have the advantage that they inter
polate specified control points; they have the disadvantages of
being global (changes in one control point affect to varying
degrees the entire curve) and given to occasional wild
behavior. A local interpolatory spline, such as that of
Kochanek [6], or a local approximating spline that can
approach control points arbitrarily closely such as the beta
spline [3], may be more desirable. Control functions are easily
constructed in Virya by picking control points on the screen
using a puck and tablet.

Each degree of freedom of the body (e.g., flex ion of the
elbow or rotation of the head) can exist in one of five control
modes for dynamic animation: relaxed, dynamic control,
frozen, balanced, and hybrid K-D modes. Each degree of free
dom can alternate between modes during the animation. One of
Virya's functions is to specify modes and their durations for
each degree of freedom. A sixth, pure kinematic mode exists
which completely by-passes dynamic analysis_ In this case,
control functions represent positions over time and are directly
sampled to produce purely kinematic animation.

3.1. Relaxed Mode

Dynamic animations can be developed without any user
specified motion at all, merely by placing the body in an
unstable position and letting it react to the gravitational force,
its own joint limits, the ground, etc. The degrees of freedom in
relaxed mode will move freely under environmental conditions
with no internal controlling force or torque simulating a muscle
contraction or a robot actuator motor_ These relaxed degrees
of freedom are constrained to remain within their joint limits
and their motion is slightly damped. Other forces or torques
due to collisions or motion of other body parts will still act
upon them. (Within the system Deva, springs and dampers are
used to mimic both joint limits and collisions.)

3.2. Dynamic Mode

To actually control the animation, pseudo-muscular
forces or torques must be applied to certain degrees of freedom
of the body. For example, to make the body wave its arm,
torques must be applied to the shoulder and elbow. The most
direct way to specify these forces and torques is to develop a
control function for each degree of freedom whose motion is
controlled in this way. These control functions represent a .
force (for sliding degrees of freedom) or a torque (for revolute
degrees of freedom) over time. The control functions are sam
pled to find the appropriate controlling force or torque to apply
to specified degrees of freedom at each time instant that
dynamic analysis is done; these controlling forces and torques
are then added to the automatically calculated forces and
torques mentioned above to find the total forces and torques
acting upon the body.

While these force/torque control functions have the
advantage of directly specifying the controlling forces and
torques needed for dynamic analysis, they leave the user at the
disadvantage of not knowing intuitively what forces or torques
will be necessary to produce the desired motion. This problem
is accentuated by the complex interactions between different
parts of an articulated body. For example, should the user find
the correct force to lift the arm rigidly at the shoulder, and then
add torques to the elbow to accompany the lifting by a bending
action, he will find that the additional torque at the elbow inter-

Vision Interface '86

feres with the smooth motion of the shoulder. For this reason,
other modes have been added for user ease.

3.3. Freeze Mode
It is common during many movements of articulated

bodies that some parts of the body remain locally stable. For
example, in reaching movements the legs and hips may remain .
stable, and during walking the head usually is directed forward.
Because of the complex interplay mentioned above, it is
difficult to find the sequence of forces or torques that will
ensure local stability. A simple solution to this is to simulate
the stabilizing torque (or force) with a tight spring and damper
clamped about the local position. This can be viewed as a tem
porary change in the range of the joint end limits.

3.4. Balance Mode
While automatic response to gravitational forces make

certain motions easy to simulate, this can create problems with
coordinated movements. For example, walking no longer
becomes a question of merely manipulating the legs in the
proper sequence, but also of balancing the upper part of the
body to keep it from falling over. A simple way to achieve
balance is to describe a world-space orientation vector for par
ticular segments, such as the trunk, and apply an external
applied force to counteract any motion away from this orienta
tion. Experimentation shows this technique is acceptable in
limited cases; whether it will provide realistic balance in all
cases has not been explored in depth.

3.5. Hybrid K-D Mode
The freeze and balance modes do help with some of the

motion control problems introduced by dynamics, but leave the
major problem of determining forces or torques for controlled
motion, rather than just stability. An approach to this problem
that has been reasonably successful is to describe the desired
motion in kinematic terms, as kinematic control functions
specifying rotation (for revolute joints) or translation (for slid
ing joints) over time. The exact same Virya interactive inter
face can be used; the interpretation of the control functions
merely changes.

These kinematic descriptions are then used to find the
forces and torques applied at specified degrees of freedom.
The method used to find these forces and torques is trivially
simple, but surprisingly effective. The equations used are

delp = des yos - pos

delv = delp Ideltime - vel

f t = delv * m Ideltime

For sliding joints, delp is the difference between the desired
position at the next time sample (des y os) and the present
position (pos). delv is delp divided by the time between sam
ples (deltime) minus ~lle present velocity (vel), in other words,
the amount the velocity must be altered to achieve the desired
position at the next time sample. ft is the estimated force that
must be applied to achieve this, and m is the mass of the seg
ment distal to this degree of freedom. For revolute joints, the
same formula is used but the velocities are angular, ft is a
torque, and m is a moment of inertia. Probably because

Graphics Interface '86

- 143 -

dynamic analysis is done from 3 to 30 times as frequently as
images are displayed, no feedback is needed to achieve smooth
motion.

The advantage to this method is that the user can enter
motion directions in the intuitive kinematic form for those
joints whose particular motion is known (or desired) and yet
retain the advantage of dynamics.

3.6. Pure Kinematic Mode
Kinematic mode is separate from the dynamic animation

package. Deva can operate as a strictly kinematic animation
system, in which case the control functions specified by Virya
are taken to represent the actual desired motion for all degrees
of freedom. The dynamic analysis routines are entirely by
passed and fast kinematic animation is possible.

4. Virya User Interface
The Virya screen (see Figure 1) consists of three regions.

The lower half of the screen contains small joint windows
representing each degree of freedom of the system. The upper
right quadrant consists of a menu of commands for designing
and saving control functions. The upper left quadrant is a large
window where control functions can be viewed and altered.
The user selects menu items or designates points on the screen
by using a graphics tablet and puck. Virya runs on an Evans
and Sutherland PS300/340 graphics system.

Each joint window contains a label identifying the degree
of freedom represented there; e.g. "J4 elbow (1) rz" refers to a
z-rotation of the elbow (joint number 1). The line through
each window joins the control points that define the curve
representing motion control information for that degree of free
dom. The user can alter these control points and thus define
the shape of the motion control function. By specifying more

or fewer points and spacing them differently, such control
functions can be used to control both the path of the motion
and its velocity (kinematics) or the strength of the force or
torque applied (dynamics).

The menu consists of 110 commands, joint commands,
vertex commands, and miscellany. The 110 commands are
LOADBODY (input a body description including segments,
joints, degrees of freedom, and present configuration); LOAD
(input a previously created Virya file containing motion control
information); and SAVE (save the present motion control
description in a file) . Joint commands are SHOWJ (bring a par
ticular control function into the large window); COPYJ (copy
the control function for one degree of freedom to another) ;
ACTIVEJ (designate one control function as modifiable);
REDRA WJ (redraw the active control function); and CURVEJ
(use the control points to create a cubic interpolatory spline
curve). The vertex commands all refer to the degree of free
dom that has been designated "active" . They are INITV,
ADDV, DELV, MOVEV, and LOCV. INITV initializes the
control function to a horizontal line along the time axis.
ADDV, DELV, and MOVEV add, delete and move control
points defining the control curve. LOCV gives the exact
numeric value of a point on the screen. The miscellaneous
commands are CONFIRM (confirm a change); QUIT (leave
Virya); and TABLET (a binary switch between inputting con
trol points from the terminal or from the graphics tablet).

Vision Interface '86

- L44 -

The DKFRB (dynamic I kinematic I frozen / relaxed I bal
anced) option allows the user to designate control modes for
each degree of freedom and a time span during which the
modes are in force. The default control mode for dynamics is
dynamic mode.

Virya motion descriptions are stored in an ascii file
(which under present conditions makes up for space consump
tion with user convenience); part of a sample file is shown in
Figure 3.

S. Use of Virya with 3·D Keyframing

Because motion of a complex articulated body such as a
human figure is sometimes difficult to visualize in terms of
angular or translational motion of individual degrees of free
dom, it has been found convenient to initially define the motion
as a series of keyframes developed by interactively positioning
the body on the screen using Deva. A sequence of key frames
with the times they should occur are stored in an ascii file (part
of such a file is shown in Figure 2). These files can be con
verted to Virya control function files and used to generate
control curves which are sampled to drive the animation or
called into the Virya editor for modification.

These key-frame-derived control functions initially place
all degrees of freedom in hybrid K-D mode, but because this
almost completely constrains the motion, there would be little
point in doing dynamics. Typically the user modifies this file
placing many degrees of freedom into relaxed, frozen, or bal
anced modes to allow dynamics to fulfill its purpose of adding
realism.

6. Sample Session

A simple session using Virya will be described to illus
trate its use. First, the user enters the animation system Deva
and calls up a previously stored figure, in this case the 24-
degree-of-freedom human figure foe. Using dials and the key
board, five key frame configurations for Joe are found. These
configurations are to occur at 0, 3, 6, 7, and 8 seconds in the
animation. They are stored in ascii form in a key frame file
shown in part in Figure 2. The lines with a single number
represent the times when the key frames occur, and the follow
ing numbers are positions for each degree of freedom of
motion at that time.

The key frame file is converted using Deva to the format
needed for interaction with Virya. In the keyframe file, posi
tions are grouped by the times when they occur; in the Virya
file they are grouped by degree of freedom. Figure 3 shows
part of the Virya file originally derived from the key frame file,
but . somewhat modified using Virya. Following the control
positions (taken from the keyframes) for each degree of free
dom are definitions of the states, or modes, over time. Initially,
when the file is created from a key frame file, all degrees of
freedom are in the hybrid K-D mode (K) during the default
time span (0-100 seconds). (The 4 numbers after the time span
are only used in balance mode, where they represent the posi
tion vector and the amount of deviation from it allowed.) Dur
ing the motion described (lifting the legs and swinging the
arms), many degrees of freedom (such as the waist) are frozen
into their local configuration and others (such as the right knee)
are relaxed. The modes of these joints are changed from the
default K-D mode.

Graphics Interface '86

This Virya file was used to drive dynamic analysis and the
resultant, predicted motion stored in another, similar Virya file.
This second, output file is a kinematic description of the
dymlInically predicted motion, and was sampled to produce the
animation shown in Figure 4. Keyframes are approximately in
locations (0,0), (1,3), (3,0), (3,2), and (3,5) (row major order).
(Act\lal dynamic analysis was do~e 300 times per second; not

. all of these configurations are stored for the kinematic descrip
tion and display.)

i. Conclusions

The interactive graphical editor Virya is used to design
and store motion control commands for kinematic or dynamic
4llimation using control functions and control modes. For
lcinematic animation, the user designs control functions
representing positions over time for each degree of freedom.
For dynamic animation, control functions may represent either
lcinematic information (positions over time) or dynamic infor
mati()n (forces or torques over time). To alleviate some of the
control problems that accompany the advantages of dynamic
4llimation, the freeze, balance, and relaxed control modes are
also available. The kinematic output of dynamic analysis rou
tines and motion control information derived from other
I!igher-level control methods can be stored the fonn of Virya
data files. This format is convenient for low-level modification
and sampling for animation generation.

References

]_ William W. Annstrong and Mark Green, "The Dynamics of
Articulated Rigid Bodies for Purposes of Animation," pp. 407-
415 in Proceedings of Graphics Interface '85, Computer
Graphics Society, Montreal (May, 19S5).

2. Brian A. Barsky and Spencer W. Thomas, "TRANSPLINE
A System for Representing Curves Using Transformations
among Four Spline Formulations," The Computer Journal,
Vol. 24, No. 3, August, 1981, pp. 271-277.

3_ Richard H. Bartels, John C. Beatty, Brian A. Barsky, An
Intr()duction to the Use of Splines in Computer Graphics,
Tecllnical Report No. UCB/CSD 831126, Computer Science
Division, Electrical Engineering and Computer Sciences
Depilrtment, University of California, Berkeley, California,
USA (August, 1983).

4. Michael Girard and A. A. Maciejewski, "Computational
Modeling for Computer Generation of Legged Figures," pp.
263-270 in Proceedings of ACM SIGGRAPH '85, 19, San
Francisco, Ca. (July, 1985).

5. Patrick Hanrahan and David Sturman, "Interactive Anima
tion of Parametric Models," pg. 102-111 in course notes for the
tutorial in Introduction to Computer Animation, ACM SIG
GRA.PH '85.
6. Doris H. U. Kochanek, Richard H. Bartels, and Kellogg S.
Sootl!, A Computer System for Smooth KeyfTame Animation, .
University of Waterloo, Waterloo, Ontario (December 1982).

7. T. 1. O'DonneJJ and Arthur J. Olson, "GRAMPS - A Graphi
cal Interpreter for Real-Time Interactive Three-Dimensional
Picture Editing and Animation," pg. 133-142 in Proceedings of
ACM SIGGRAPH' 81,15, Dallas, TX (July 1981).

8. Frederic Parke, "Parameterized Models for Facial Expres
sion:' IEEE Computer Graphics and Applications, 2, No. 1
(Nov-ember 1982), pg. 61-68.

Vision Interface '86

- 145 -

Figure I. The Virya Screen

~ l(lI"J I ..

~
~ .

~ ..
-
~

JO

-- -
0 .' '4 101 t Ill'"

II }I

.. .. ,. 10 ' 0' .. "" . -"
J/ I I

•• _ I. l Ot 0' tt 1""_'
11 Jt

1------ -
• 1' . 0 ' f I o. ," '"

11
' 1101

• 1' • • III 0' ., , . , 'u •

II III

0" .f . /. .. 0" U I •• '

Figure 2. Partial Keyframe File

0.000000
180.000000180.000000180.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 -180.000000 0.000000
0.000000 0.000000 -180.000000 0.000000
0.0000000.0000000.0000000.000000
0.0000000.0000000.0000000.000000

3.000000
180.000000180.000000180.0000000.000000
0.0000000.0000000.0000000.000000
0.000000 0.000000 -150.000000 0.000000
30.000000 0.000000 -210.000000 0.000000
25.0000000.000000 30.000000 0.000000
0.000000 0.000000 0.000000 0.000000

6.000000
180.000000 180.000000 180.000000 0.000000
0.0000000.000000 0.000000 0.000000
0.0000000.000000 -210.000000 0.000000
30.0000000.000000 -180.000000 0.000000
25.000000 0.000000 0.000000 0.000000
0.0000000.0000000.0000000.000000

11/

." ,u ., cH

III

ot" ," '0'"
114

d' 1" ,. ,"
III

.. , ,., , .. "
11

•• 1 U, ' 0 "
)01

• ," 11 0' ,,, •

Graphics Interface '86

'1'IY

AOOY

OilY

~OY[Y

IUl"

lOCY

/11

.f' et 11 _.t.
JOt

_t' .. " ••• ,
1/.

• f' 11" _""
JII

.. , ,."
Illl

,., ,14, ''''
III

I .. I U , ,,,.

5"OMJ LOAO

coPt J 5U[

At"Y[J OA0800'

I[OIUJ ~u"

CUII[J lUL!l

Olf'U

1/' n.

'" 11'1."
m JlI

If' UtI '"
}It JlI

I.' ,." ..
JII

1111

II1

JII

Ill<

III

Figure 3. Partial Virya File

dof 18 Pjnt 7 Type 0 Numv 5 Lhipr
Control 0.000000 0.000000
Control 3.000000 0.523599
Control 6.000000 0.000000
Control 7.000000 0.000000
Control 8.000000 0.000000
States K 0 6 0 0 0 0
States F 6 8 000 0
Q

dof 19 Pjnt 7 Type I Numv 5 L hipr
Control 0.000000 0.000000
Control 3.000000 0.000000
Control 6.000000 0.000000
Control 7.000000 0.000000
Control 8.000000 0.000000
States F 0 8 0 0 0 0
Q

dof 20 Pjnt 8 Type 0 Numv 5 L kneer
Control 0.000000 0.000000
Control 3.000000 0.000000
Control 6.000000 0.000000
Control 7.000000 0.000000
Control 8.000000 0.000000
States R 0 8 0 0 0 0
Q

Vision Interface '86

- 146 -

9. Craig Reynolds, "Computer Animation with Scripts and
Actors," in Proceedings of ACM SIGGRAPH '81, 15, Dallas,
TX (July 1981).

10. Craig Reyno1ds, "Description and Control of Time and
Dynamics in Computer Animation," pg. 289-296 in course
notes for the tutorial in Advanced Computer Animation, ACM
SIGGRAPH '85.

11. Scott Steketee and Norman 1. Badler, "Parametric Key
frame Interpolation Incorporating Kinetic Adjustment and
Phrasing Control," in Proceedings of ACM SlGGRAPH '85,
19, San Francisco, CA (July, 1985).

12. David Stunnan, "Interactive Keyframe Animation of 3-D
Articulated Models," pg. 102-111 in course notes for the
tutorial in Introduction to Computer Animation, ACM SIG
GRAPH '85.

13. Jane Wilhelms and Brian A. Barsky, "Using Dynamic
Analysis for the Animation of Articulated Bodies such as
Humans and Robots," pp. 97-104 in Proceedings of Graphics
Interface '85, Montreal (27-31 May 1985).

14. Jane Wilhelms, Graphical Simulation of the Motion of Arti
culated Bodies such as Humans and Robots, with Special
Emphasis on the Use of Dynamic Analysis, Electrical
Engineering and Computer Sciences, University of California,
Berkeley, CA (July, 1985).

15. Jane Wilhelms, "Using Dynamic Analysis for Realistic
Animated Motion," submitted for publication 1986.

16. David Zeltzer, "Motor Control Techniques for Figure Ani
mation," IEEE Computer Graphics and Applications, 2, No. 9
(November 1982), pg. 53-59.

Figure 4. Dynamic Animation Based on Virya File

It o

-~--.... --.... --L_ ... -
Graphics Interface '86 Vision Interface '86

