
- 152 -

Kodellng and Anlaatlng
Three-Dimensional Articulate Fiaures

Danny G. Cachola
Gunther F . Schrack

The University of British Columbia
Vancouver, B . C .

ABSTRACT

This paper describes a method for representing
and animating three-dimensional articulate
figures. It permits the definition of a model
consisting of segments and joints, and the
specification of the model's motion at a high
level of abstraction by the use of a structured
programming language.

RESUME

Cet article a pour but de decrire une methode de
representation et d'animation de modeles
articules en trois dimensions. L'article
propose d'une part, la definition d'un modele de
segments et d'articulations et d'autre part, la
precision du movement de celui-ci a un niveau
eleve d'abstraction en utilisant un langage
structure de programmation.

KEYWORDS: Computer animation, figure modelling,
movement representation

1.0 INTRODUCTION

Many advances have been made in computer
animation in the last few years, especially in
the area of figure modelling and motion
specification. Several methods have been
proposed including the modelling and control of
figures using procedures (procedural modelling)
[7], the control of a physical model by the
application of forces (dynamic modelling) [1],
the use of goal-directed systems for the
generation of a model's motion [5,10], and the
use of key frame animation [3], one of the
oldest animation techniques still in use.

A ,different approach for the modelling of a
three-dimensional articulate figure and the
subsequent control of its motions will be
presented here. It permits a user to define a
model (representing a real three-dimensional
figure) consisting of segments and joints [11],
and to specify the desired motion of its joints
using a high-level structured programming
language. The problem of figure modelling and
motion specification is dealt with in terms of
kinematics: the study of poSition (displacement)

Graphics Interface '86

and its time derivatives
acceleration). Considerations of
(dynamics) [4,9], balance [8],
avoidance [6] are beyond the
discussion.

2.0 DESCRIPTION OF MODELS

Before an attempt is made
desired motion for a model,

(velocity and
force and mass

and obstacle
scope of this

to specify a
a method for

specifying the model must be avaLlable. The
model's individual rigid links (segments) are
un spec if ied in this study. It ' is assumed,
however, that the model's links can be defined
as graphical objects, using a high-level
graphics language, before the model is
constructed.

2.1 DESCRIPTION OF JOINTS

A jOint has up to three degrees of freedom,
that is, it can be rotated about each of the X,
Y, and Z axes. Joints may be restricted to one
or two degrees of freedom by permitting the
joint to rotate about only one or two of the
axes. Thus, simple joints sHch as fingers
(hinge joints), and complex joints, such as
shoulders (ball-and-socket joints) can be
simulated. A joint connects only two links. A
joint can move independently of all other
jOints, hence the position of one joint does not
affect the motion of another. Tbe links are
restricted in their movements about a joint.
During a Single joint's movement, one link (the
primary link), is considered stationary and the
second link (the secondary link) DOves with
respect to the stationary link. A single link
can function as both a primary link and a
secondary link if it belongs to two or more
different joints. One link, the DOdel's main
link, is singled out from the others. All
movement ultimately refers to the main link.
Only one link may be deSignated as the main link
and it must be the primary link in all joints it
belongs to.

Each instance of a joint is aSSigned a
unique identifier to permit subsequent motion
specifications. The user may place restrictions
on the range of angles through which a link may
t =avel and may specify where the two links are

Vision Interface '86

- 153 -

to be joined. A typical statement creating an
articulate joint is

JOINT jOint identifier,
primary_link, relative_location 1,
secondary_link, relative_location_2,
x_extremes, y_extremes, z_extremes

where 'joint identifier' is the unique identifier
for this instance of a joint; 'primary_link' and
'secondary link' may be either previously defined
graphical objects (which have been defined in
independent coordinate systems) or submodels.
'primary_link' i s the stationary link with which
'secondary link' moves. 'relative location l'
and 'relative location 2' are vectors which
contain the relative POsitions, to each of the
graphical object's coordinate system, where the
joint is to be attached. The extreme parameters
are component vectors which store a pair of
extreme angles beyond which the jOint can not
move. Extremes, as well as the · joint's current
angles, are given relative to the jOint's
predefined neutral poSition of (0°, 0°, 0°) .

2.2 INTERNAL REPRESENTATION

The model of an articulate figure is
described by a tree structure of nodes and arcs.
Links are represented by nodes and the joints
are represented by arcs. Each segment is
defined on its own local coordinate system
[2,5,10]. The nodes of each level move with
respect to the nodes of the higher level and are
considered stationary by the nodes below. The
nodes at the leaves of the tree represent the
outermost extremities of the model; the root
node is considered the main link . Figure la is
an example of a partial model of a human figure.
Figure lb contains the model's tree structure.
If a root node is no longer required to act as
the main link, a new node can be assigned to
that role by the statement

It is possible,
with a different

Link - >

Joint - >

therefore, to animate a model
main link in different scenes.

<- Hand

Figure la

Graphics Interface '86

(- Root node (Torso)

(- Hand

Figure lb

a) Partial model of a human figure
b) Model's tree structure

Each node is associated with at least one
arc, as in the case of the extremities which are
secondary links. Typically, there are two arcs
associated with each node, corresponding to a
link (such as the femur of a leg) which acts as
both a primary and secondary link. However, a
node may have three or more arcs associated with
it, as with the hand, which has six arcs (one
representing the wrist joint, the other five
representing the finger joints) . A node may
have at most n arcs associated with it. The
branching factor n is theoretically u~limited,
but a factor of 10 is deemed sufficient to
define most articulate figures.

The tree structure permits the
representation of open kinematic chains only. A
kinematic chain is a linear sequence of links
which are connected by joints. In an open
chain, one end point is fixed and the remaining
chain is allowed to move freely, as in Figure
2a. In a closed chain, more than one end point
is fixed in space, as in Figure 2b. For
example, if two hands are joined together and
the arms are allowed to move while keeping the
body motionless, a closed kinematic chain is
formed by the arms. The motion produced in such
a chain is more complex to analyze and is beyond
the scope of this discussion.

Figure 2a Figure 2b

a) Open kinematic chain
b) Closed kinematic chain

Each model has a table associated with it.
The table contains information from the
declaration of the model, in particular, the

Vision Interface '86

- 15 4 -

identifier, the rotational extremes associated
with each degree of freedom, the current
rotational angles of each degree of freedom, and
the instantaneous velocity and acceleration of
the joints along each degree of f r eedom . The
table describes the model completely at all
times.

2 .3 MODEL DEFINITION USING SUBMODELS

An articulate model can be defined using
two basic techni ques . The first allows the use
of -articulate submodels. Instead of simply
using static graphical objects for each link,
the secondary link can consist of a grouping of
other links and joints, which permits the
creation of intermediate models or submodels
that can be referenced frequently. The
statement

arm := JOINT 2, humerus, (loO, 5 . 0, 1.0) ,
forearm, (0.0, 0.5, 1. 0) ,
(00, 1350) , (00, 180°)

of a
at the

model

creates a model of an arm consisting
forearm and a backarm (humerus) joined
elbow. The secondary link (forearm) is a
i tself, consisting of links and joints.
relative location vector for the secondary
is given with respect to the main link in
model ' for earm'.

The
link
the

An advantage of this method is t hat
symmetric models can be created with fewer
statements. For example, creating a model of a

human body first entails the creation of
submodels for the right arm and the r ight leg.
Once defined, each submodel can be duplicated
and joined to both the right and left half of a
human torso. A separate set of left limbs need
not be defined . A problem arises here, however.
The values of the joint identifiers should not
be duplicated for the right hand and l eft hand
l i mbs , or else the two sets of limbs will behave
identically. Thus, the submodel joint
identifiers must be modified before t he
submodels can be connected to the torso, to
ensure unique identifiers . Cons i der the
statement

arm : = JOINT 2, humerus, (1.0,5.0,1.0) ,
forearm <TRANS BY 10>,
(0.0 , 0 . 5, 1.0) ,
(00, 1350) , (0°, 180°)

of an arm consisting of a
(humerus) joined at the
link (forearm) , whi ch was
an articulate model whose

which creates a model
forearm and backarm
elbow. The secondary
previously defined, is
joint identifiers have
range of identifiers
identifier 10.

been mapped onto a new
starting with the

2.4 MODEL DEFINITION BY CONSTRUCT

The submodel approach may produce temporary
models unnecessarily . -For this reason, an
alternate technique for creating models is
provided which assumes that none of the model's
subcomponents is required subsequently. This

Graphics Interface '86

method creates only the resultant
intermediate articulate model s .
construct is an example

model with no
The f o Howing

MODEL arm
JOINT I, palm, (0. 0 , -3 . 0 , 1.0) ,

li t tle, (0 .0, 1. 5 , 0 . 5) ,
(-90°, 45°) , (-45°, 4 5°)

JOINT 2, pal m, (0 . 0, -3.0, 2.0) ,
ring, (0.0, 1. 5 , 0.5),
(-90°, 45°) , (-45°, 45 ")

JOINT 3, palm, (0.0, -3.0, 3.0) ,
middle, (0 . 0, loS, 0.5) ,
(-90°, 45°) , (-45°, 45°)

JOINT 4, palm, (0 . 0, -3.0, 4.0) ,
index, (0.0, 1.5, 0.5) ,
(-90°, 45°) , (-45°, 45 "')

JOINT 5, palm, (0.0, -3.0, 5 . 0),
thumb, (0 .0, 1.5, 0.5) ,
(-90°, 45°) , (-45°, 45"')

JOINT 6, ulna, (0.0, -5.0, 1. 0) ,
palm, (0.0, 3.0, 1. 0) ,
(-90°, 0°) , (-25°, 25°)

JOINT 7, humerus, (0.0, 5 . 0, 1. 0) ,
ulna, (0.0, 0.5, 1. 0) ,
(0° , 35°) , (0°, 180°)

ENDMODEL

If the model ' hand' comprLsLng
joints has been defined prior to

MDDEL construct, then the model
be simplified:

the f i rst:
the use of
definition

MODEL arm
JOINT

JOINT

ENDMODEL

6, ulna, (0.0, -5.0, 1.0) ,
hand, (0.0, 3.0, 1.0) ,

(-900, 0°) , (-25°, 25°)
7, humerus, (0.0, 5.0, 1. 0) ,

ulna, (0.0, 0.5, 1.0),
(0°, 35°) , (0°, 180°)

3 .0 DESCRIPTION OF MOTION

five
tile
can

A model can be animated by a number of
different approaches. Conventional animation
relies heavily on two-dimensional t echni ques such
as key frames and interpolation
("in-betweening"), while computer ani.mation
usually expresses position and velocity as
functions of time. Key frames are the frames
used to provide the i nformation which express
t:he proper effects of movement . In animation
studios, key frames are drawn by the head
animators, while the frames requi red to create
the smooth animation are produced by the in­
betweener s.

One of the earlier approaches to computer
animation consisted of having the computer
assume the role of the in-betweeners [3J . While
some very effective animations have been
achieved, in-betweening is two-dimensional i n
origin and awkward to apply to three-dimensional
figures. In-between frames are f r eguently
linearly interpolated, resulting in temporal
discontinuities and movements which only
approximate actual trajectories, t hus, deforming
the animation .

Vision Interface '86

- 155 -

Functions of time are evaluated on a frame­
by-frame basis which involves specifying a path
over time. This method has the advantage of
producing motion with few temporal
discontinuities. The description of a three­
dimensional path as a function of time, however,
is generally a difficult task.

3.1 MOTION SPECIFICATION

The proposed approach for motion
specification treats motion somewhat differently
than either the key frame or functional
technique. Whereas key frame animation views a
figure with an external perspective and the
functional approach views a figure from a
piecewise perspective, the proposed technique
treats the model as a unit and views it from an
internal perspective (i.e. from the model's
point of view). Therefore, a model's positional
orientation can be specified throughout time.
Similarity exists with key frame animation since
key frames or positional extremes are used
throughout time, however, each of the model's
joints is employed and dealt with on a high
level of abstraction, thus allowing more
flexibility in the model's animation.

The motion for a single joint is specified
by the joint identifier, an initial starting
poSition (angle), and a set of key frames
(movements). Each movement contains the frame
identifier at which the movement is completed,
the poSition (angle) of the joint at the frame,
and the interpolation method used to reach this
positional extreme.

The position angles relate to a neutral
poSition, arbitrarily defined as (0°, 0°, 0°) .
The neutral position is defined with respect to
the primary link in the jOint. The frame
identifiers represent the number of ticks (units
of time) which have passed during the motion
sequence. The frame identifiers are given with
respect to the start of the motion
specification. The initial frame is arbitrarily
assigned the value of zero. The interpolation
techniques available are: linear, acceleration,
deceleration, and a combination of both
acceleration and deceleration .

The parameters above are sufficient to
specify a single joint's movement throughout an
animation sequence. Temporal discontinuity
problems can arise if the interpolation method
is not chosen carefully. The system can avoid
these problems by determining a joint's
instantaneous velocity and acceleration before
the interpolation, thus making adjustments to
the selected interpolation. This results in
smaller temporal discontinuities.

A complete motion definition for a model
consists of motion specifications for all of the
joints present in the model. The specifications
are independent of each other, therefore, there
may be different numbers of key frames for each
jOint. All the joint key frames must, however,
end at the same unit of time.

Graphics Interface '86

3.2 TREE TRAVERSAL

Before a model's tree structure is
traversed, the symbol table is updated with each
joint ' s current positional angle, and its
current velocity and acceleration. This
information is obtained from both the motion
specification and the ~nterpolation routines.
The tree structure is completely traversed each
time the model is displayed (i.e. once each
frame). The traversal algorithm is a simple
recursive post-order routine. It assembles each
model's instance (from the extremities inwards)
with respect to the main link in the model. The
resulting instance is displayed by the high­
level graphical language. Recursive routines
are employed in the tree traversal because they
allow storage of the the model's primary­
secondary link relationship in the recursion
stack. Also, they allow the use of the same
routines on models whose main link (root) has
been changed.

3.3 EXPLICIT DEFINITION

A motion can be specified using different
approaches. There are two different methods for
explicitly defining a motion. The first
technique involves the use of a construct for
the definition of a motion. A typical example
is

MOTION motion name
JOINT joint_id

POSITION angle_x, angle_y, angle_z
FRAME frame id

POSITION angle x, angle y, angle z
INTERPOLATE interpolation_technique

FRAME frame id
POSITION angle x, angle y, angle z
INTERPOLATE interpolation_technique

ENDJOINT

JOINT jOint_id
FRAME ...

ENDJOINT

ENDMOTION

With the construct, the exact definition of
the motion can be specified. 'motion_name'
names the set of joint-motion specifications.
The joint identifiers correspond" to those
defined in the model. Each jOint can have at
most n key frames, where n is a predetermined
value. The construct permits a structured
approach to producing a motion specification.
It, however, does not provide for the use of
other control constructs.

A less structured method is also available.
A typical example of the definition technique is

motion name [joint_id, key_frame_id) :=
FRAME frame id

POSITION angle x, angle y, angle z
INTERPOLATE interpolation_technique

Vision Interface '86

- 156 -

The approach allows direct access to the motion
variable. It can be employed within other
constructs and it permits the use of iteration
to produce the motion specifications, thus
reducing the number of statements needed and the
amount of work needed to define the
specifications.

3.4 IMPLICIT DEFINITION

Once a motion has been defined, the
specification can be viewed as a unit (motion
primitive), thus it can function as a building
block for the definition of more complex
motions. A primitive motion algebra has been
introduced for this use . For example, to create
a motion which enables a human model to hop,
skip, and jump 10 times, the following statement
can be used:

new_walk := 10 * (hop + skip + jump)

'new_walk ' is the resulting action.
'skip', and 'jump' are previously
motions which allow a model to hop,
jump respectively. The constant 10
repetition factor that is applied to the
'hop', 'skip ' , and ' jump'.

'hop',
defined

skip and
is the
actions

This technique relies heavily on the
availability of predefined motion primitives.
It is recognized that the explicit definition of
such primitives can be both difficult and time
consuming, therefore, operations have been
introduced which allow a more convenient
definition of the motion primitives. For
example, if a motion primitive (walk) exists
which allows a model to walk, it may be
desirable to employ the action of the legs in a
different motion. The operation STRIP has been
introduced, which creates a partial motion
primitive from a given motion. In t he statement

walking_legs := STRIP walk,S, 6, 7, 8,

'walking_legs ' is a new
when applied to a model,
values 5, 6,7 , 8,
identifiers present in
this method, several
created ·that animate
model.

motion primitive
animates the legs.

which
The

joint
USing

can be
given

... , are the
the model ' s legs.

motion primitives
only portions of a

The operation SYNCHRONIZE has been
introduced, which when given a set of partial
motions, creates a new motion that animates
portions of the model concurrently. The
statement

defines
causes
arms.
number
higher

my_walk := SYNCHRONIZE walking_legs,
swinging_arms

a mot i on primitive (my_walk)
the f i gure to walk while swinging
This approach allows an increase in
of motion primitives, but at a

lavel of abstraction.

which
its
the

much

Such an approach to the creation of motion
gives rise to a large number of operations which
can tailor motion primitives to the needs of the

Graphics Interface '86

current animation sequence. Possible operations
include a scaling factor which stretches or
shrinks a motion primitive temporally, a scaling
factor which modifies the amplitude of a
motion's movement, and a negation which reverses
the order of the movements present in a motion
primitive. These operations, as well as the
operations and +, have the advantage that
intimate knowledge of the model's structure and
motion definitions are not necessary. They
allow the use of motion at a high level of
abstraction.

3.5 USE OF A MOTION DEFINITION

Once a model is created and motions have
been specified, a model can be animated.

ANIMATE model name FROM start frame TO end_frame
USING-motion_name -

The frame identifiers
start of a scene. If
the entire animation
automatically repeat
covered.

are given relative to the
the motion does not span

sequence, the motion will
until the time span is

Several models of a class (i.e. models of
identical structure) may be animated by the same
motion . Models of the same class and with
different-sized links will react identically.
Models with an equal number but with different
types of joints can still be driven by these
motion specifications, however, the resulting
model movements may be difficult to predict.
The models place restrictions on their
movements . For example, if a rotation is
employed which violates a joint ' s extremes, the
joint will enforce its extreme rotation limits
over the motion specification given. This
allows two models of the same class, but
different restrictions, to behave realistically
using the same motion set.

Once all elements for a scene have been
defined, it can be explicitly specified with
static and dynamic components . A typi cal
statement creating a scene is:

SCENE scene_identifier
DISPLAY background,
DISPLAY any static models

ANIMATE model_name FROM . •. .
ANIMATE any dynamic models

movements which vary with time
(camera movements, panning,
zooming, etc.)

END SCENE

The resulting scenes
s t atement:

Vision Interface '86

are displayed by the

- 157 -

SHOOT SCENES

The scenes are displayed in sequential
order ranging from the lowest scene identifier
to the highest one. The use of scene constructs
is advantageous because the animation sequence
can be broken into a set of independent scenes,
thus allowing its construction on a piecewise
basis. The creation of independent scenes also
permits changes in the scene ordering without
any knowledge of the frame identifiers involved.

4.0 ENHANCEMENTS

The system is designed as an extension to a
host language, to be executed in a batch
environment. A preprocessor translates all
extended language statements into procedure
calls. Other implementations, e.g. as a command
language to be interpreted by an executive
kernel, are possible. The batch environment
creates problems in the use of both predefined
models and motions. At present, these
definitions must be made at the beginning of a
program before they can be employed. Ideally,
there should be a method to save any models and
motions defined in a program. Therefore,
subsequent programs would need only load the
definitions for models and motions before using
them. This would allow the construction of a
library of models and their movements.

A problem with the use of library
definitions is that unless a user has defined a
model and its motions, or has previously worked
with them, it is difficult to determine how they
will appear. It would be useful to have a
viewing utility which permits the viewing of
predefined models and motions in an interactive
environment. This would allow the user to
determine exactly what had been previously
defined and what further definitions must be
made in the program.

5.0 CONCLUSION

The project has several advantages over
existing systems. It permits the modelling and
animation of figures at a high level of
abstractions. Where many systems have problems
working with rotations, this system effectly
deals with rotations. The use of rotations
enables the creation of generalized motions
which can be applied to more than one model,
while motion specifications using paths and
forces can only be used on the specific models
for which they were designed. Interpolation
currently works with articulate figures at the
point level since it only has access to the two­
dimensional projection of a figure. The
approach presented deals wi th interpolation on a
rotational basis (i .e. the rotational extremes
correspond to the key frames in two-dimensional
interpolation) , thus allowing the animation of
three-dimensional figures.

Graphics Interface '86

6.0 REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Armstrong, W.W. and M. Green, The Dynamics
of Articulated Rigid Bodies for Purposes
of Animation, Graphics Interface '85, 1985,
pp. 407-415.

Badler, N.I. and
Representations of
Computing Surveys,
pp. 19-38.

S .. W. Smoliar, Digi tal
Human Movement, AOI

Vol. 11, No. 1, 1979,

Burtnyk, N. and M. Wein, Computer-Generated
Key-Frame Animation, Society of Motion
Picture + TV Engineers, Vol. 80, 1971,
pp. 149-153 .

Horn, B.K.P.,
Dynamics of
Artificial

Kinematics,
Two-Dimensional

Intelligence:

Statics, and
Manipulators,

An MIT
Perspective, Vol. 2, 1979.

Korein, J.U. and N.I. Badler, Techniques
for Generating the Goal Directed Motion of
Articulated Structures, IEEE Computer
Graphics and Applications, Vol. 2, No. 9,
1982, pp. 71-81 .

Perez, L. and M.A. Wesley, An Algorithm
for Planning Collision-Free Paths Among
Polyhedral Obstacles, Communications of the
AOI, Vol. 22, 1979, pp. 560-570.

Magnenat-Thalmann, N. and D.
Actor and camera Data Types
Animation, Graphics Interface
pp. 203-207.

Thalmann,
in Computer

'83, 1983,

McGhee, R.M., Control of Legged Locomotion
Systems, Proc 1977 Joint Automatic Control
Conference, Vol. 1, pp. 205-213.

Paul, R.P., Robot Manipulators, MIT Press,
Cambridge, Mass., 1981.

Zeltzer, D., Motor Control Techniques for
Figure Animation, IEEE Computer Graphics
and Applications, Vol. 2, No. 9, 1982,
pp. 53-59.

Zeltzer, D., Representation of Complex
Animation Figures, Graphics Interface '82,
1982, pp. 205-211.

Vision Interface '86

