
- 164 -

The Stochastic Modelling of Trees 

Alain Fournier 
Dauid A. Grindal 

Computer Systems Research Institute 
Department ()f Computer Science 

University of Toronto 
Toronto, Ontario 

M5S lA4 

ABSTRACT 

We present here a fast method for the modelling of 
trees which brings together two interesting tech
niques. The trees are modelled as convex polyhedra 
for the description of the gross. shape, and three
dimensional texture mapping is used for the detailed 
features. 

The "essential" volume of the tree is represented as 
the convex intersection of half spaces. The advantage 
of this representation is that it allows an adaptive 
level of detail in the display. We use a special algo
rithm for the display of the convex intersection which 
computes it directly in the frame buffer. The algo
rithm also allows the computation of intersecting 
polyhedra. 

To transform the convex polyhedra into a more realis
tic representation of trees, we use three-dimensional 
texture mapping to "modulate" the shape and the 
colour of the basic polyhedra. We then obtain an 
irregular non convex object, which is consistent in 
shape and general appearance regardless of the point 
of view and the size on screen. Three dimensional 
fractional Brownian motion is one of the procedural 
texture used. 

KEYWORDS: tree modelling, half space intersection, 
stochastic modelling, frame buffer algorithms, adap
tive modelling. 

RESUME 

N ous presentons ici une methode rapide pour le mode
lage des arbres qui reunit deux techniques 
interessantes. Les arbres sont modeles par des 
polyhedres conve~es pour la representation de la 
forme globale, et une texture a trois dimension est 
utilisee pour modeler les details . 

La forme "essentielle" de l'arbre est realisee par des 
polyhedres convexes, resultats du calcul de 
l'intersection de demi-espaces. L'avantage de cette 
representation est qu'elle permet un niveau adaptif de 
detail. Nous avons developpe un algorithme pour le 
calcul de l'intersection convexe directement dans la 

Graphics Interface '86 

memoire d'image. Avec une legere modification 
l'algorithme perm et le calcul de polyhedres qui 
s'intersectent. 
Nous transformons les polyhedres en · une 
representation plus realiste des arbres en utilisant le 
"mapping" d'une texture a trois dimension pour 
moduler la forme et la couleur des polyhedres de base. 
Nous obtenons ainsi un object non-convexe et 
irregulier, dont la forme et l'app!irimce generale est 
consistante independemment dupoint de vue et de la 
taille de l'arbre sur l'ecran. Le mouvement Brownien 
fractionel it trois dimensions est une des procedure de 
generation de texture utilisees . 

MOTS CLES: modelage d'arbres, modelage stochas
tique, intersection de demi-espaces, algorithmes de 
memoire d'image, modelage adaptif. 

1. Motivations 
Trees are obviously very important in the modelling 
of natural scenes and landscapes. PrQblems are caused 
by the large number of trees needed and their consid
erable variety of shapes. The main criteria for a good 
model are to be realistic, 'easy to compute (both in 
terms of the basic operations needed and of the time 
complexity), flexible (capable of generating the intra
and inter-species variations in shape), adaptive (gen
erating various level of details as needed) and com
pact. Of course, depending on the application, one or 
more of these criteria can be relaxed if not all can be 
met. The techniques used so far include grammar gen
eration systems [AoKu84, Smit84], particle systems 
[ReBI85], polygonal description plus two-dimensional 
texture mapping [Blo085] and simple volume primi
tives plus two-dimensional texture mapping [Gard84, 
Gard85]. The technique we will describe here, which 
is close in spirit to the ones used by Gardner, uses 
simple volume primitives (convex pol~hedra) co~
puted in the frame buffer associated WIth stochastlc 
three-dimensional texture mapping. Table 1 gathers a 
subjective evaluation of these different techniques 
with regard to the above criteria. A scale of 0 (not at 
all) to 5 (best possible) is used. 

Vision Interface '86 



- 165 -

Refs. Real. Easy Easy Flex. Adapt. Compact 
(ops) (time) 

[AoKu841 4 2 2 4.5 3 4 
[ReBl851 4.5 2 2 3.5 2 4 
[Bloo851 4.5 2 2.5 1 1 1 

[Gard841 3.5 2 3 2 3 4 

Here 2 4 4 .5 3 4 4 

Table 1. Subjective comparison of tree models 
To achieve flexibility, we will use a mixture of genera
tive techniques , as in [AoKu84, Smit84) and stochas
tic techniques, as in [FoFC82, Reev83 , ReBl85). The 
goal of compactness will therefore be achieved, since 
the actual description for each tree is very small. We 
will have to pay special attention to the problems of 
consistency, that is keeping the appearance constant 
as the level of detail, the point of view and the size on 
screen of the displayed objects are changed. 

It is highly desirable that the entire process of gen
erating, rendering, and colouring the tree(s) be done 
in a reasonable time and with moderate amounts of 
computing power. Since our goal here is not ultra
realism but a balance between realism and time, we 
hope to be able to approach the conditions for teal
time display. The system described here will not 
create images in real-time. However, it should be 
possible, with hardware and minor software improve
ments, to bring it close to or achieve real-time perfor
mance. 

2. The three-dimensional shape 
Primitives to model three-dimensional objects range 
from points to lines to polygons to higher degree sur
faces . Most of these have been used to model trees. 
Polygons, because they are linear objects, and because 
most rendering systems ultimately deal with polygons 
at the display level, are a tempting choice. They have 
many drawbacks, however . Many polygons are 
needed to represent a complex shape, such as of a 
tree, and they constitute a very inflexible model, hard 
to parametrise or modify adaptively. There is another 
representation scheme which has most of the qualities 
of polygonal models and some additional advantages. 
The volume of the tree can be represented as the con
vex intersection of half-spaces . A half-space is the area 
of space all on one side of a plane. Formally, a half
space HSi is the locus of points (x,y ,z) such that 
aix + biy + ciz + di ~ O. If several half-spaces are 
intersected, the result is V = n HSj or 

j 

V = {(X,y,Z) ER 3:Vi ajx+biy+ciz+di ~o} . This 

volume, usually enclosed, is convex, and its faces are 
all convex polygons. 
This form of representation is rather different from 
any conventional means of storing three dimensional 
polyhedra. The most radical departure from the norm 
is that it does not store the vertices of the polyhedra. 
The only entities stored are the equations of the inter
secting planes. 

Graphics Interface '86 

One benefit of storing planes is that there is added 
information stored in the equation. For the plane 
ax + by + cz + d = 0 the vector (a,b,c) is the normal 
to the plane. This fact will be used later, for the gen
eration of the trees. It turns out that by using the nor
mals, a user can create a wide range of trees easily 
and quickly . If the same normals and the same 
parameters are used, the procedure can also con
sistently generate the same tree. 
Another advantage of the half space representation is 
its flexibility. When the object is defined by a set of 
half spaces, it is possible to get a finer representation 
by splitting the planes. This splitting can be done to 
anyone plane, without greatly affecting the total 
volume or overall shape. With a polygon mesh it is a 
difficult process, because the criteria to merge and 
split polygons are not obvious, and a change can affect 
many polygon boundaries . 
This scheme has another (minor) advantage over the 
polygon mesh, in that the amount of storage needed 
for the same polyhedra is a little less. 

2.1. Generating the Tree 

Using the norma Is (ie planes) to generate the trees 
gives more freedom in generating trees randomly. 
Many schemes could be thought of for splitting nor
mals, in order to create a convex hull. In fact any 
grammar can drive the process. We will only describe 
one method here. 
The principle is illustrated by Figure 1. The existing 
normal N 1 defines the current plane P 1· The normal 
N1 will be split into N2 and N3. which will define the 
planes P2 and P3. It is desirable that the area, or 
volume, described by P2 and P3 be approximately that 
described by P1. There should be some "natural" 
breakdown of the normals so that the end result after. 
several splits, is roughly the same as the original 
plane. 
In addition to the manner in which a given plane is 
split in two, there is the further choice of which plane 
is to be split. There are many possible rules which 
could be followed here. The "oldest" plane could be 
split each time. A "lifetime" could be assigned to each 
plane, with a probabilistic chance of it being split 
when its life is over (the most likely probablily here 
would be a negative exponential), or planes could sim
ply be chosen at random . . In the system described 
here, the planes were split in generations . All ~he 
planes were split at each stage. Thus all the resultmg 
planes are of the same "age", and there are al~ays 
2n *N of them where n is the number of generations 
and N is the number of initial planes. This is 
equivalent to applying the production rules of a paral
lel grammar at each generation. 
The equation that governs the splitting of the normals 
can be read off of Figure 1. The normals should be 
split so that in the average case·, 

12cosa1 = 13cosa2 = \BC\ . 

Since this equality only holds in the average case, 

Vision Interface '86 



- 166 -

H 

Figure 1. Splitting the Normal 

WI'=/, 

IH2' =/2 

IH,I=I, 

there will be some random perturbation around the 
exact values. Even with this equation restricting the 
splitting method, there are still a great number of 
parameters to control. The following algorithm was 
used: . 

Step 1) 

Step 2) 

Step 3) 

Step 4) 

Choose point B. This point will be the ori
gin for the two new normals, N 2 and N 3' 
The parameters here are I-'B and Uc Point B 
will be chosen a distance down the normal 
from C: IBCI = 11 *I-'B + gaussO*uB' 
Choose the angles at which the new nor
mals will split from the present normal: 

al = I-'a + gaussO*u a 

a2 = I-'a + gaussO*u a 

Chose the length of the two new normals: 

12 IBCI/cosal + gaussO*uI*ll 

13 = IBC I/cosal + gaussO*u 1*11 

The lengths are designed so that the end of 
the normal is in the plane P l ' 

Reduce the angle at which the new normals 
are created: 

I-'a = I-'a *ratio 

u a = U a *ratio 

This maintains the user's control over the 
creation process . If the splitting angle were 
not reduced, then the normals resulting 
after two or three levels of recursion would 
have no resemblance to the original. 

Since the representation being used is that of convex 
intersection, it is possible for one errant plane to chop 
the tree in half. This occurs if a normal is split far 

Graphic. Interface '86 

enough away from its predecessor's original direction. 
The problem is roughly sitnilar to that of self
intersection in two dimensional stochastic interpola
tion.· Figure 2 demonstrates how this can happen if 
the normals split in just the wrong way. In fact, the 
problem occurs more often if the splitting is taking 
place in three dimensions (as is being done) instead of 
two dimensions (as is being shown). In the diagram 
the seven "outside" norma Is have been shortened for 
sake of clarity. 

Figure 2 The Effect of One Errant Normal 

In order to prevent this from occurring, one more res
triction is added to the creation process. The pro
cedure keeps only the normals that point "outwards". 
The algorithm ensures that if a normal's direction is 
into a certain octant, that the origin of the normal is 
also in that octant. If the normal is (a,b,c) and its 
point of origin is (x,y,z), then the normal is retained if 
and only if 

ax 2: 0 AND by 2: 0 AND cz ~ O. 

This process of pruning the normals is demonstrated 
in two dimensions by Figure 3. In this diagram, nor
mals a, b, and c would be retained, where er and e 
would be rejected. Using this pruning method it can 
be seen that an occurrence such as that in Figure 2 is 
not possible. This means that the convex hulls should 
be fairly well proportioned. One "bad" normal can not 
cut away half of the volume. 

The creation procedure lets the user define any 
number of normals to start. Empirically, it turns out 
that beginning with three to six normals gives the 
best results. This process gives a large amount of con
trol over the result. If the input included a long vec
tor, the result was usually a long thin tree . The input 
angles are additional parameters which permit wide 
control of the overall shape. In fact the sample space 
is large enough that it has not yet been full y explored. 

Vision Interface '86 



- 167 -

Figure 3 Example of Pruning the Normals 

2.2. The Half-Space Intersection Algorithm 

We now have a collection of planes to model the tree . 
What is needed is a visible-surface algorithm for the 
intersection of half-spaces. The problem of finding the 
convex intersection of half spaces has been explored 
by Brown, among others [Brow79l and is 9 (N). 
Although his .method was not a visible surface algo
rithm, it could be adapted to this purpose. However, 
Brown treated the problem as one of geometry, not of 
graphics, and his solution is in world space. A visible 
surface algorithm for convex intersection that uses the 
frame buffer was presented in [FoFu86l . It is similar 
in many ways to the standard Z-buffer algorithm used 
for many polygon based systems . In the terms of 
[FoFu86l, each pixel needs two registers . With a 
large frame buffer, providing enough bits for two 
registers is not too difficult as long as the stored 
values can be bounded. 

At the beginning of the algorithm, in Pass 0, the 
value of currenLback is set to the farthest possible 
value. This represents the background depth. The 
back-facing planes are scanned out first. If a plane is 
in front of the current farthest-forward back-facing 
plane, then that depth is stored for that pixe!. For the 
sake of clarity the equation for z was used in the 
description of the algorithm, but in practice the the 
depth value is calculated incrementally at each pixe!. 
Thus the calculation costs only one addition for each 
point . 

The same process is followed for the front-facing 
planes. Each is scanned out incrementally and at each 
pixel the depth is compared to the current depth. If 
this plane is further back than the old one, then it 
becomes the current depth . However, if the plane is 
behind the most forward back-facing plane, then that 
pixel is not in the convex intersection. This is indi 
cated by placing the same depth in both the current 
front and back registers . All the points at which this 
occurs are then set to the background colour in a 
quick Pass 3. Note that this third pass only scans the 
screen once, as did Pass O. 

The above procedure leaves on the screen the depth 
values for each visible point of the convex intersec
tion. A fourth pass coloured the polyhedron for the 

Graphics Interface 'S6 

purpose of Figure 4. 

Figure 4 Example of Convex Intersection 

There is one serious problem with the algorithm as 
defined: each plane must be scanned out across the 
entire screen. One can easily assume frame buffer 
hardware that accomplishes that in constant time. In 
fact this is very close to the algorithms used in Pixel
Planes [FGHS85l. As the current system was imple
mented with a general purpose graphics processor, 
this could be a limit on the performance of the algo
rithm. A way to avoid this extra work is evident from 
classic graphics algorithms. The polyhedron has some 
maximum and minimum x and y values on the 
screen. Simply "box" the polyhedron and only scan out 
the planes inside the box. Boxing the solid, however, 
leads to a new problem. The box is not quickly deter
mined from a set of plane equations. The solution we 
adopted is to create the box dynamically . The first 
plane or two will be scanned out normally. By the 
third or fourth plane, there will be scanlines on which 

Pass 0 
For all pixels 

currenL back MAXDEPTH 

Pass 1 
For each back-facing plane (c > 0) 

Pass 2 

_ a b d z - --x- -y - -
c c c 

if z < currenLback then 
currenLback = z 

For each front-facing plane (c < 0) 
a b d 

Pass 3 

z = -x- - y- -
c c c 

if z > currenLfront then 
if z < currenLback then 

currenLfront = z 
else 

currenLfront = currenLback 

For all pixels 
if currenLback =currenLfront then 

Colour = Background-colour 

Vision Interface 'S6 



- 1 68 -

no part of the convex hull can possibly be. For exam
ple a back-facing plane could have cut in to a depth 
less than zero (i.e. behind the screen). In practice this 
eliminates a great many scanlines from consideration. 
The same process applies vertically. If the equations 
of the original planes are retained, then some begin
ning box can be computed from these . Since the 
number of initial planes is small (from 3 to 6) this is 
easy, and it has only to be done once. Then as the 
program runs, the box will be shrunk dynamically. 
The combination of the two boxing methods is quite 
efficient. 
The half-space intersection algorithm then will take 
the output from the creation program to give a visible 
surface and depth values . The algorithm from 
[FoFu861 can be generalized to work on several con
vex hulls during the same run. The generalization 
only requires another register. This gives a total of 
three registers, which causes a problem for most 
frame buffers. As the entity stored represents depth, 
three registers in a 24-bit frame buffer means only 
256 units of depth per register . This is not a great 
deal of room to work with. But it is only a temporary 
hardware limitation. We expect most future frame 
buffers to be more generous in bits/pixels. In fact 
there are already some with 48 bits, like the Pixar 
[LeP084]. 

The multiple convex intersection algorithm works 
very much like the single. The polyhedra are pro
cessed individually. This takes up the same two regis
ters as before for currenLback and currenLfront. The 
difference is that after a polyhedron is finished, it is 
then merged with those already scanned out. At each 
point, the depth of the just created surface is com
pared to the depth of the surface already there, if any. 
The surface closer to the viewer is kept in the third 
register. It should be noted that this algorithm not 
only allows multiple convex hulls , but that the hulls 
may actually intersect each other and the correct 
result will be obtained. 

Figure 5 Example of Multiple Convex Intersection 

The algorithms described so far results in an adaptive 
convex polyhedral shape to be written into the frame 
buffer for each tree. To make this shape more realis
tic, several methods can be used. One is to use sto
chastic interpolation [PiF084, FoMi851 to "roughen" 
the hull by adding stochastic variations to the depth 

Graphics Interface '86 

of the visible faces. That will create rough (non
convex) edges, and possibly holes in the shape of the 
tree [Grin841. On other is to use three-dimensional 
texture mapping. This is the technique that will be 
described in the next section, but it should be noted 
that they can and have been used concurrently. 

3. Three-dimensional Texture Mapping 

Texture mapping in two-dimension is a simple and 
powerful idea that has a long history in computer 
graphics [Catm74, BINe76, Blin781 . More recently 
the idea was generalized to three dimensional texture 
[PerI85, Peac851t. What is needed is a texture solid 
and a method to map it to the screen. The textur~ 
solid can be created by any process desired, as in the 
two dimensional case for the texture tile. The cube 
can be pre-computed, run-time computed, hand-drawn, 
or digitized from a real image. The creation is a pro
cess separate from the mapping. The mapping itself is 
simple in principle. The face of the object to be 
mapped has a set of coordinate values for its position. 
At each point on the object face, the (x,y ,z) coordinate 
values are mapped into the (ij,k) values of the texture 
cube. 

One problem inherent to the idea of a three dimen
sional texture map is the sheer amount of storage 
necessary to hold the texture cube. One solution to 
the problem is to recognize that the frame buffer itself 
is a large block of memory. Assume a 32-bit frame 
buffer, not unreasonable by today's standards. This 
means that 32 bits of information are needed at each 
point in the cube. If the texture cube is stored in the 
top eight bits of each pixel , then four screen pixels 
store one texture pixe!. Thus a 32 X 32 X 32 bit tex
ture cube would take up (2 5)3*22 =2 17 screen pixels. A 
512 X 512 frame buffer contains 218 points . It can be 
seen that even a sizable texture cube stored only in 
the top bits will easily fit into the frame buffer. By 
taking only the top eight bits, the lower 24 are left. 
Thus, the normal red, green and blue planes are 
untouched. 
A second difficulty with three dimensional texture 
mapping is that of aliasing. This problem occurs, as it 
does in the two dimensional case, when a large scale 
difference between the texture cube and the object 
being mapped causes sampling problems . Solutions 
used in two-dimensional texture mapping can be 
applied here too. In particular the MIP map tech
nique [Wi1l831 directly translates to three dimensions_ 
As in the two dimensional case the texture tile is 
repeatedly replicated at half resolution. Initially the 
texture cube takes up half of 512x512x8 bit buffer. If 
the cube is averaged into a cube half its length per 
side, it will only be one eighth of the size of the origi
nal. This process can be repeated and the eventual 
result will not even fill the buffer. This form of pre
computed averaging is a viable solution for at least 
some of the aliasing problems . 

t The work described here was completed berore these papers appeared, and 
thus our use of three-dimensional texture was developed independentl y . See 
IGrin84J. 

Vision Interface '86 



- 169 -

The fact that only the top of the frame buffer is used 
by the texture cube, has an important meaning. If the 
rest of the processing does not require the upper eight 
bits, then the texture cube can be pre-processed and 
read in before beginning the rest of the work. This 
means a considerable savings in run-time. Unfor
tunately, in this implementation the frame buffer con
tained only 24 bits per pixel. Since the half-space 
intersection algorithm needed 24 bits, this meant that 
the texture cube had to be read in only when it was to 
be used. This is yet another incentive to get as many 
bits in a frame buffer as you can afford . You will 
always find uses for them. 
This method of storing the cube leads to a simple 
mapping function. Assume that a 2n element-per-side 
cube is stored in a word-address able 512 X 512 frame 
buffer . If the screen address is (x,y) with a depth 
value of z, then the mapping is a simple 

addr = (x + y*2 n + z*2 2n )* 4. 

In other words, the texture cube is treated as a large 
three-dimensional array. To find the exact (ij) posi
tion in the frame buffer , the result above is split bit
wise. The lower 9 bits are the i position; the upper 8 
bits are the j position. The multiplication by 4 is 
because 4 screen pixels store one texture point. Thus 
the mapping takes only three shifts and two additions 
per point. 

The inputs (x,y,z) to the mapping function above must 
be contained in the cube. That is, with the above 
assumptions, ° ~ x,y,z < 2n. To achieve this all that 
needs to be done is take the original (x,y,z) values 
modulo 2n. This is equivalent to creating a large 
enough texture cube by repeating the smaller one 
over and over. It should be noted that because of the 
nature of the three dimensional cube, it is unlikely 
that there will be some undesirable macroscopic pat
tern created by this repetition, as often occurs in the 
two dimensional case. This is so, because in the two 
dimensional case, the same picture is repeated 
exactly. With a texture cube, this can only occur if the 
surface is at the same angle and position across 
several cubes, which is less likely to happen. 

4. Mapping the Texture to the Polyhedra 
In effect three-dimensional texture mapping allows 
the faces of the polyhedra we have defined previously 
to determine the boundaries of the tree in the texture 
space . The three dimensional texture cube can be 
generated by randomly placing small "chunks" of 
colour in three-space. The colours are chosen by the 
user, as well as the number of chunks and the percen
tage of each colour. It can also be generated using 
three-dimensional fractional Brownian motion 
[Ma VN68, FoFC821, or other suitable procedural tex
ture. 
Each pixel which displays a part of the tree, contains 
three coordinates: the (x,y) position on the screen and 
the z value in the frame buffer. Each of these points is 
put through the inverse of the transformation applied 
to the objects to give the (x,y,z) real-world coordinates 
which will then be used as indices into the texture 

Graphics Interface '86 

cube as described above. This process give the con
sistency of colour desired and is also done with rea
sonable speed. The important point from the point of 
view of efficiency is that the mapping can be done 
incrementally. 

The colouring of the tree is done in one pass through 
the screen. Each point is put through the inverse 
transform, and then mapped into the texture cube. At 
the top of the screen a current position in world space, 
(xe,y e,ze) is caculated. This is obtained by putting the 
first point through the transform . Let the transforma
tion be M:R3_R3 Then for some .:1x, since M is 
linear, 

M(x + .:1x,y,z) = M(x,y,z) + M(.:1x,O,O) 

= (xe,ye,ze) + .:1Mx 

.:1Mx is a constant for a constant .:1x. This, of course, 
generalizes to .:1My and .:1Mz. If the depth value 
changes non-linearly in the frame buffer, as it would 
if the tree has been stochastically "roughened", then 
an increment for a changing z value is needed. 
Again, the linearity of M allows an incremental com
putation of M(x+.:1x,y,z+.:1z). 

With this use of the three dimensional texture map
ping, the tree has been coloured, with the ability to 
both reproduce the shading in place, and shade it 
correctly as the viewpoint moves. This all was accom
plished with reasonable speed. 

5. Adding the Trunk 
Now that the crown of the tree has been shaped and 
shaded, the trunk of the tree is to be added. Part of 
the information stored during the processing of the 
three dimensional crown is the position of the centre 
of the tree. This is usually the base of one of the plane 
normals generated or given in the creation of the tree 
by splitting normals. After the centre position is put 
through its transforms, the resulting depth value lets 
a perspective mapping be done which scales the trunk 
to a size that fits the rest of the tree. This perspective 
mapping is a standard transform. 

To shade the trunk, a modified version of Blinn's 
wrinkled surface technique was applied [Blin781. The 
trunk is given a base colour, usually some dark 
brownish-red. Then ranges are given for each of the 
component colours (red, green, blue). A random 
amount within that range is added to the base colour 
at each point. For example, if the base colour is 
(60,30,10) and the ranges are (40,20JO), then the 
colour at each point of the trunk would be an r,g,b tri
ple with red E (60,100), green E (30,50), and blue 
E (10,20) . Values are uniformally distributed within 
these ranges. When the parameters were chosen well, 
this scheme gave a very acceptable simulation of tree 
bark. This method also lets different kinds of trees be 
modelled properly. Poplars, for example, have a 
smooth, light-green coloured bark, oaks a rough 
brown bark. 

There remains to determine the visibility between 
crowns and trunks. On possibility is to use a reverse 

Vision Interface '86 



- 170 -

painter's algorithm. The trunks are painted after all 
the crowns, from front to back, and they are not 
painted over anything already there. If the point of 
view is from above, such as every crown has priority 
over every trunk, this will give the correct priority. 

Figure 6 Completed Three Dimensional Tree 

A more general method is to model the trunks as con
vex polyhedra, and use the algorithms applied to the 
crowns. The trunk can be described as a hexagonal 
cylinder, or cone, rendered with the half space 

intersection algorithm, and coloured as before. This 
approach gives an exact solution to the visibility prob
lem, but adds seven or eight planes to scan out for 
each tree. It is not a large additional burden, espe
cially since boxing is easier and more efficient given 
the shape of the trunk. It should be mentioned here 
that in our context we do not worry about modelling 
branches. 

6. Implementation issues 

We will describe in this section how the system was 
implemented, give numbers to indicate the system 
performance, and discuss ways in which this perfor
mance can be .improved. 

6.1. Implementation Description 
The work of the system is split between two 
machines. The mainframe is a PDP VAX 1117S0 run
ning UNIXt. The other machine is an ADAGE RDS-
3000 Graphics Processor and Raster Display System. 
This is a modular system with its own bus and it is 
interfaced to the V AX. The ADAGE bus is synchro
nous with a 32-bit data path. The basic cycle time is 
200ns. The frame buffer is 512 by 512 pixels, each 
with 24 bits . It can also be organized in a 1K by 1K 
mode with 6 bits per pixe!. Much of the power of the 
ADAGE comes from the use of the 200ns cycle, 32 bit, 
bi t-slice processor . The processor is supported by a 

t UNIX is a trademark of Bell Laboratories 

Graphics Interface 'S6 

4K by 64-bit wide microcode memory and an SK by 
32-bit wide scratchpad memory. The processor also 
includes a 16 X 16 bit hardware multiplier which does 
a signed multiplication in two cycles (400ns). The 
code for the graphics processor was written in a C-like 
language for a compiler developed at the University of 
North Carolina [BishS2]. While allowing only integer 
arithmetic, this language was of immeasurable help 
to the implementation. 

Almost all of the actual processing work for the tree 
creation system implemented was done on the 
ADAGE bit-slice processor (herein called simply sim
ply the Adage). The V AX processor was used only as a 
driver, loading microcode into the Adage and starting 
the routines, and to perform the basic geometric 
operations of splitting the normals. 

In some parts of the system it was necessary to do 
non-integer arithmetic on the Adage. The best exam
ple of this was the convex intersection routine. A 
series of fixed point routines (one 16 bit word for the 
integer part and one 16 bit word for the fraction) were 
implemented. In addition to needing non-integer 
arithmetic, several of the Adage routines needed ran
dom, or at least pseudo-random, numbers. We used a 
multiplicative congruential routine to generate the 
pseudo-random numbers. To ensure that the routine 
did not loop, a new random seed was used every 512 
iterations. This method did not consume excessively 
large amounts of time to feed seeds down to the 
Adage but did generate satisfactory random numbers 
for the Adage routines. 

6.2. System performance 
Detailed timimg information can be found in [GrinS4]. 
For the icosahedron of Figure 4, with an initial box of 
512x512, the rendering takes roughly 12 seconds. 
These assumptions give a time of approximately 
50ILsec per pixel, or about .7 to .S seconds per plane. 
The roughening step, if applied takes about 1.0 second 
for a 250x250 pixel object. The texture generation, 
takes also about one second, but again this is a 
preprocessing step if sufficient storage is available for 
the texture. 
The other important fac tor is the time to load each 
separate program in the processor, when the micro
store is not big enough, which was the case in our sys
tem. This is also dependent on the load on the V AX 

and can take several seconds. 

6.3. Possible Speed Improvements 

At present the tree creation system is several orders 
of magnitude away from being r eal-time. The key to 
improve the performance is in a combination of spe
cialized processors and a sui table multiprocessor 
architecture . 
Specialized processors already exist for the type of 
operations used in the system. For the creation of the 
planes by normal splitting, most of the operations are 
floating point operations, with calls to a normal distri
bution function , and to trigonometric functions. The 
functions can be replaced by look up tables . In this 
case, each splitting operation takes less than 20 

Vision Interface 'S6 



- 171 -

floating point operations and/or lookup steps. The 
number of splits necessary depends on the number of 
trees, and their size on screen. It also depends on how 
many different trees the system uses. There can be 
many trees on the picture sharing the same convex 
polyhedron. To take a numerical example, assume a 
512x512 display, 200 trees, each on the average 20x20 
pixels, and covering 114 of the screen, that is an aver
age depth complexity (for the trees only) of 1.22. 
Further assume that a tree on the average goes from 
6 planes (in the initial master) to 12 on the picture, 
that is needs 6 plane splitting operations. At 60 
frames/second, that means 1.4 MFLOPS for the pro
cessor in charge of the splitting. This is easily achiev
able on a custom VLSI. 
The second step, and the main bottle-neck in the 
current system, is the computation of the convex 
intersection. As mentioned before, an architecture 
such as used in the Pixel-planes is suitable for the 
basic operations used in this step. Making the 
assumptions in [FGHS85], that is a 10Mhz clock, and 
reasonable values for the number of bits in the plane 
equations, we obtain about 60 clock cycles per plane 
scanned out, that is each plane is scanned out in 6 Ils. 
The trees can then be scanned out in 14 ms, which is 
fast enough. Note that this is independent of the size 
of the trees. 
The stochastic values needed for the roughening step 
and the three-dimensional texture generation can be 
supplied by a processor like the STINT [PiF084]. The 
current implementation of the STINT generates two-
dimensional texture, and can only generate a 70 X 70 
texture in real time, but most of the textures needed 
can be precomputed. It also should be noted th~t s~
cialized hardware for real time texture mappmg lS 
already in use in flight simulators such as Evans & 
Sutherland CT6 or General Electric Compuscene. 
Remains to organize these processors into a suitable 
display architecture. This is a complex task, espe
cially since there are other parts of the d.isplay sy.stem 
to consider (terrain, buildings, movmg vehlcles , 
atmospheric effects, etc.). This is left, as they say, to 
further research. 

7. Conclusions 
Within the stated limits: reasonably realistic trees, 
simple operations, adaptability and flexibility , we ~eel 
that the techniques described here succeeded fairly 
well . One interesting lesson is also that the system 
distinguishes clearly between the modelling ~f the 
shape, which is done with the implicit inte~sect~on of 
half-spaces, and the rendering method, whlch IS the 
combination of a frame buffer algorithm and three
dimensional texture mapping. 
We saw also that the simplicity of the operations and 
their modularity led to the conclusion that with suit
able specialized processors, the real·time . gener~tion 
and display of several hundreds such trees IS possible. 

Graphics Interface '86 

Acknowledgements 

We gratefully acknowledge the support of the Natural 
Sciences and Engineering Research Council of 
Canada. Alain Fournier also wants to thank the 
Department of Computer Science of Stanford Univer
sity for its hospitality and the use of its facilities to 
write this paper. 

References 

[AoKu84] Aono, M. and Kunii, T. L., "Botanical Tree 
Image Generation", IEEE Computer 
Graphics and Applications, 4, 5, (May 
1984), 10-34. 

[Bish82] Bishop, G., Gary's Ikonas Assembler Ver
sion 2 Differences Between Gia2 and C, 
Technical Report, University of Northern 
Carolina, 1982. 

[BlNe76] Blinn, J., and M. E. Newell, "Texture and 
Reflection in Computer Generated Images", 
Communications of the ACM, 19, 10, (Oct. 
1976), 542-547. 

[Blin78] Blinn, J . F., "Simulation of Wrinkled Sur
faces", in Proceedings of SIGGRAPH'78, 
also published as Computer Graphics, 12, 
3, (Aug. 1978), 286-292. 

[Bl0085] Bloomenthal, J., "Modeling the Mighty 
Maple", in Proceedings of SIGGRAPH'85, 
also published as Computer Graphics, 19, 
3, (July 1985), 305-311.. 

[Brow79] Brown, K. Q., Geometric Transforms for 
Fast Geometric Algorithms, PhD. Thesis, 
Department of Computer Science, 
Carnegie-Mellon University, Pittsburgh, 
1979. 

[Catm74] Catmull, E., A Subdivsion Algorithm for 
Computer Display of Curved Surfaces, 
University of Utah Computer Science 
Dept., UTEC-CSc-74-133, (Dec. 1974). 

[FGHS85] Fuchs, H., Goldfeather, J ., Hultquist, J. P., 
Spach, S., Austin, J . D., Brooks, F. P ., 
Eyles, J. G. and Poulton, J., "Fast Spheres, 
Shadows, Textures, Transparencies and 
Image Enhancements in Pixel-planes", in 
Proceedings of SIGGRAPH'85, also pub
lished as Computer Graphics, 19, 3, (July 
1985), 111-120. 

[FoFC82] Fournier, A., Fussell, D. and Carpenter, L. 
"Computer Rendering of Stochastic 
Models", Comm. ACM, 25, 6, (June 1982), 
371-384. 

[FoFu86] Fournier, A. and Fussell, D., "On the 
Power of the Frame Buffer", to appear in 
ACM Transactions on Graphics. 

[FoMi851 Fournier, A. and Milligan, T., "Frame 
Buffer Algori thms for Stochastic Models", 
IEEE Computer Graphics and Applications, 
5, 10, (October 1985), 40-46. 

[Gard84] Gardner, G. Y., "Simulation of Natural 
Scenes Using Textured Quadric Surfaces", 

Vision Interface '86 



- l7 2 -

in Proceedings of SIGGRAPH'84 , also pub
lished as Computer Graphics, 18, 3, (July 
1984), 11-20. 

[Gard851 Gardner, G. Y., "Visual Simulation of 
Clouds", in Proceedings of SIGGRAPH'85, 
also published as Computer Graphics, 19, 
3, (July 1985), 297-303. 

[Grin841 Grindal, D. A., The Stochastic Creation of 
Tree Images", Master Thesis, Department 
of Computer Science, University of Toronto, 
(April 1984). 

[LePo841 Levinthal, A. and Porter, T., "Chap, a 
SIMD Graphics Porcessor", in Proceedings 
of SIGGRAPH'84 , also published as Com
puter Graphics, 18, 3, (July 1984), 77-82. 

[MaVN681 Mandelbrot, B. B. and Van Ness , J . W., 
"Fractional Brownian Motion, Fractional 
Noises and Applications", SIAM Review, 
10, 4, (October 1968), 422-437. 

[Peac851 Peachy, D. R., "Solid Texturing of Complex 
Surfaces", in Proceedings of SIGGRAPH'85, 
also published as Computer Graphics, 19, 
3, (July 1985), 279-286. 

[Per1851 Perlin, K., "An Image Synthetizer", in 
Proceedings of SIGGRAPH'85, also pub
lished as Computer Graphics, 19, 3, (July 
1985), 287-296. 

[Pipe841 Piper, T. and A. Fournier, "A Hardware 
Stochastic Interpolator for Raster 
Displays", in Proceedings of 

SIGGRAPH'84, also published as Computer 
Graphics, 18, 3, (July 1984), 83-91. 

[ReBl851 Reeves, W. T. and Blau, R., "Approximate 
and Probabilistic Algorithms for Shading 
and Rendering Structured Particle Sys
tems", in Proceedings of SIGGRAPH'85, 
also published as Computer Graphics, 19, 
3, (July 1985), 313-322. 

[Reev831 Reeves, W. , "Particle Systems - A Tech
nique for Modelling a Class of Fuzzy 
Objects", in Proceedings of SIGGRAPH'83, 
also published as Computer Graphics 17, 3, 
(July 1983), 359-376 

[Smit841 Smith. A. R., "Plants, Fractals and Formal 
Languages", in Proceedings of SIG
GRAPH'84 , also published as Computer 
Graphics, 18, 3, (July 1984), 1-10. 

[Wi1l83] Williams, L., "Pyramidal Parametrics", in 
Proceedings of SIGGRAPH'83 , also pub
lished as Computer Graphics, 17, 3, (July 
1983), 1-11. 

Graphics Interface '86 Vision Interface '86 


