
- 11 -

AN ENCODING SCHEME FOR PRESENTATION GRAPHICS WITH ANIMATION 

Howard J. Ferch 
Dept. of Computer Science, University of Manitoba 

Winnipeg, ~anitoba, R3T 2N2 

ABST.RACT 

Bit-mapped raster graphics systems are 
used in the majority of personal computer 
systems. As the resolution of these 
systems increases, and the number of 
levels of grey-scale, or the number of 
colours, is increased, encoding of images 
becomes of greater concern, particularly 
for interactive systems, or those using 
animation. 

This paper presents a variation of 
run-length encoding which is faster, but 
is similar in its degree of space 
encoding, to run-length encoding. Its 
application to a menu-driven presentation 
graphics system is discussed. 

One particular advantage of this scheme is 
its adaptability to the types of animation 
possible on personal computer raster 
systems. 

KEYWORDS: 
animation 

INTRODUCTION 

raster graphics, encoding, 

Bit-mapped raster graphics systems are 
very commonly used, particularly on 
personal computers. These systems 
typically have a dual-ported frame buffer, 
which is accessible both to the display 
hardware, and to the central processor (by 
mapping the frame buffer into the 
processor's address space) [FOLEY82]. As 
memory capacity and speeds go up, and 
costs go down, it is possible to have 
higher resolution screen displays, and to 
display more grey-levels, or colours. 

The increased size of the frame buffers 
means that images are larger, and hence 
occupy more disk space, take longer to 
read, and take longer to copy into the 
frame buffer. This has particular 
implications to applications in which 
speed is of major importance, such as 
those which operate interactively, or 

Graphics Interface '86 

which contain animation. 

One system making use of such technology 
is a menu-driven graphics presentation 
system being developed for Parks Canada. 
In this system, an IBM PC-XT equivalent is 
being used to provide interpretive 
information to park visitors. Each menu 
page is displayed in a resolution of 640 
by 400 pixels, with 16 colours possible 
for each pixel. Simple animation 
sequences are used to present the 
information. For example, to demonstrate 
the creation of sinkholes, an animation 
sequence shows rain falling, the water 
soaking into the ground and dissolving the 
gypsum, the ground being undermined, and 
then the ground collapsing. Since each 
image takes 128,000 bytes of storage, an 
encoding scheme is required to reduce the 
disk space, the main memory space, the 
disk transfer time, and the display time. 

EXISTING ENCODING SCHEMES 

A large amount of attention has been paid 
to the problem of encoding graphical 
images. (See [HALL79] for an overview of 
such techniques). However, the majority 
of such schemes are not adequate for this 
particular application. Techniques such 
as Huffman encoding, which use variable 
length bit strings, are simply too slow 
for the computing power of a personal 
computer. Most image creation packages 
for personal computers (such as Apple's 
MacDraw [APPLE85]) encode a picture as the 
objects which were used to create it (e.g. 
as a sequence of line segments, polygons, 
etc.). This is the same approach that is 
used in presentation systems snch as 
Telidon [CSA83]. Again, for real-time 
animation functions, this approach is too 
slow. In fact, one of the early 
objectives of the Parks Canada system was 
that it was to be much faster tha n 
existing museum systems .based on Telidon. 

A lesser degree of space encoding is 
provided by run-length encoding, in which 
an image is stored as a set of tuples, 

Vision Interface '86 



- 12 -

each containing a colour (or grey-scale) 
sequence, and an associated repetition 
factor. Such a technique combines a 
reasonable level of space compression, 
with a simple, and hence quick, decoding 
algorithm. This paper presents a 
variation of run-length encoding, which is 
faster, but is similar in the degree of 
space encoding, and which is particularly 
adaptable for the type of animation 

, described above. 

THE ENCODING SCHEME 

Instead of storing a bit pattern (usually 
a byte or a word), and a repetition 
factor, one can make use of particular 
characteristics of the central processor 
found in the IBM PC. In this processor, 
(the INTEL 8088)[INTEL81], processor 
instructions exist to replicate a byte or 
word through memory, or to copy a string 
from one location to another. A byte or 
word pattern to be replicated into the 
frame buffer may thus be encoded as the 
machine language instruction sequence 
required to place that pattern directly 
into the frame buffer. For example, the 
following instruction sequence puts the 
byte containing the hexadecimal value 56 
into 250 successive locations of memory 
(assuming that the appropriate segment 
registers have been loaded). 

MOY AL,S6H 
MOY CX,2S0 

REP STOSB 

This instruction sequence occupies 7 bytes 
of memory, and thus we can use 7 bytes to 
encode 250 bytes of the image. Since this 
instruction sequence automatically 
increments an address register to pOint to 
the next location in memory (in the frame 
buffer in this case), we may follow it 
immediately with another sequence which 
inserts the next pattern of the image into 
place, and so on. Thus, the entire image 
may be encoded as a machine language 
program, which, when executed, will 
generate the original image directly into 
the frame buffer. 

For portions of the image which have a 
large number of very small runs, we can 
use another sequence in the generated 
program. Having generated a portion of 
the image in the frame buffer, it is 
possible to copy any section of this into 
a later portion of the image, where the 
same sequence appears again. On the 8088, 
an instruction sequence to do this 
consists of: 

MOY 
MOV 

REP MOVSW 

SI,source 
CX,length 

offset 

This sequence occupies 8 bytes of memory, 
and also updates the appropriate address 

Graphic. Interface '86 

registers. One other instruction sequence 
is used. This is a variation of the 
above, which inserts a new string into the 
frame buffer, by copying it from a copy 
which is placed in-line in the program, as 
in: 

MOV 
MOV 

REP MOVS 
JMP 

LABELx: 
LABELy: 

SI,OFFSET LABELx 
CX,length 
WORD PTR[DIJ,WORD 
LABELy 

DW the string 

PTR CS:[SI] 

This sequence occupies 11 bytes plus the 
string length. 

In order to apply these sequences, the 
following algorithm can be used. The 
original image is stored in main memory, 
as it will appear in the frane buffer. 
Starting with the first word of the iaage, 
successive words of the image are scanned 
to see if the image starts with a repeated 
word. If so, the appropriate aachine 
language code is generated, and the next 
word of the image is scanned in the saae 
fashion. If the word being examined is 
not repeated, then the section of the 
image that has been generated to date is 
examined to find the largest possible 
string matching that at the current 
location. Only if no reasonable length 
such matching string exists is the third 
alternative used, and then only long 
enough to bridge the gap until a repeated 
word, or a previously encountered string 
is again encountered. 

THE RESULTS 

Table 1 summarizes the results, as applied 
to three sample images from the 
presentation sequence. The first image ia 
a landscape scene, the second contains a 
large amount of detail and a large amount 
of fairly small text, and the third ia a 
map, with a fairly small amount of detail. 
This table gives the number of occurrences 
of each of the three instruction 
sequences, the maximum length of string 
generated by each, the total number of 
words generated by each type. the total 
resulting size of the machine language 
program, the space reduction factor, (a8 a 
percentage of the original size of 128.000 
bytes), and the size of the image when 
encoded using both an object 
representation, and using run-length 
encoding. As can be seen from the table. 
this encoding scheme does use more space 
than run-length encoding. However, the 
generation speed is approximately two 
times faster than using the run-length 
encoding, due to the lack of overhead 
spent decoding the tuples of the encoded 
image. For the three images used, the 
picture generation averaged 0.3 second8. 
while for run-length encoding, the average 
time was 0.6 seconds. 

Vision Interface '86 



- 13 -

IMAGE 1 IMAGE 2 IMAGE 3 

Number of repetition sequences 712 477 648 
Max repetition size (words) 1367 530 902 
Total number of words created 35008 13396 17824 

Number of copied strings 2996 6521 3562 
Maximum string size (words) 161 848 159 
Total number of words created 27333 49432 44606 

Number of new strings 970 868 99 4 
Maximum string size (words) 14 11 11 
Total number of words created 1659 1172 1570 

Resulting encoded size in bytes 37343 61000 413 46 
Percentage space occupied 29 % 48 % 32 % 
Number of bits per pixel 1. 17 1. 91 1. 29 

Size of the run-length encoding 22712 56168 26256 
Size of the object encoding 17470 N/A 7870 

TABLE 1 - ENCODING RESULTS 

REFINEMENTS 

One problem ex i sts with the given 
algorithm. On many of the display 
adapters using a frame buffer which is 
dual-ported between the display and the 
main memory, it is not possible to read 
from the frame buffer at any desired time. 
Instead, due to the interactions in the 
hardware, it is necessary to read the 
frame buffer only during the retrace · 
intervals, to be sure that the data is 
correct. Thus the second sequence given 
above must be modified somewhat. An 
additional 2 bytes was added to call a 
subroutine which waits for the retrace to 
begin. In addition, the maximum length of 
the move must be limited. Rather than 
doing this, a refinement to the algorithm 
was introduced. 

The simplest approach was to remove the 
use of the second sequence (copying 
already existing sequences). It was felt 
that this would probably lengthen the 
encoding somewhat, but the display time 
would be reduced. In fact, this did not 
happen. For images which did not contain 
a large amount of text, the encoding was 
actually smaller, provided that the 
encoding was done on a byte, rather than a 
word level. With this result, the third 
sequence (generating a new string) was 
also removed, with the same result. Thus 
the resulting encoding which is actually 
used is very simple. Runs of repeating 
bytes were encoded using only the first 
sequence, with an additional optimization 
using a special sequence for runs of 
length 1 byte, or 2 bytes. For the three 
images given above, the resulting 

Graphics Interface '86 

encodings had sizes of 37878 , 62717 , and 
38574 respectively. Th e overal l total 
size across all images was slightly 
redu c ed, with no loss of spe e d. 

One other aspect of interest for this 
encoding approach is its adaptabi l ity to 
other processors. The two major 
competitors to the 8088 processor are the 
Motorola 68000 [MOT80], and the National 
Semiconductor 16000 [NAT83] . While the 
algorithm can be adapted to both of these 
processors, it cannot be done in as siaple 
a fashion as it is for the 8088. Neither 
of these processors provides an 
instruction which can replicate a value 
through a range of memory locations . Thus 
a loop is required. In order to achieve 
similar compaction levels, this requires 
the use of an out of line s ubrout i ne, with 
a subsequent loss of speed. 

ANIMATION 

This encoding scheme is easily adapted to 
support the type of animation described 
earlier. To provide animation, a sequence 
of related images is generated. Then, the 
above encoding scheme is used to insert 
the changes from each image to the next in 
turn into one machine language routine. 
In many cases, a slower transition from 
one image to another is desired, such as 
when scrolling text onto an image , or in 
having a river change its colour in a 
given direction, to portray floodi ng. In 
these cases, delays are added to the 
machine language code generated, to 
achieve the desired rate of speed. 

Vision Interface '86 



- 14 -

Since dissolves from one scene to the next 
occur very often, a suite of routines to 
provide different orderings and timings of 
dissolves has been created. In the most 
general case, the user may add a line of 
any shape and size to an image and request 
an ordered dissolve from one image to the 
next moving outwards from the given line, 
or moving inwards, and he may at the same 
time specify the speed of movement. 
Standard top to bottom, left to right, etc 
orderings are also provided. 

Another adaptation allows for repetitive 
events, such as the blinking of an arrow. 
In this case, code to insert the arrow, 
and then to remove it, is generated and 
then the machine language routine is 
simply repeatedly executed. Delay 
sequences are added to achieve the desired 
rate of blink. 

CONCLUSIONS 

An encoding scheme for bit-mapped frame 
buffers which are memory mapped into the 
central processor's address space has been 
described. This scheme provides for very 
fast decoding, while at the same time 
providing a reasonable level of space 
encoding. 

A complete menu-driven interactive display 
system for Parks Canada has been 
constructed using this encoding scheme 
with the following results. A total of 
121 images have been encoded. Of these, 
65 primarily contain text (although text 
and graphics can be freely intermixed), 
and the remaining 56 primarily display 
landscape, or map information. In most 
cases, an image is generated from the 
previous one using a dissolve sequence. 
Th e 65 text images are encoded in 
1,166,141 bytes, for an average of 17,940 
bytes per image. The 56 graphics displays 
occupy 1,865,833 bytes, for an average of 
33,318 bytes per image. The resulting 
encodings, including the animation timing 
delays, and all overhead occupy 19.6% of 
the original space of the images. The 
display speed is just slightly reduced 
from the maximum achievable display speed. 

Graphics Interface '86 

REFERENCES 

APPLE85 

CSA83 

FOLEY82 

HALL79 

INTEL81 

KOT80 

NAT83 

Apple Computers, 
tosh", 1985 

"Inside Macin-

Canadian Standards Association, 
"Videotex/Telet~xt Presentation 
Level Protocol Syntax (North 
American PLPS), Canadian Stand­
ards Association, December 1983. 

Foley,J.D. and Van Dam,A. "Funda­
mentals of Interactive Coaputer 
Graphics" Addison-Wes1ey, 1982 

Hall,E.L. "Computer Image Pro­
cessing and Recognition", 
Academic Press, 1979 

Intel Corporation, "iAPX 86,88 
User's Manual", 1981 

Motorola, Inc. "MC68000 16-bit 
Microprocessor User's Manual", 
1980 

National Seaiconductor Corp. 
"NS16000 Instruction Set Refer­
ence Manual", 1983. 

Vision Interface '86 


