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ABSTRACT 

The well-known "z-buffer" algorithm for solving the 
visible surface problem has a number of points in its 
favor, the main one being that it is amenable to very 
efficient hardware implementation at little additional 
cost in many existing frame buffer systems. lbe 
traditional software implementation of the algorithm 
assumes explicit initialization of both the image buffer 
and the z-buffer before each image is generated. This 
paper describes a simple technique for synchronizing 
initialization and image generation so the two can be 
performed in parallel, allowing complete overlap to be 
achieved and effectively eliminating the time needed 
for explicit initialization of the frame buffer. The 
technique assumes a modest investment in additional 
hardware within the frame buffer. 

RESUME 

Parmi les algorithmes de surfaces caches, I'algorithme 
du "z-buffer" a un certain nombre d'avantages a son 
actif. Le plus important de ceux-ci etant que cet 
algorithme est peu couteux a implementer au niveau 
hardware dans les systemes actuels de "frame-buffer" 
Les techniques traditionnelles d'implementation de cet 
algorithme forcent le logiciel a initialiser explicitement 
le "z-buffer" et le buffer image avant le transfert de 
l'image. Cet article decrit une technique simple qui 
permet de synchroniser I'initialisation et la creation de 
I'image afin qu'elles puissent etre realisees 
simultanement. Ceci permet d'eliminer le temps perdu 
lors de I'initialisation du "frame-buffer." Cette 
technique suppose un faible investissement en materiel 
additionnel a I'interieur du "frame-buffer." 

Keywords: double-buffering, frame buffer, real-time, 
visible surfaces, z-buffer. 
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INfRODUCfION 

The problem of computing only the visible surfaces 
of a scene has by now been well-studied U12D . One 
approach that has gained popularity is the z-buffer 
algorithm first described by Catmull U4,5D. With a 
z-buffer the depth-sort required of a visible surface 
algorithm is accomplished by maintaining, for each 
pixel, a record of the z-depth of the object whose 
intensity (color) is stored at that pixe!. As subsequent 
objects are scan converted into the frame buffer, their 
z-depths are compared and used to decide whether the 
new object is in front of or behind the object currently 
displayed at each pixe!. In the former case both the 
intensity and z-depth are changed for the pixel, but in 
the latter case no action is taken. A complete 
explanation of the z-buffer algorithm appears in 
standard text books on computer graphics [7 ,lOll . 

In the following sections we first define our model 
of a frame buffer and then look at different ways of 
adding additional hardware to the frame buffer to speed 
up the z-buffer algorithm. The first approach almost 
doubles the amount of memory in the frame buffer and 
is presented solely to motivate the other two. The 
second approach adds only a single bit to each pixel but 
requires a more complicated memory controller that 
could lead to significant timing problems in the video 
chain. The third approach adds two more bits to each 
pixel and hence admits an implementation that requires 
no additional function in the memory controller beyond 
what is available in current frame buffers, although a 
modest change is still required to hardware further 
down the video chain. 

The basic z-buffer algorithm performs well in 
almost all respects except for considerations of 
antialiasing. This deficiency stems from the fact that 
the z-buffer maintains depth information on a pixel-by­
pixel basis, and thus has no way to discriminate objects 
at subpixel resolution. This is unfortunate because 
aliasing artifacts introduced by the scan conversion 
process can be very objectioriable in practice. Some 
researchers have suggested techniques to incorporate 
antialiasing strategies into a z-buffer algorithm, but 
those techniques either require auxiliary storage or 
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additional processing time beyond the basic scan 
conversion algorithm, or they fail to achieve the desired 
level of image quality U3 ,6,8ll. The approaches 
described in this paper apply to z-buffer algorithms 
enhanced for antialiasing, although we do not address 
the issue explicitly. Instead, we adopt the attitude that 
an important application of the z-buffer technique is to 
high-performance raster systems for which real-time or 
quasi-real-time performance is desired and that proper 
antialiasing is a lUxury as yet not consistent with that 
goal. 

We distinguish between the update rate , the rate 
at which new images are computed by the algorithm, 
from the refresh rate, the rate at which the computed 
images are displayed on the monitor. The update rate 
is almost always established by limits in processing 
power and the desire to display complex images and 
thus tends to remain a bottleneck even as advances are 
made in hardware and software, whereas the refresh 
ra te is set by the need to overcome flicker effects 
inherent in the human visual system and can be 
regarded as a relative constant. 

Our definition of real-time will be that a complete 
image is generated within a single refresh cycle (usually 
1130 or 1160 of a second). The notion of quasi-real-time 
will imply image generation that closely approximates 
that rate (at worst an update happens every 115 of a 
second) . Ron Baecker has already championed the 
claim that such rates give an acceptable illusion of 
continuous simulation if the update rate and the refresh 
rate are suitably synchronized [2ll. To be effective, a 
steady refresh of the current image must be maintained 
throughout the scan conversion process for the next 
image. Because of this , we will be interested only in 
the double-buffered version of the algorithm in which a 
refresh processor displays one image while an update 
processor is generating the next image. 

With this set of ground rules, we are ready to 
discuss the performance of the z-buffer algorithm and 
to examine alternatives to the traditional 
implementation. The operations performed by the 
versions of the z-buffer algorithm that we will consider 
remain largely the same in each of the 
implementations. The differences lie in the way that 
the operations are partitioned between the two 
processors (the update processor and the refresh 
processor) and in the way that the two processors 
synchronize their operations. 

THE FRAME BUFFER 

Our model assumes that a frame buffer contains a 
la rge amount of pixel memory indexed by two­
dimensional Cx. y) addresses and that each pixel is 
divided into fields composed of a number of bits. For 
our purposes at least three fields are necessary in a 
pixel. These fields will be designated the 10 and 11 
fields (two intensity buffers, one for the image currently 
being displayed by the refresh processor and the other 
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for the image being computed by the update processor) 
and the Z field (a single depth buffer) . Frame buffer 
memory is dual-ported to allow the update processor to 
read and write pixels (randomly) at the same time that 
the refresh processor reads pixels at video rates (in 
scan-line order). The refresh processor passes the pixels 
down the video chain where the color information stored 
in each pixel is converted to analog signals suitable for 
display on a monitor, possibly after interpretation by 
lookup tables or other devices whose function is not 
important to the present discussion. 

Our model for a frame buffer is patterned after 
the Adage/Ikonas RDS 3000, the hardware on which 
we have implemented these algorithms. Most of the 
ideas presented here · apply to other frame buffer 
architectures, although we do assume that the video 
chain is similar to the control , crossbar, and lookup 
table modules available in the Ikonas [1 ,9ll. Not all of 
these features are required for most of the z-buffer 
techniques , although the final algorithm presented here 
actually assumes a slightly enhanced crossbar switch 
over what is supplied by Adage. Our goal is not to 
restrict attention to a particular frame buffer 
architecture, but to point toward general hardware 
features that will substantially enhance the performance 
of z-buffer algorithms at modest cost. 

Double-buffering is accomplished in a frame 
buffer by the refresh processor reading from 10 during 
odd update cycles and from 11 during even update 
cycles, thus allowing the update processor to use 11 and 
Z for scan conversion during odd update cycles and 10 
and Z during even update cycles. Only one z-depth 
field is necessary because once the image has been 
rendered, its z-depths are no longer needed. 

The selection of specific fields for reads and writes 
by both the update processor and the refresh processor 
may be accomplished by masking and shifting (either in 
hardware or through a combination of hardware and 
software) or by using address offset registers when the 
various fields are stored in different areas of frame 
buffer memory. These details are not important for the 
discussion , so we will assume that the frame buffer 
maintains all of the fields associated with a pixel within 
a single "word" and that both processors are capable of 
selecting particular fields with no penalty in time. It is 
convenient to assume that this is accomplished by mask 
registers and shift registers, associated with each 
processor, that perform selective load and store 
operations to only those bits indicated by the mask, 
leaving the other bits of a pixel unchanged. 

Any number of bits may be associated with the 
two intensity buffers. Common configurations use 8 
bits (with color look up tables to achieve a full color 
space) or 24 bits (8 bits each of red, green and blue). 
The z-depth must be able to discriminate objects within 
the scene, so between 8 and 32 bits are commonly 
assumed. Sutherland and Hodgman discuss a scaling 
strategy for making the best use of the precision 
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available HUn. This totals to from 24 to 80 bits per 
pixel, depending upon the amount of col or and z-depth 
desired . The memory requirement can be reduced 
somewhat if only the intensity buffer currently being 
displayed is located within the frame buffer itself (the 
other fields being stored on the host) but our technique 
is designed for high-performance systems in which all of 
the memory resides within the frame buffer to achieve 
the necessary update and refresh rates. Only the two 
intensity buffers are accessed by the refresh processor in 
any of these schemes, so some savings in cost could be 
achieved by making the z-depth memory single-ported, 
but this might preclude using the memory for other 
purposes and is thus a less general architecture. 

We will label each update cycle by an integer, but 
often will only use its even or odd parity (the low-order 
bit). Thus many places in our algorithms where k is 
manipulated as an integer modulo some base (usually 
two) the manipulation can be implemented with simple 
bit operations such as complementation, rather than 
with the more expensive increment and modulus 
operations. 

The next three sections present increasingly 
sophisticated versions of the z-buffer algorithm . The 
first is the standard implementation, suitable for a very 
basic frame buffer. The subsequent versions achieve 
increased performance by partitioning the calculation 
differently among the update and refresh processor and 
by using modest hardware assistance to synchronize the 
calculations. 

SOLUTION #1 
TRADING OFF MEMORY FOR PROCESSING TIME 

The basic appeal of the z-buffer algorithm is that 
it affords a complete solution to the visible surface 
algorithm for little more than the time required to 
perform simple scan conversion without the visible 
surface calculation. The algorithm is usually 
implemented entirely in the update processor, with the 
refresh processing serving only to display the resulting 
image on the monitor. The two procedures Update#l 
and Refresh#l shown in Figure 1 express the 
interlocked cycles in a standard implementation of the 
z-buffer algorithm. Normally the refresh cycle would 
be implemented entirely in hardware, but we describe it 
here as if it were implemented in software to provide a 
uniform presentation of the two processes. The 
processes are loosely synchronized in this basic version 
of the z-buffer algorithm. At the start of each update 
cycle the shared variable k is incremented and this 
causes the refresh processor to swap image buffers with 
the update processor. Actual implementations would 
usually include a provision to further synchronize the 
double-buffering so that buffers a re swapped only at the 
end of a complete frame or field time. 

This is the standard z-buffer algorithm presented 
in text books and is easily implemented on most frame 
buffers . The main procedure invokes (once) the setup 
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PROCEDURE Initialize#l ; 
k : = 0 ; 

FOR Y : = maxY DOWNTO 0 DO 
FOR x : = 0 TO maxX DO 

lo[x.y] : = background; 
OD; 

END Initialize#l; 

PROCEDURE Update#l; 
WHILE true DO 

k := Ic+l ; 

FOR y := maxY DOWNTO 0 DO 
FOR x : = 0 TO maxX DO 

lk mod 2 [X. y] 
Z[x.y] : = m; 

OD; 

baclcground; 

FOR every Object in the scene DO 
FOR every pixel (x.y) in the Object DO 

IF (object[x.y] . z < Z[x.y]) THEN 

lk mod 2[x.y] : = ob.lect[X . r] . co1or; 
Z[x.y] - Object[x.r] .:z; 

FI; 
OD; 

OD; 
{ optional wait for next frame} 

OD; 
END Update#l; 

PROCEDURE Refresh.l; 
WHILE true DO 

FOR Y := maxY DOWNTO 0 DO 
FOR x := 0 TO maxX DO 

display lk-l mod 2 [X. y] ; 
OD; 

OD; 
OD ; 

END Refresh#l; 

Figure 1. The Standard Z-Buffer Algorithm 

in Initial1ze#l and then invokes (in parallel) the 
two procedures Update#l and Refresh#! wh.ich 
never terminate, but cycle continuously as the double­
buffering scheme alternately updates the two image 
buffers. The refresh process()r is merely cycling 
through memory performing the standard frame buffer 
readout to the video hardware_ If the algorith.m is 
being used to generate a single frame , there is really 
nothing to discourage its use. But if the algor:ithm is 
being used to generate a sequence of frames (as 
assumed here) the algorithm does not fully utilize the 
available hardware. 

In this situation there is a bottleneck that may 
potentially degrade performance. The z-buffer 
algorithm requires that the in tensity and z-deptll fields 
be reset to their initial values (background color and 

Vision Interface '86 



- 197 -

infinity) before each update cycle. The procedure 
Update#l performs this initialization explicitly at the 
beginning of each update cycle. This can be time­
consuming for two reasons . The first is that the update 
processor can only perform initialization when it is not 
performing scan conversion and thus the full bandwidth 
of the update processor is not available for scan 
conversion, an unfortunate consequence because real 
images frequently require substantially more update 
time than refresh time. 

This is related to the second reason, which is that 
even update processors with special purpose hardware 
may not be able to write all of the pixels within the 
frame buffer in one refresh cycle. The refresh 
processor reads multiple pixels during a single memory 
cycle because it looks at pixels in scan-line order and 
thus can access multiple memory chips in parallel. This 
allows it to achieve a complete refresh within one frame 
time. The update processor typically does not do this 
because it is designed for random access to the frame 
buffer. The result is that one or more refresh cycles 
may be "wasted" between successive update cycles 
while the update processor is busy initializing instead of 
rendering . This degrades the real-time or quasi-real­
time performance of the system by a significant 
percentage. 

Because it accesses multiple pixels during a single 
memory cycle, the refresh processor is capable of 
perfonning the initialization in a single refresh cycle. 
Some frame buffers support this by allowing the refresh 
processor to change values in selected fields of pixel 
memory as each pixel is written back into memory after 
being read during the refresh cycle [In . This allows the 
refresh processor to initialize the second image buffer 
and the z-depth buffer in a single refresh cycle. 

Unfortunately , unless initialization is synchronized 
with image generation there is little advantage to this 
approach because the update processor must wait for at 
least one complete refresh cycle after update cycle k to 
insure that the refresh processor has completely reset 
both the lk+1 and Z fields before it can begin update 
cycle k+1. This means that the update processor will 
be idle a significant amount of the time (recall that the 
slowest update rate for quasi-real-time is 1/5 second so 
that even with a refresh cycle of 1/60 second the image 
processor would be idle more than 8% of the time - in 
the worst case the processor would waste 50% of its 
bandwidth while maintaining a 1130 second refresh 
cycle and a 1115 second update cycle). The percentage 
of idle time for the update processor is an important 
consideration because it determines an upper bound on 
the complexity of the image that can be rendered. This 
problem can be overcome by the addition of extra 
hardware, in this case a substantial increase in frame 
buffer memory. 

SOLUTION #2 
TRADING MORE MEMORY 

FOR PROCESSING TIME 
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PROCEDURE In1t1al1ze#2; 
k : = 0 ; 

FOR Y : = maxY DOWNTO 0 DO 
FOR x : = 0 TO maxX DO 

lo[x,y] background; 
Zo[x,y] : = (1); 

OD; 
END In1t1al1ze#2; 

PROCEDURE Update#2; 
WHILE true DO 

k : = k+1; 
FOR every Object in the scene DO 

FOR every p1xel (x,y) in the Object DO 
IF (object[x , y] .x < Zk mod 2[x,y]) THEN 

Ik mod 3[X,y] - object[x,y] . color; 
Zk mod 2[x,y] Object[X,y] . Z; 

FI ; 
OD; 

OD ; 
{ mandatory wait for next frame } 

OD ; 
END Update#2 ; 

PROCEDURE Refresh#2; 
WHILE true DO 

FOR Y : = maxY DOWNTO 0 DO 
FOR x := 0 TO maxX DO 

d1spla.y I k - 1 mod 3 [X ,y] ; 
I k +1 .od 3[X,y] ba.ckground; 
Zk+1 mod 2 [X ,y] : = infinity ; 

OD; 
OD; 

OD; 
END Refresh#2; 

Figure 2. The Triple-Buffered Z-Buffer Algorithm 

To achieve real-time or quasi-realtime 
performance a third image field I2 can be added to the 
frame buffer along with a second z-depth field Zl (the 
original depth field becomes Zo). In this case the 
update processor cycles between three image memories, 
with the refresh processor displaying from I k - 1 , the 
update processor writing into I k , and the refresh 
processor initializing I k + 1 (all subscripts for I are now 
modulo 3 instead of modulo 2). Similarly, the update 
processor uses Zk for its visible surface calculation while 
the refresh processor is initializing Zk+1 (these subscripts 
are modulo 2 since only two depth buffers are 
required). 

As long as each update cycle requires at least one 
entire refresh cycle (a modest assumption since a faster 
update rate would imply that the image was being 
updated faster than it was being viewed on the monitor) 
the refresh processor will be able to initialize a new 
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image and depth buffer in time for each update cycle, 
thus freeing the update processor from any overhead for 
initialization. Procedures Update#2 and Refresh#2 
to accomplish this are straightforward modifications to 
Update#l and Refresh#1. 

The clear drawback to this scheme is the massive 
increase in frame buffer memory. The requirement for 
image memory has increased by 50% (from two buffers 
to three) and the requirement for depth memory has 
increased by 100% (from one buffer to two). For the 
case of a full 24-bit image buffer and a 32-bit depth 
buffer, this is a total of 136 bits per pixel, an increase 
of 70%. While this might be appropriate for the 
increased performance, we are at best getting an 
improvement that is of the same order of magnitude as 
the increase in memory cost. We can do much better. 

SOLUTION #3 
TRADING OFF HARDWARE COMPLEXITY 

FOR LESS MEMORY 

An alternative is to use one additional bit in the 
frame buffer as a cycle counter (a dirty bit) to achieve 
complete overlap of image generation and initialization 
while avoiding the necessity of adding an additional set 
of image and depth buffers. As for Solution #2, this 
will in fact achieve an update rate that is equal to the 
refresh rate for simple scenes (something not achievable 
with the standard software z-buffer algorithm) but at 
far less hardware cost. We assume that the frame 
buffer has been extended to include a one-bit field D 
containing the parity (low-order bit) of k, the update 
cycle counter. 

The frame buffer is initialized once, before the 
actual z-buffer algorithm begins, so that 10 is the 
"background" color and D is 0, the parity of the first 
image. The setting of I1 and Z are arbitrary. The 
update processor begins image generation cycle 1 with 
the refresh processor initializing both 11 and z. When 
the z-buffer algorithm has generated its first image, the 
refresh processor begins displa ying from I 1 and 
initializing both 10 and Z, but it performs the 
initialization selectively using the cycle number and 
information kept in the D field of each pixel. The 
system assumes a steady-state operation in which the 
two processors synchronize their activity after each 
update cycle through the shared cycle number and the 
D field. 

This is accomplished in the following way. The 
update processor proceeds as it normally would, 
assuming that both Ik and Z have been initialized 
previously by the refresh processor, even though the 
refresh processor may not have visited some (or all) of 
the pixels . The key idea is that each time the update 
processor performs a depth comparison (testing the 
z-depth of an object against the value stored in the z 
field of a particular pixel) it biases the comparison in 
favor of the new z-depth (that of the object) if the D 
field does not match the parity of the update cycle 
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PROCEDURE Initialize#3; 
k := 0; 

FOR y := maxY DOWNTO 0 DO 
FOR x := 0 TO maxX DO 

Io[x.y] : = background; 
O[x.y] := 0; 

OD; 
END Initiallze#3; 

PROCEDURE Update#3; 
WHILE true DO 

k : = k+l; 
FOR every object in the scene DO 

FOR every plxel (x.y) in the object DO 
IF (O[x.y] = k-l mod 2) 

. OR (object[x . yJ .x < Z[x.yJ) THEN 
Ik mod 2[x.y] : = object[x.y] .color; 
Z[x.yJ . - object[x.yJ . z; 
D[x.yJ : = k mod 2 ; 

FI; 
OD ; 

OD; 
{ mandatory wait for next frame } 

OD; 
END Update#3; 

PROCEDURE Refresh#3; 
WHILE true DO 

FOR T : = maxY DOWNTO 0 DO 
FOR x := 0 TO maxX DO 

display I k- 1 mod 2 [x. yJ ; 
IF O[x.yJ = k-l mod 2 THEN 

Ik mod 2 [x. yJ : = background ; 
Z[x.yJ infin1ty; 
O[x.yJ . - k mod 2 ; 

FI; 
OD; 

OD; 
OD; 

END Refresh#3; 

Figure 3. The Z-Buffer Algorithm Using A Dirty Bit 

number. This in effect allows the update processor, by 
checking the D field, to detect those pixels for which the 
refresh processor has yet to perform the appropriate 
initialization and to substitute the value infinity for 
whatever (incorrect) z-depth appears in the frame 
buffer. The update processor always re-writes the D 
field with the parity of the current update cycle number 
each time it stores into the frame buffer to avoid the 
problem of the refresh processor mistakenly initializing 
pixels that have already been used for the current 
update cycle. 
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The refresh processor must modify its operation so 
that it checks the 0 field before initializing a pixel. 
Were this not the case, it might overwrite a pixel that 
the update processor had already computed, since the 
initialization and update take place simultaneously. 
The refresh processor only performs an initialization 
operation if the 0 field is not the same parity as the 
current update cycle (put another way , it only initializes 
those pixels whose 0 fields equal k-l). Pixels being 
initialized have their 0 fields set to k (not for the 
benefit of the update processor, but so the refresh 
processor knows to re-initialize them during the update 
cycle k+l). 

For this scheme to work two assumptions must 
hold. The first is that the refresh processor must be 
allowed to complete at least one complete cycle between 
update cycles. As we have already noted, this is a 
reasonable assumption and is easily guaranteed by a 
simple test performed at the start of each frame. The 
second assumption is that the refresh processor makes 
its access to memory in a single atomic operation 
("read-modify-write"). If this were not the case, the 
refresh processor might overwrite a pixel whose 0 field 
changed between the time that it was read and the time 
that it was written back to memory. The implication of 
this assumption is that the refresh processor must have 
a reasonably sophisticated interface to frame buffer 
memory - it is fetching multiple pixels in parallel , all 
of which must have their 0 fields checked and their 1 
and Z fields modified in a single memory cycle. 

The procedures Update#3 and Refresht3 
indicate the z-buffer algorithm using the 0 field to 
overlap initialization by the refresh processor with 
image generation by the update processor. The 
algorithm as stated assumes that the update processor 
only begins a new cycle during the start of a new 
frame. This can be weakened significantly to the 
requirement that the update processor not begin a new 
cycle until the refresh processor has performed at least 
one complete refresh cycle since the last update cycle 
began (our standard assumption) . It may also be 
desirable to insist that the refresh processor not change 
its value of k except at the beginning of a frame (or at 
least a field) because of disturbing video effects . 

Before continuing, the reader may want to verify 
that the algorithm works as stated, with no race 
conditions existing that depend on the order in which 
objects are scan converted by the update processor or 
the order in which pixels are initialized by the refresh 
processor. In doing so , special note should be made of 
the assumption that the refresh processor's memory 
accesses are atomic. 

The cost in additional memory for this scheme is 
minimal. Only one extra bit is needed at each pixel. 
The increased sophistication in the refresh processor, 
however , is more substantial and may push up the cost 
of the video hardware significantly. Instead of 
performing a simple read-modify-write cycle (as it 
would for Solution #2) in which the new values written 
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PROCEDURE Initialize#4; 
k := 0; 

FOR Y : = maxY DOWNTO 0 DO 
FOR x := 0 TO maxX DO 

0 0 - false ; 
0 1 := false; 

OD; 
END Initialize#4; 

PROCEDURE Update#4; 
WHILE true DO 

k : = k+l; 
FOR every Object in the scene DO 

FOR every pixel (x.y) in the Object DO 
IF (NOT 0)( mod 3 [x. y]) 

OR (object[x.y] .x < Z[x.y]) THEN 
1)( mod 2[X.y] : = object[x.y] . color; 
Z[x.y] : = Object[x.y] . z ; 
0)( mod 3[X.y] : = true; 

FI; 
OD; 

OD; 
{ mandatory wait for next frame} 

OD ; 
END Update#4; 

PROCEDURE Refresh#4; 
WHILE true DO 

FOR 1 : = maxY DOWNTO 0 DO 
FOR I := 0 TO m&XX DO 

IF 0)(-1 mod 3 [x . 1] THEN 

display 1)(-1 mod 2 [x. y] 
ELSE 

display background; 
0)(+1 mod 3 [x. y] : = false; 

FI; 
OD ; 

OD; 
OD ; 

END Refresh#4; 

Figure 4. The Z-Buffer Algorithm Using 3 Dirty Bits 

back to memory are independent of those 'read from 
memory (at least for the fields that change) the refresh 
processor must now check the status of the 0 field (a 
single bit) to determine whether the original contents 
are to be left in the 1)( mo d 2 and Z fields or if they are 
to receive initialization values. All of this must be 
performed in parallel for anywhere from 16 to 64 
pixels, depending upon the design of the frame buffer 
memory interface. We can avoid this necessity , while 
still retaining the performance, by adding a few more 
bits to each pixel. 
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SOLUTION #4 
TRADING BACK SOME OF THE MEMORY 

FOR HARDWARE SIMPLICITY 

The reason the refresh processor's memory 
controller must be so complicated is that it must decide 
(very rapidly) which pixels must have their I and Z 
values modified. This dependence of certain bits within 
the pixel on other bits within the pixel may be difficult 
to determine, especially if the large pixel size requires 
some of the bits to reside on different boards. The 
solution proposed is to eliminate the necessity of 
checking the current pixel contents before deciding 
what to write back into memory during the refresh 
cycle. What we want is an oblivious memory controller, 
one which always writes the same pattern (or at least 
one which always changes the same bits to the same 
values) independent of the current pixel contents. 

The trick is to use three dirty bits, one for each of 
the cycles k-l, k, and k+ 1. These can then be 
administered independently by the refresh controller. If 
we interpret Dk as a Boolean value (true or false) 
that tells whether the current pixel contents have been 
set during the corresponding update cycle, the job of 
the refresh processor becomes much simpler. During 
steady state, the refresh processor will be fetching pixels 
from I k - 1 and initializing 0k+l while the update 
proceSS<lr is modifying Dk and Z. 

The only catch to this scheme is that pixels that 
are never rendered by the update processor (because 
they correspond to background) will remain 
uninitialized in their I and Z fields . This is not a 
problem if the refresh processor interprets the D field 
before passing pixel values on to the rest of the video 
chain. It must simply check 0k-l and if it is false 
(meaning that this pixel was never set during the 
previous update cycle) then it should pass on 
background color rather than what is stored in I k - 1 . 

Hardware to perform this task is much simpler than the 
massive parallel checking required for Solution #2 
because it can be performed on a pixel-by-pixel basis 
using techniques similar to lookup tables . 

It is interesting to note that three dirty bits are 
necessary to implement this scheme. Two are not 
enough. Dk - 1 must remain untouched during update 
cycle k or else the refresh processor will become 
confused as to what is or is not background. Ok 
obviously must be initialized before update cycle k 
begins and cannot be changed except by the update 
processor. Neither field is free for initialization during 
update cycle k. Thus a third dirty bit 0k+l is required. 

CURRENT IMPLEMENT A TIONS 

These algorithms are implemented on the 
Adage!Ikonas RDS 3000. Solution #1 is the standard 
z-buffer algorithm. The only change in the 
implementation from what has been presented is that 
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the Z field is typically stored in off-screen p~el memory 
because the frame buffer has only 32 bits per pue! and 
24 are used for intensity. On frame buffers with no 
off-screen memory the entire algorithm can be 
accommodated on-screen by decrea sing the number of 
bits allocated to intensity and setting the lookup tables 
appropriately to ignore bits in the Z field as they are 
read out during display. 

Solution #2 (the triple-buffered versioll) has also 
been implemented on the Ikonas , but with only limited 
intensity and z-depth information due to the 
requirement that all of the fields reside in on-screen 
memory. This stems from the fact that tne auto-clear 
feature of the Ikonas (which writes zeros into memory 
during the refresh cycle, subject to a write mask that 
determines the bits in a puel to be cleared) only 
processes visible pixels. Adopting conventions for 
intensity and z-depth that encode the bClckground calor 
and the maximum z-depth as zero allows existing 
hardware to handle the initialization in the refresh 
processor. A more natural encoding is pos.<>ible if the 
auto-clear feature uses the shading registers (available 
on with the Ikonas GM memory boards) to set the 
values to be written into memory , ratber titan always 
writing zeros into the fields specified by the write mask 
registers. Buffer swapping is accomplished by 
manipulating the crossbar switch and the look.up tables_ 

Solution #3 (the dirty bit) is n()t directly 
implementable on the Ikonas because the auto-clear 
feature has no way of conditionally modifying bit fields . 
This is symptomatic of the objection raised earlier that 
this approach assumes more intelligence in the refresh 
processor's memory controller than is likely to exist in a 
frame buffer. 

Solution #4 (three dirty bits) is easily 
implemented on the Ikonas using the convention that 
true is a 0 bit and false is a 1 bit. The auto-clear 
fea ture is used to initialize the dirty bits during refresh 
and a combination of the crossbar switch. the lookup 
tables , and the overlay option is used to modify the 
puel readout to background calor for pi"els whose 
val ues have not been set by the update c)'cIe. (The 
overlay option on the Ikonas allows certain bits - the 
appropriate dirty bit in our case - to select an al temate 
lookup table if the bits are non-zero. By setting all of 
the entries in the alternate lookup table to be the 
background color the correct modification is performed 
as pixels are read from memory during refresn .) 

FURTHER CONSIDERATIONS 

There is a question as to how dynamic the 
allocation of the various fields should be within a pixel. 
On the update processor all of the field selection can be 
fairly easily accomplished using masking and snifting . 
If the intensity and z-depth fields are multiples of eight 
bits, simple byte swapping logic can be used to present 
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an interface to the processor that is independent of the 
exact field being selected (i.e.) the update processor will 
always present intensity of z-depth values as right­
adjusted 32-bit values that will be automatically stored 
in the correct fields of a pixel). The dirty bits may 
have to be handled as special cases , although choosing 
appropriate conventions such as forcing all z-depths to 
be positive (and thus saving the sign bit for the dirty 
bit) could be employed . Generalized crossbar switches , 
similar to that on the Adage/Ikonas RDS 3000, used by 
both the update and refresh processors would clearly 
solve any efficiency issues related to problem. 

In implementing such hardware, some caveats are 
in order. Any registers that allow values or fields to be 
selected should be both writable and readable. If 
necessary, there should be shadow registers so the 
values can be read back, although it is preferable that 
the registers themselves be readable directly. 

It is worth noting that only the refresh circuitry 
needs a read-modify-write cycle that is atomic for the 
schemes to work . This is an important consideration, 
especially if the update processor is composed of 
distributed or pipelined tilers that separate their read 
accesses from their write accesses by multiple cycles. 
Such architectures are particularly useful for z-buffer 
algorithms because they increase parallelism and thus 
the update rate and yet require little or no 
synchronization among the multiple update processors 
because the z-buffer algorithm is itself inherently 
distributed. Our algorithms will not suffer in this case. 
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