
- 194 -

HARDWARE ASSISTANCE FOR Z-BUFFER VISIBLE SURFACE ALGORITHMS

Kellogg S. Booth , David R . Forsey , and Alan W . Paeth

Computer Graphics Laboratory, Department of Computer Science
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Tel: (519) 888-4534, E-Mail: KSBooth%watCGL@Waterloo.CSNet

ABSTRACT

The well-known "z-buffer" algorithm for solving the
visible surface problem has a number of points in its
favor, the main one being that it is amenable to very
efficient hardware implementation at little additional
cost in many existing frame buffer systems. lbe
traditional software implementation of the algorithm
assumes explicit initialization of both the image buffer
and the z-buffer before each image is generated. This
paper describes a simple technique for synchronizing
initialization and image generation so the two can be
performed in parallel, allowing complete overlap to be
achieved and effectively eliminating the time needed
for explicit initialization of the frame buffer. The
technique assumes a modest investment in additional
hardware within the frame buffer.

RESUME

Parmi les algorithmes de surfaces caches, I'algorithme
du "z-buffer" a un certain nombre d'avantages a son
actif. Le plus important de ceux-ci etant que cet
algorithme est peu couteux a implementer au niveau
hardware dans les systemes actuels de "frame-buffer"
Les techniques traditionnelles d'implementation de cet
algorithme forcent le logiciel a initialiser explicitement
le "z-buffer" et le buffer image avant le transfert de
l'image. Cet article decrit une technique simple qui
permet de synchroniser I'initialisation et la creation de
I'image afin qu'elles puissent etre realisees
simultanement. Ceci permet d'eliminer le temps perdu
lors de I'initialisation du "frame-buffer." Cette
technique suppose un faible investissement en materiel
additionnel a I'interieur du "frame-buffer."

Keywords: double-buffering, frame buffer, real-time,
visible surfaces, z-buffer.

Graphlca Interface '86

INfRODUCfION

The problem of computing only the visible surfaces
of a scene has by now been well-studied U12D . One
approach that has gained popularity is the z-buffer
algorithm first described by Catmull U4,5D. With a
z-buffer the depth-sort required of a visible surface
algorithm is accomplished by maintaining, for each
pixel, a record of the z-depth of the object whose
intensity (color) is stored at that pixe!. As subsequent
objects are scan converted into the frame buffer, their
z-depths are compared and used to decide whether the
new object is in front of or behind the object currently
displayed at each pixe!. In the former case both the
intensity and z-depth are changed for the pixel, but in
the latter case no action is taken. A complete
explanation of the z-buffer algorithm appears in
standard text books on computer graphics [7 ,lOll .

In the following sections we first define our model
of a frame buffer and then look at different ways of
adding additional hardware to the frame buffer to speed
up the z-buffer algorithm. The first approach almost
doubles the amount of memory in the frame buffer and
is presented solely to motivate the other two. The
second approach adds only a single bit to each pixel but
requires a more complicated memory controller that
could lead to significant timing problems in the video
chain. The third approach adds two more bits to each
pixel and hence admits an implementation that requires
no additional function in the memory controller beyond
what is available in current frame buffers, although a
modest change is still required to hardware further
down the video chain.

The basic z-buffer algorithm performs well in
almost all respects except for considerations of
antialiasing. This deficiency stems from the fact that
the z-buffer maintains depth information on a pixel-by­
pixel basis, and thus has no way to discriminate objects
at subpixel resolution. This is unfortunate because
aliasing artifacts introduced by the scan conversion
process can be very objectioriable in practice. Some
researchers have suggested techniques to incorporate
antialiasing strategies into a z-buffer algorithm, but
those techniques either require auxiliary storage or

Vlalon Interface '86

- 195 -

additional processing time beyond the basic scan
conversion algorithm, or they fail to achieve the desired
level of image quality U3 ,6,8ll. The approaches
described in this paper apply to z-buffer algorithms
enhanced for antialiasing, although we do not address
the issue explicitly. Instead, we adopt the attitude that
an important application of the z-buffer technique is to
high-performance raster systems for which real-time or
quasi-real-time performance is desired and that proper
antialiasing is a lUxury as yet not consistent with that
goal.

We distinguish between the update rate , the rate
at which new images are computed by the algorithm,
from the refresh rate, the rate at which the computed
images are displayed on the monitor. The update rate
is almost always established by limits in processing
power and the desire to display complex images and
thus tends to remain a bottleneck even as advances are
made in hardware and software, whereas the refresh
ra te is set by the need to overcome flicker effects
inherent in the human visual system and can be
regarded as a relative constant.

Our definition of real-time will be that a complete
image is generated within a single refresh cycle (usually
1130 or 1160 of a second). The notion of quasi-real-time
will imply image generation that closely approximates
that rate (at worst an update happens every 115 of a
second) . Ron Baecker has already championed the
claim that such rates give an acceptable illusion of
continuous simulation if the update rate and the refresh
rate are suitably synchronized [2ll. To be effective, a
steady refresh of the current image must be maintained
throughout the scan conversion process for the next
image. Because of this , we will be interested only in
the double-buffered version of the algorithm in which a
refresh processor displays one image while an update
processor is generating the next image.

With this set of ground rules, we are ready to
discuss the performance of the z-buffer algorithm and
to examine alternatives to the traditional
implementation. The operations performed by the
versions of the z-buffer algorithm that we will consider
remain largely the same in each of the
implementations. The differences lie in the way that
the operations are partitioned between the two
processors (the update processor and the refresh
processor) and in the way that the two processors
synchronize their operations.

THE FRAME BUFFER

Our model assumes that a frame buffer contains a
la rge amount of pixel memory indexed by two­
dimensional Cx. y) addresses and that each pixel is
divided into fields composed of a number of bits. For
our purposes at least three fields are necessary in a
pixel. These fields will be designated the 10 and 11
fields (two intensity buffers, one for the image currently
being displayed by the refresh processor and the other

Graphics Interface '86

for the image being computed by the update processor)
and the Z field (a single depth buffer) . Frame buffer
memory is dual-ported to allow the update processor to
read and write pixels (randomly) at the same time that
the refresh processor reads pixels at video rates (in
scan-line order). The refresh processor passes the pixels
down the video chain where the color information stored
in each pixel is converted to analog signals suitable for
display on a monitor, possibly after interpretation by
lookup tables or other devices whose function is not
important to the present discussion.

Our model for a frame buffer is patterned after
the Adage/Ikonas RDS 3000, the hardware on which
we have implemented these algorithms. Most of the
ideas presented here · apply to other frame buffer
architectures, although we do assume that the video
chain is similar to the control , crossbar, and lookup
table modules available in the Ikonas [1 ,9ll. Not all of
these features are required for most of the z-buffer
techniques , although the final algorithm presented here
actually assumes a slightly enhanced crossbar switch
over what is supplied by Adage. Our goal is not to
restrict attention to a particular frame buffer
architecture, but to point toward general hardware
features that will substantially enhance the performance
of z-buffer algorithms at modest cost.

Double-buffering is accomplished in a frame
buffer by the refresh processor reading from 10 during
odd update cycles and from 11 during even update
cycles, thus allowing the update processor to use 11 and
Z for scan conversion during odd update cycles and 10
and Z during even update cycles. Only one z-depth
field is necessary because once the image has been
rendered, its z-depths are no longer needed.

The selection of specific fields for reads and writes
by both the update processor and the refresh processor
may be accomplished by masking and shifting (either in
hardware or through a combination of hardware and
software) or by using address offset registers when the
various fields are stored in different areas of frame
buffer memory. These details are not important for the
discussion , so we will assume that the frame buffer
maintains all of the fields associated with a pixel within
a single "word" and that both processors are capable of
selecting particular fields with no penalty in time. It is
convenient to assume that this is accomplished by mask
registers and shift registers, associated with each
processor, that perform selective load and store
operations to only those bits indicated by the mask,
leaving the other bits of a pixel unchanged.

Any number of bits may be associated with the
two intensity buffers. Common configurations use 8
bits (with color look up tables to achieve a full color
space) or 24 bits (8 bits each of red, green and blue).
The z-depth must be able to discriminate objects within
the scene, so between 8 and 32 bits are commonly
assumed. Sutherland and Hodgman discuss a scaling
strategy for making the best use of the precision

Vision Interface '86

available HUn. This totals to from 24 to 80 bits per
pixel, depending upon the amount of col or and z-depth
desired . The memory requirement can be reduced
somewhat if only the intensity buffer currently being
displayed is located within the frame buffer itself (the
other fields being stored on the host) but our technique
is designed for high-performance systems in which all of
the memory resides within the frame buffer to achieve
the necessary update and refresh rates. Only the two
intensity buffers are accessed by the refresh processor in
any of these schemes, so some savings in cost could be
achieved by making the z-depth memory single-ported,
but this might preclude using the memory for other
purposes and is thus a less general architecture.

We will label each update cycle by an integer, but
often will only use its even or odd parity (the low-order
bit). Thus many places in our algorithms where k is
manipulated as an integer modulo some base (usually
two) the manipulation can be implemented with simple
bit operations such as complementation, rather than
with the more expensive increment and modulus
operations.

The next three sections present increasingly
sophisticated versions of the z-buffer algorithm . The
first is the standard implementation, suitable for a very
basic frame buffer. The subsequent versions achieve
increased performance by partitioning the calculation
differently among the update and refresh processor and
by using modest hardware assistance to synchronize the
calculations.

SOLUTION #1
TRADING OFF MEMORY FOR PROCESSING TIME

The basic appeal of the z-buffer algorithm is that
it affords a complete solution to the visible surface
algorithm for little more than the time required to
perform simple scan conversion without the visible
surface calculation. The algorithm is usually
implemented entirely in the update processor, with the
refresh processing serving only to display the resulting
image on the monitor. The two procedures Update#l
and Refresh#l shown in Figure 1 express the
interlocked cycles in a standard implementation of the
z-buffer algorithm. Normally the refresh cycle would
be implemented entirely in hardware, but we describe it
here as if it were implemented in software to provide a
uniform presentation of the two processes. The
processes are loosely synchronized in this basic version
of the z-buffer algorithm. At the start of each update
cycle the shared variable k is incremented and this
causes the refresh processor to swap image buffers with
the update processor. Actual implementations would
usually include a provision to further synchronize the
double-buffering so that buffers a re swapped only at the
end of a complete frame or field time.

This is the standard z-buffer algorithm presented
in text books and is easily implemented on most frame
buffers . The main procedure invokes (once) the setup

Graphics Interface '86

- 196 -

PROCEDURE Initialize#l ;
k : = 0 ;

FOR Y : = maxY DOWNTO 0 DO
FOR x : = 0 TO maxX DO

lo[x.y] : = background;
OD;

END Initialize#l;

PROCEDURE Update#l;
WHILE true DO

k := Ic+l ;

FOR y := maxY DOWNTO 0 DO
FOR x : = 0 TO maxX DO

lk mod 2 [X. y]
Z[x.y] : = m;

OD;

baclcground;

FOR every Object in the scene DO
FOR every pixel (x.y) in the Object DO

IF (object[x.y] . z < Z[x.y]) THEN

lk mod 2[x.y] : = ob.lect[X . r] . co1or;
Z[x.y] - Object[x.r] .:z;

FI;
OD;

OD;
{ optional wait for next frame}

OD;
END Update#l;

PROCEDURE Refresh.l;
WHILE true DO

FOR Y := maxY DOWNTO 0 DO
FOR x := 0 TO maxX DO

display lk-l mod 2 [X. y] ;
OD;

OD;
OD ;

END Refresh#l;

Figure 1. The Standard Z-Buffer Algorithm

in Initial1ze#l and then invokes (in parallel) the
two procedures Update#l and Refresh#! wh.ich
never terminate, but cycle continuously as the double­
buffering scheme alternately updates the two image
buffers. The refresh process()r is merely cycling
through memory performing the standard frame buffer
readout to the video hardware_ If the algorith.m is
being used to generate a single frame , there is really
nothing to discourage its use. But if the algor:ithm is
being used to generate a sequence of frames (as
assumed here) the algorithm does not fully utilize the
available hardware.

In this situation there is a bottleneck that may
potentially degrade performance. The z-buffer
algorithm requires that the in tensity and z-deptll fields
be reset to their initial values (background color and

Vision Interface '86

- 197 -

infinity) before each update cycle. The procedure
Update#l performs this initialization explicitly at the
beginning of each update cycle. This can be time­
consuming for two reasons . The first is that the update
processor can only perform initialization when it is not
performing scan conversion and thus the full bandwidth
of the update processor is not available for scan
conversion, an unfortunate consequence because real
images frequently require substantially more update
time than refresh time.

This is related to the second reason, which is that
even update processors with special purpose hardware
may not be able to write all of the pixels within the
frame buffer in one refresh cycle. The refresh
processor reads multiple pixels during a single memory
cycle because it looks at pixels in scan-line order and
thus can access multiple memory chips in parallel. This
allows it to achieve a complete refresh within one frame
time. The update processor typically does not do this
because it is designed for random access to the frame
buffer. The result is that one or more refresh cycles
may be "wasted" between successive update cycles
while the update processor is busy initializing instead of
rendering . This degrades the real-time or quasi-real­
time performance of the system by a significant
percentage.

Because it accesses multiple pixels during a single
memory cycle, the refresh processor is capable of
perfonning the initialization in a single refresh cycle.
Some frame buffers support this by allowing the refresh
processor to change values in selected fields of pixel
memory as each pixel is written back into memory after
being read during the refresh cycle [In . This allows the
refresh processor to initialize the second image buffer
and the z-depth buffer in a single refresh cycle.

Unfortunately , unless initialization is synchronized
with image generation there is little advantage to this
approach because the update processor must wait for at
least one complete refresh cycle after update cycle k to
insure that the refresh processor has completely reset
both the lk+1 and Z fields before it can begin update
cycle k+1. This means that the update processor will
be idle a significant amount of the time (recall that the
slowest update rate for quasi-real-time is 1/5 second so
that even with a refresh cycle of 1/60 second the image
processor would be idle more than 8% of the time - in
the worst case the processor would waste 50% of its
bandwidth while maintaining a 1130 second refresh
cycle and a 1115 second update cycle). The percentage
of idle time for the update processor is an important
consideration because it determines an upper bound on
the complexity of the image that can be rendered. This
problem can be overcome by the addition of extra
hardware, in this case a substantial increase in frame
buffer memory.

SOLUTION #2
TRADING MORE MEMORY

FOR PROCESSING TIME

Graphics Interface '86

PROCEDURE In1t1al1ze#2;
k : = 0 ;

FOR Y : = maxY DOWNTO 0 DO
FOR x : = 0 TO maxX DO

lo[x,y] background;
Zo[x,y] : = (1);

OD;
END In1t1al1ze#2;

PROCEDURE Update#2;
WHILE true DO

k : = k+1;
FOR every Object in the scene DO

FOR every p1xel (x,y) in the Object DO
IF (object[x , y] .x < Zk mod 2[x,y]) THEN

Ik mod 3[X,y] - object[x,y] . color;
Zk mod 2[x,y] Object[X,y] . Z;

FI ;
OD;

OD ;
{ mandatory wait for next frame }

OD ;
END Update#2 ;

PROCEDURE Refresh#2;
WHILE true DO

FOR Y : = maxY DOWNTO 0 DO
FOR x := 0 TO maxX DO

d1spla.y I k - 1 mod 3 [X ,y] ;
I k +1 .od 3[X,y] ba.ckground;
Zk+1 mod 2 [X ,y] : = infinity ;

OD;
OD;

OD;
END Refresh#2;

Figure 2. The Triple-Buffered Z-Buffer Algorithm

To achieve real-time or quasi-realtime
performance a third image field I2 can be added to the
frame buffer along with a second z-depth field Zl (the
original depth field becomes Zo). In this case the
update processor cycles between three image memories,
with the refresh processor displaying from I k - 1 , the
update processor writing into I k , and the refresh
processor initializing I k + 1 (all subscripts for I are now
modulo 3 instead of modulo 2). Similarly, the update
processor uses Zk for its visible surface calculation while
the refresh processor is initializing Zk+1 (these subscripts
are modulo 2 since only two depth buffers are
required).

As long as each update cycle requires at least one
entire refresh cycle (a modest assumption since a faster
update rate would imply that the image was being
updated faster than it was being viewed on the monitor)
the refresh processor will be able to initialize a new

Vision Interface '86

- 198 -

image and depth buffer in time for each update cycle,
thus freeing the update processor from any overhead for
initialization. Procedures Update#2 and Refresh#2
to accomplish this are straightforward modifications to
Update#l and Refresh#1.

The clear drawback to this scheme is the massive
increase in frame buffer memory. The requirement for
image memory has increased by 50% (from two buffers
to three) and the requirement for depth memory has
increased by 100% (from one buffer to two). For the
case of a full 24-bit image buffer and a 32-bit depth
buffer, this is a total of 136 bits per pixel, an increase
of 70%. While this might be appropriate for the
increased performance, we are at best getting an
improvement that is of the same order of magnitude as
the increase in memory cost. We can do much better.

SOLUTION #3
TRADING OFF HARDWARE COMPLEXITY

FOR LESS MEMORY

An alternative is to use one additional bit in the
frame buffer as a cycle counter (a dirty bit) to achieve
complete overlap of image generation and initialization
while avoiding the necessity of adding an additional set
of image and depth buffers. As for Solution #2, this
will in fact achieve an update rate that is equal to the
refresh rate for simple scenes (something not achievable
with the standard software z-buffer algorithm) but at
far less hardware cost. We assume that the frame
buffer has been extended to include a one-bit field D
containing the parity (low-order bit) of k, the update
cycle counter.

The frame buffer is initialized once, before the
actual z-buffer algorithm begins, so that 10 is the
"background" color and D is 0, the parity of the first
image. The setting of I1 and Z are arbitrary. The
update processor begins image generation cycle 1 with
the refresh processor initializing both 11 and z. When
the z-buffer algorithm has generated its first image, the
refresh processor begins displa ying from I 1 and
initializing both 10 and Z, but it performs the
initialization selectively using the cycle number and
information kept in the D field of each pixel. The
system assumes a steady-state operation in which the
two processors synchronize their activity after each
update cycle through the shared cycle number and the
D field.

This is accomplished in the following way. The
update processor proceeds as it normally would,
assuming that both Ik and Z have been initialized
previously by the refresh processor, even though the
refresh processor may not have visited some (or all) of
the pixels . The key idea is that each time the update
processor performs a depth comparison (testing the
z-depth of an object against the value stored in the z
field of a particular pixel) it biases the comparison in
favor of the new z-depth (that of the object) if the D
field does not match the parity of the update cycle

Graphlca Interface '86

PROCEDURE Initialize#3;
k := 0;

FOR y := maxY DOWNTO 0 DO
FOR x := 0 TO maxX DO

Io[x.y] : = background;
O[x.y] := 0;

OD;
END Initiallze#3;

PROCEDURE Update#3;
WHILE true DO

k : = k+l;
FOR every object in the scene DO

FOR every plxel (x.y) in the object DO
IF (O[x.y] = k-l mod 2)

. OR (object[x . yJ .x < Z[x.yJ) THEN
Ik mod 2[x.y] : = object[x.y] .color;
Z[x.yJ . - object[x.yJ . z;
D[x.yJ : = k mod 2 ;

FI;
OD ;

OD;
{ mandatory wait for next frame }

OD;
END Update#3;

PROCEDURE Refresh#3;
WHILE true DO

FOR T : = maxY DOWNTO 0 DO
FOR x := 0 TO maxX DO

display I k- 1 mod 2 [x. yJ ;
IF O[x.yJ = k-l mod 2 THEN

Ik mod 2 [x. yJ : = background ;
Z[x.yJ infin1ty;
O[x.yJ . - k mod 2 ;

FI;
OD;

OD;
OD;

END Refresh#3;

Figure 3. The Z-Buffer Algorithm Using A Dirty Bit

number. This in effect allows the update processor, by
checking the D field, to detect those pixels for which the
refresh processor has yet to perform the appropriate
initialization and to substitute the value infinity for
whatever (incorrect) z-depth appears in the frame
buffer. The update processor always re-writes the D
field with the parity of the current update cycle number
each time it stores into the frame buffer to avoid the
problem of the refresh processor mistakenly initializing
pixels that have already been used for the current
update cycle.

Vlalon Interface '86

- 199 -

The refresh processor must modify its operation so
that it checks the 0 field before initializing a pixel.
Were this not the case, it might overwrite a pixel that
the update processor had already computed, since the
initialization and update take place simultaneously.
The refresh processor only performs an initialization
operation if the 0 field is not the same parity as the
current update cycle (put another way , it only initializes
those pixels whose 0 fields equal k-l). Pixels being
initialized have their 0 fields set to k (not for the
benefit of the update processor, but so the refresh
processor knows to re-initialize them during the update
cycle k+l).

For this scheme to work two assumptions must
hold. The first is that the refresh processor must be
allowed to complete at least one complete cycle between
update cycles. As we have already noted, this is a
reasonable assumption and is easily guaranteed by a
simple test performed at the start of each frame. The
second assumption is that the refresh processor makes
its access to memory in a single atomic operation
("read-modify-write"). If this were not the case, the
refresh processor might overwrite a pixel whose 0 field
changed between the time that it was read and the time
that it was written back to memory. The implication of
this assumption is that the refresh processor must have
a reasonably sophisticated interface to frame buffer
memory - it is fetching multiple pixels in parallel , all
of which must have their 0 fields checked and their 1
and Z fields modified in a single memory cycle.

The procedures Update#3 and Refresht3
indicate the z-buffer algorithm using the 0 field to
overlap initialization by the refresh processor with
image generation by the update processor. The
algorithm as stated assumes that the update processor
only begins a new cycle during the start of a new
frame. This can be weakened significantly to the
requirement that the update processor not begin a new
cycle until the refresh processor has performed at least
one complete refresh cycle since the last update cycle
began (our standard assumption) . It may also be
desirable to insist that the refresh processor not change
its value of k except at the beginning of a frame (or at
least a field) because of disturbing video effects .

Before continuing, the reader may want to verify
that the algorithm works as stated, with no race
conditions existing that depend on the order in which
objects are scan converted by the update processor or
the order in which pixels are initialized by the refresh
processor. In doing so , special note should be made of
the assumption that the refresh processor's memory
accesses are atomic.

The cost in additional memory for this scheme is
minimal. Only one extra bit is needed at each pixel.
The increased sophistication in the refresh processor,
however , is more substantial and may push up the cost
of the video hardware significantly. Instead of
performing a simple read-modify-write cycle (as it
would for Solution #2) in which the new values written

Graphics Interface '86

PROCEDURE Initialize#4;
k := 0;

FOR Y : = maxY DOWNTO 0 DO
FOR x := 0 TO maxX DO

0 0 - false ;
0 1 := false;

OD;
END Initialize#4;

PROCEDURE Update#4;
WHILE true DO

k : = k+l;
FOR every Object in the scene DO

FOR every pixel (x.y) in the Object DO
IF (NOT 0)(mod 3 [x. y])

OR (object[x.y] .x < Z[x.y]) THEN
1)(mod 2[X.y] : = object[x.y] . color;
Z[x.y] : = Object[x.y] . z ;
0)(mod 3[X.y] : = true;

FI;
OD;

OD;
{ mandatory wait for next frame}

OD ;
END Update#4;

PROCEDURE Refresh#4;
WHILE true DO

FOR 1 : = maxY DOWNTO 0 DO
FOR I := 0 TO m&XX DO

IF 0)(-1 mod 3 [x . 1] THEN

display 1)(-1 mod 2 [x. y]
ELSE

display background;
0)(+1 mod 3 [x. y] : = false;

FI;
OD ;

OD;
OD ;

END Refresh#4;

Figure 4. The Z-Buffer Algorithm Using 3 Dirty Bits

back to memory are independent of those 'read from
memory (at least for the fields that change) the refresh
processor must now check the status of the 0 field (a
single bit) to determine whether the original contents
are to be left in the 1)(mo d 2 and Z fields or if they are
to receive initialization values. All of this must be
performed in parallel for anywhere from 16 to 64
pixels, depending upon the design of the frame buffer
memory interface. We can avoid this necessity , while
still retaining the performance, by adding a few more
bits to each pixel.

Vision Interface '86

- 20() -

SOLUTION #4
TRADING BACK SOME OF THE MEMORY

FOR HARDWARE SIMPLICITY

The reason the refresh processor's memory
controller must be so complicated is that it must decide
(very rapidly) which pixels must have their I and Z
values modified. This dependence of certain bits within
the pixel on other bits within the pixel may be difficult
to determine, especially if the large pixel size requires
some of the bits to reside on different boards. The
solution proposed is to eliminate the necessity of
checking the current pixel contents before deciding
what to write back into memory during the refresh
cycle. What we want is an oblivious memory controller,
one which always writes the same pattern (or at least
one which always changes the same bits to the same
values) independent of the current pixel contents.

The trick is to use three dirty bits, one for each of
the cycles k-l, k, and k+ 1. These can then be
administered independently by the refresh controller. If
we interpret Dk as a Boolean value (true or false)
that tells whether the current pixel contents have been
set during the corresponding update cycle, the job of
the refresh processor becomes much simpler. During
steady state, the refresh processor will be fetching pixels
from I k - 1 and initializing 0k+l while the update
proceSS<lr is modifying Dk and Z.

The only catch to this scheme is that pixels that
are never rendered by the update processor (because
they correspond to background) will remain
uninitialized in their I and Z fields . This is not a
problem if the refresh processor interprets the D field
before passing pixel values on to the rest of the video
chain. It must simply check 0k-l and if it is false
(meaning that this pixel was never set during the
previous update cycle) then it should pass on
background color rather than what is stored in I k - 1 .

Hardware to perform this task is much simpler than the
massive parallel checking required for Solution #2
because it can be performed on a pixel-by-pixel basis
using techniques similar to lookup tables .

It is interesting to note that three dirty bits are
necessary to implement this scheme. Two are not
enough. Dk - 1 must remain untouched during update
cycle k or else the refresh processor will become
confused as to what is or is not background. Ok
obviously must be initialized before update cycle k
begins and cannot be changed except by the update
processor. Neither field is free for initialization during
update cycle k. Thus a third dirty bit 0k+l is required.

CURRENT IMPLEMENT A TIONS

These algorithms are implemented on the
Adage!Ikonas RDS 3000. Solution #1 is the standard
z-buffer algorithm. The only change in the
implementation from what has been presented is that

Graphics Interface '86

the Z field is typically stored in off-screen p~el memory
because the frame buffer has only 32 bits per pue! and
24 are used for intensity. On frame buffers with no
off-screen memory the entire algorithm can be
accommodated on-screen by decrea sing the number of
bits allocated to intensity and setting the lookup tables
appropriately to ignore bits in the Z field as they are
read out during display.

Solution #2 (the triple-buffered versioll) has also
been implemented on the Ikonas , but with only limited
intensity and z-depth information due to the
requirement that all of the fields reside in on-screen
memory. This stems from the fact that tne auto-clear
feature of the Ikonas (which writes zeros into memory
during the refresh cycle, subject to a write mask that
determines the bits in a puel to be cleared) only
processes visible pixels. Adopting conventions for
intensity and z-depth that encode the bClckground calor
and the maximum z-depth as zero allows existing
hardware to handle the initialization in the refresh
processor. A more natural encoding is pos.<>ible if the
auto-clear feature uses the shading registers (available
on with the Ikonas GM memory boards) to set the
values to be written into memory , ratber titan always
writing zeros into the fields specified by the write mask
registers. Buffer swapping is accomplished by
manipulating the crossbar switch and the look.up tables_

Solution #3 (the dirty bit) is n()t directly
implementable on the Ikonas because the auto-clear
feature has no way of conditionally modifying bit fields .
This is symptomatic of the objection raised earlier that
this approach assumes more intelligence in the refresh
processor's memory controller than is likely to exist in a
frame buffer.

Solution #4 (three dirty bits) is easily
implemented on the Ikonas using the convention that
true is a 0 bit and false is a 1 bit. The auto-clear
fea ture is used to initialize the dirty bits during refresh
and a combination of the crossbar switch. the lookup
tables , and the overlay option is used to modify the
puel readout to background calor for pi"els whose
val ues have not been set by the update c)'cIe. (The
overlay option on the Ikonas allows certain bits - the
appropriate dirty bit in our case - to select an al temate
lookup table if the bits are non-zero. By setting all of
the entries in the alternate lookup table to be the
background color the correct modification is performed
as pixels are read from memory during refresn .)

FURTHER CONSIDERATIONS

There is a question as to how dynamic the
allocation of the various fields should be within a pixel.
On the update processor all of the field selection can be
fairly easily accomplished using masking and snifting .
If the intensity and z-depth fields are multiples of eight
bits, simple byte swapping logic can be used to present

V Islon Interface '86

- 201 -

an interface to the processor that is independent of the
exact field being selected (i.e.) the update processor will
always present intensity of z-depth values as right­
adjusted 32-bit values that will be automatically stored
in the correct fields of a pixel). The dirty bits may
have to be handled as special cases , although choosing
appropriate conventions such as forcing all z-depths to
be positive (and thus saving the sign bit for the dirty
bit) could be employed . Generalized crossbar switches ,
similar to that on the Adage/Ikonas RDS 3000, used by
both the update and refresh processors would clearly
solve any efficiency issues related to problem.

In implementing such hardware, some caveats are
in order. Any registers that allow values or fields to be
selected should be both writable and readable. If
necessary, there should be shadow registers so the
values can be read back, although it is preferable that
the registers themselves be readable directly.

It is worth noting that only the refresh circuitry
needs a read-modify-write cycle that is atomic for the
schemes to work . This is an important consideration,
especially if the update processor is composed of
distributed or pipelined tilers that separate their read
accesses from their write accesses by multiple cycles.
Such architectures are particularly useful for z-buffer
algorithms because they increase parallelism and thus
the update rate and yet require little or no
synchronization among the multiple update processors
because the z-buffer algorithm is itself inherently
distributed. Our algorithms will not suffer in this case.

ACKNOWLEDGEMENTS

Schemes similar to those presented here have been
implemented in custom hardware by Trillium
Corporation in their flight simulator systems U13TI.

A lucid discussion of the issues involved in
building the memory controller for the refresh processor
is given in Whitton's excellent article on frame buffer
design ITl4TI . The crossbar switch for the Adage/lkonas
RDS 3000 was originally suggested by Henry Fuchs.

This article would not have been written except
for the encouragement of Marceli Wein. Numerous
discussions with Nick England and Mary Whitton have
contributed to our appreciation of the Ikonas
architecture and its versatility. Alain Brossard kindly
provided the translation for the resume. The research
reported here was supported by the Natural Sciences
and Engineering Research Council of Canada under a
variety of grants.

REFERENCES

ITlTI Adage, " RDS 3000 Manual."

U2TI R. M. Baecker, "Digital Video Display Systems
and Dynamic Graphics," Computer Graphics 17:3.
(August, 1979) pp. 48-56.

Graphics Interface '86

IT3D L. Carpenter "The A-Buffer , An Antialiased
Hidden Surface Method ," Computer Graphics
18:3 , (July , 1984) pp. 103-108.

U4D E . Catmull , A Subdivision Algorithm for Computer
Display of Curved Surfaces , (doctoral dissertation)
Technical Report UTEC-CSc-74-133, Department
of Computer Science, University of Utah
(December, 1974).

U5D E. Catmull, "Computer Display of Curved
Surfaces," Proceedings IEEE Conference on
Computer Graphics , Pattern Recognition and Data
Structures, (May, 1975), reprinted in TutoriaL and
SeLected Readings in Interactive Computer Graphics ,
H . Freeman (ed.), IEEE Computer Society
(1980) pp. 309-315.

U6D K. D. Evans "An Approximate Method for Anti­
Aliasing, Using a Random Access A-Buffer,"
Proceedings Graphics Interface ' 84, (May, 1984) p.
109.

U7TI J . D . FoLey and A. van Dam, FundamentaLs of
Interactive Computer Graphics , Addison-Wesley
(1982).

ff8TI E . Fiume, A. Foumier, and L. Rudolph, "A
Parallel Scan Conversion Algorithm with Anti­
Aliasing for a General-Purpose Ultracomputer,"
Computer Graphics 17:3, (July , 1983) pp. 141-150.

ff9D S. A. Mackay and K. S. Booth , "Techniques for
Frame Buffer Animation," Proceedings Graphics
Interface '82 (May, 1982) pp. 213-220.

ffl0D W. M. Newman and R. F . Sproull, PrincipLes of
Interactive Computer Graphics, second edition,
McGraw-Hill (1979) .

UllD 1. E . Sutherland and G. W. Hodgman ,
"Reentrant Polygon Clipping," Communications of
the ACM, 17:1, (January , 1974) pp. 32-42.

U12D 1. E. Sutherland, R. F. Sproull , and R. A.
Schumacker, "A Characterization of Ten
Hidden-Surface Algorithms," Computer Surveys,
6:1 (March, 1974) pp.

U13D R . Swallow , personal communication.

IT14D M. Whitton, "Memory Design for Raster
Graphics Displays," IEEE Computer Graphics and
Applications, 4:3, (March 1984) pp. 48-64.

Vision Interface '86

