
- 202 -

Eliminating the Dichotomy Between Scripting and Interaction 

John F. Schlag 

Three Dimensional Allimation Systems Group 
Computer Graphics Laboratory 

New York Institllte of Technology 

Abstract 

Throughout the computer graphics literature, but in 
modeling and animation lore in particular, the prevalent 
attitude seems to be that scripting and interaction are ir· 
reconcilably different types of user interface. This 
paper propounds the belief that this dichotomy is a myth 
and gives examples of systems which encourage thi8 
belief. Two of the systems described are a keyframe 
animation program and a geometric modeling program 
developed at the NYIT Computer Graphics Laboratory. 
Both of these systems are used on a daily basis for 
production , development and research. 

1. Introduction 
Scripting and interaction are widely used interface 

styles for modeling and animation programs. The ad­
vantages and disadvantages of each are well known. 
Scripting systems allow command sequences to be in­
crementally modified and reexecuted, but allow no inter­
active input of data and operations. Interactive systems 
allow this input, but lose all record of commands 
previously executed, leaving the user to start over if some 
intermediate parameter affecting the Cinal result needs to 
be changed. In almost every publication describing a new 
modeling or animation system, there is a paragraph or 
two which notes these properties and proceeds to ballyhoo 
the advantages oC the method chosen. As with many 
other such apparent dichotomies, most designers accept 
without question the division, pick one technique, imple­
ment it and resign themselves to writing the obligatory 
text. From this lamentable situation we may conclude 
that the production oC a user interCace which integrates 
scripting and interaction is difficult, but certainly not 
that it is impossible. 

The integration of scripting and interaction is 
worthwhile Cor several reasons. The first is that a more 
general conceptualization of user interCaces results. This 
has the potential for expanding the set of problems that 
can be solved with a computer. On a more practical note, 
in teractive graphics workstations are oCten expensive and 
therefore scarce. In many graphics houses, the time avail­
able on such resources is a limiting factor in the amount 
and/or complexity of animation producible. It helps 

Graphics Interface '86 

greatly if users can work , albeit more slowly, at ordinary 
terminals, using scripting instead oC interaction. 

Resource limits are not the only reason to use scripting 
at one workstation and interaction at a.nother. The 
production oC computer animation requires many diverse 
activities, most oC which are accomplished more efficiently 
with one technique than the other. Some establishments 
may boast interactive and scripting tools Cor particular 
activities, but rarely do these tools interCace to a common 
database format. More often, the systems are incom­
patible "competitors" , perhaps having been written by 
different individuals, and any attempt to use both to solve 
a single problem is Crustrated by the need to reorganize 
data., shuffle Ciles about and translate between formats. A 
system which integrates scripting and interaction can be 
used for conceptually diverse activities in whatever mode 
is appropriate . A banner example oC the type oC produc­
tion which needs this is the now famous robot ant anima­
tion by Lundin [15), in which the basic 3d path oC the 
model is supplied interactively and the dynamics are sup­
plied by an explicit computational model. 

For perspective, the more general problem here is the 
development oC editing theory. A general theory of edit­
ing should be independent oC the data to be edited, so it 
should be applicable not only to ordinary text editing, but 
to other activities such as geometric modeling (shape 
editing), animation and robot programming (motion 
editing), music production (sound editing), painting 
(image editing) and computer programming (a.lgorithm 
editing). What we would like Cor any given data Cormat is 
a logical and complete set oC Cunctions for manipulating 
that format, and both interactive and scripting interfaces 
to these functions. 

When differentiating between interaction and script­
ing, it is natural at some point to quibble about exactly 
what interactive means. Some would argue that iC the 
time around the typical edit-process-view loop of a script-

- ing system is short enough , the system is interactive. Is 
there some threshold on this loop time which must be 
met! "Real" time? Historically , the term has been used 
to mark a contrast with batch systems, where the sizes of 
input and output data sets are usually large. Syst ems 
that produce visible results after small amounts of input 

Vision Interface '86 



- 203 -

(after every keystroke, say, in a screen editor) we classify 
as being definitely interactive. An Mten cited parameter 
for language-based systems is whether the system is in­
terpretive or compiling. Interpretive systems, however, 
are rarely used without large application dependent 
scripts, while compilation systems can call themselves 
"interactive" simply by connecting their inputs to the 
keyboard . Some systems [13, 16] blur the distinction even 
further by loading compiled code into interpretive front 
ends at run time. The answer to all this, of course, is that 
the set of interactive systems is a fuzzy one, with no clear 
dividing lines along any of these axes. Hence, we discon­
tinue our quibbling here. 

2. Combining Scripting with Interaction 
This section describes the requirements for an in­

tegrated scripting/interactive user interface. Several 
programs/systems which implement these requirements in 
varying degrees of completeness are drawn upon for ex­
amples. Emacs is an "extensible, customizable, self­
documenting" screen editor developed at MIT [I] . The 
Unix l implementation with which the author is familiar 
[2] supports extension through an interpreter for a lisp­
like language. Troll [5] (or Scribe or TeX, if you prefer) 
is a typesetting program which supports macros. The 
Macintosh personal computer [17], with its attendant 
firmware , is the latest paragon of user interface style. 
Em is an animation program written at NYIT for inter­
active motion specification (animation) of parameterized 
models [8]. It is unique among these example systems in 
its use of a large (rather much larger than that of C [4]) 
formal grammar [7] for defining its basic input language. 
Gem [161 is an interactive geometric modeling program, 
also written at NYIT, and is the current object of this 
research. 

To develop a model of a user interface which in­
tegrates scripting and interaction, one can think either 
about adding an interactive front end to a scripting sys­
tem, or about adding scripting features to an interactive 
program kernel. Both these approaches have merit. The 
former is more likely to result in a consistent, well­
designed system, since the basis for the system is presum­
ably a well-designed language. The latter is more likely 
to result in a truly nexible system, since the user interface 
design would proceed unfettered by syntax . Gem was 
developed in the latter mode, and this paper attempts to 
relate the experience gained from that activity . What, 
then, is required of an interactive system which also sup­
ports scripting? 

(1) The first and most obvious requirement is that 
there must be some appropriate script representation. 
Tex t is an obvious choice, but the problem with text is 
th at it forces linear formatting. This may be acceptable 
for document and music production, but for modeling and 
animation, where inst.ancing is a way of life, a graphic 
datanow format may be more appropriate. (In fact, the 
fru stration of ordinary music notation is due in part to its 
limited support for instancing.) Even if a linear format is 

Graphics Interface '86 

tolerable, a more cogent objection to text is that it 
represents the script at the wrong level. Dealing with the 
script directly as text ignores the higher-level command 
structure. 

There must be a script representation of every inter­
active editing command, and there must be interactive ac­
cess to every script command. This brings up the matter 
of what is and what isn't script. It is important to dif­
ferentiate commands to an interactive front end from 
commands that manipulate the data to be edited. The in­
teractive interface provides an additional, rather than an 
equivalent means of access to editing commands. This 
seems a sensible separation, as no one wants to type in 
reams of text for low level events like tablet movements 
anyway. In fact , it is useful to be able to siphon off the 
raw event stream into a file for testing and demonstration 
purposes (as the Macintosh can do) , but there is no need 
for that file format to be integrated with the script 
representation. 

(2) The system must maintain some internal represen­
tation of the script. Unix Emacs uses three represen­
tations for script material , one the lisp-like syntax men­
tioned earlier for defining functions, t he second a buffer of 
raw keystrokes for defining "macros" and the third a 
private internal format for supporting 'undo'. Em begins 
by parsing a script with a yacc-generated parser [6]' 
generating a dependency tree and display segments as 
semantic results. Instead of converting the script to a 
syntax tree representation, however (as a compiler would 
for code generation) , the original text is stored in memory 
for reparsing during the interactive updating of parameter 
values. 

(3) The system must provide a way to execute a script. 
This is the easy part, as pushing the current input source 
on a stack and reading a script from a file or memory is 
simple on reasonable operating systems. The only added 
wrinkle is that scripts should be able to turn to an ab­
solute source (typically the user) for input. In modeling, 
for instance, a user may want to create a script segment 
that creates an instance of a highly parameterized primi­
tive by filling in some parameters on its own and prompt­
ing for the rest . Emacs provides an assortment of fun c­
tions for getting values of various types from the 
keyboard. 

(4) The system must be able to create a script from in­
teractive input. Emacs saves raw keystrokes for macro 
definition; function defini t ion from interactive input is 
achieved by mapping keystrokes through a keymap which 
associates fun ctions with keys, and then appending the 
names of the fun ctions to the script. The Synclavier [211 
provides a facility for " reverse-compiling" a real-time 
keyboard performance into a score. 

Creating sc ripts from interactive input is where the 
real subtleties begin to arise. For example, most scripted 
operations will be used as subroutines would be in an or­
dinar:' programming language. (This restriction is reason­
able, since in many languages everything is part of some 

Vision Interface '86 



- 204 -

subroutine.) The context in which this "subroutine" is to 
be executed will dictate end conditions for the recording 
of the script. One solution, used by Emacs for both func­
tion and macro definition, is to provide two special inter­
active commands to start and stop the translation of in­
teractive input into script. These commands must be 
treated specially in all contexts, as their meaning in a 
script is unclear at best, and they should not be translated 
into script when given interactively. 

Some decision must be made as to whether the input 
being translated is to be executed at the time of record­
ing. A good solution to this is to execute the input when 
it's coming in interactively, and to simply store it away 
when it's not. Emacs, being "interactive", executes its in­
put while translating it, which makes clear the effects the 
script will have when executed later. At the other end of 
the spectrum, Troff defines very clearly a ropy mode 
through which input destined for macros is read. 

Above, it was maintained that a direct translation of 
the low level event stream is not an appropriate script 
representation. The open question is this: if raw events 
aren't going to be represented directly in the script, how 
are they going to be represented? High bandwidth events 
such as tablet and dial movements present a formidable 
data pollution problem, so some means of compressing 
these events into a compact interpretation needs to be 
found. 

(5) The system must provide a way to edit a script. 
This is important, since very little time is spent creating 
scripts as opposed to editing them (witness software 
production). For this function , Emacs "cheats" and uses 
itself to do the editing. It is, after all , a text editor, and 
its only events are characters from the keyboard . Inter­
active modeling and animation programs which employ an 
arsenal of interactive devices are not so fortunate. More 
special commands are needed here to position the 
"cursor" where translated script will be inserted, and to 
delete script elements. Em uses a compromise solution to 
allow the user to edit the set of current input modes 
(relationships between logical device values and parameter 
values) , which is to edit a text representation of the input 
modes with a text editor and then read them back in. 
The tex t representation is actually a subset of the com­
mand language, and the same parser is used for it that is 
used for the input script. 

The support of editing is the most diUicult part of in­
tegrating scripting and interaction. As an example, con­
sider the support necessary for the special case of 'undo'. 
At any point in the command sequence, the user can issue 
an undo command which undoes the previous editing 
command, and sequences of undo commands have 
cumulative effect . (An interesting side issue is whether 
the undo commands should be part of the script, that is, 
whether you should be able to undo the undoing.) There 
seem to be only two alternatives for supporting this 
functionali ty: either all the operators must be invertible, 
or the entire state of the system must be snapshotted 
after every command, both fairly daunting propositions. 

Graphics Interface '86 

In the more general case, commands at any point in the 
script may be changed. Assuming that an interactive sys­
tem wants to keep up to date versions of the final results 
on display, this means that to minimize script reexecution 
time, every intermediate result must be saved. This 
generates an obvious conflict with storage requirements. 
Faced with this, one gives up and accepts the difference 
between compiled and uncompiled forms of the data, as 
well as script reevaluation time. 

3. An Implementation 
This methodology is being explicitly applied in the 

design of the user interface to Gem, to our geometric 
modeling program at NYJT. This program sports the 
usual socially acceptable features such as on-screen menu­
ing, overlapping windows (that support vector data), icons 
and on-line help, as well as some more unique features 
such as run-time loading of compiled object code and a 
rich symbol table structure. Modeling operations include 
polygon digitizing, translational and rotational sweeping, 
mirroring, stellation, truncation, . boolean set operations, 
ofrsetting and quadratic, bicubic and geodesic subdivision 
[Q, 10]. Output databases are produced for our animation 
and rendering software. 

The modeler is extensible at two different levels. The 
scripting facility described below provides a means for or­
dinary users to writ.e new functions in the command lan­
guage of the modeler. The menu structure is dynamically 
m0difiable, so these functions can be inserted at ap­
propriate places or just executed from the keyboard. The 
run-time loader and symbol table structure are used by 
developers and application programmers to extend the 
program in the base programming language. After a run­
time package has been loaded in , the program appears for 
all intents and purposes as it would have if the package 
had been linked in by the system maintainers before 
releasing it. 

Scripts are represented both externally and internally 
as text. Execution is simple, given the i/o redirection 
facilities of Unix [3] . The problem of turninf: to the user 
for direct input has been solved by ta.gging the data 
rather than calling a special routine. (In fact there is no 
explicit syntax in the input language for procedure calls.) 
When interactive input is desired in a script, a special 
token is inserted which is understood by all the data col­
lecting routines to mean: "ignore this token , pusil the cur­
rent input channel on the stack and use tile interactive in­
put channel. " (This is similar to the method used by the 
Unix command interpreter [11], which, alas, also does not 
support subroutines.) 

Script generation is accomplished by se nding strings t.o 
a script from a small number of places in the program. 
The names of functions are emitted just prior to invoca­
tion. When functions need arguments (intef:ers, strings, 
parts, etc.) they call 'get' functions which prompt for and 
return a va.riable of the appropriate type. These func­
tions send the argument values obtained to the sc_ript just 
before returning. This scheme limits the n umber of places 

Vision Interface '86 



- 205 -

in the program that have to know about script generation 
to one per data type. 

Because of Gem's lack of a formal grammar to define 
the input language, a practical problem in the creation of 
scripts is the difficulty of determining where a macro 
ends. When the define-macro command is given, the 
translation of events into script is enabled. When this 
command occurs in a script, commands are not executed 
during recording, but consumed by the define-macro com­
mand until it sees the end-macro command . In this mode, 
Gem can be confused if the end-macro command appears 
inside the macro. When the input is interactive, com­
mands are executed during recording. This method does 
not become confused since the commands consume their 
arguments. 

One of Gem's user interface features which compli­
cates script generation is its use of cancelable commands. 
Each of the get fun ctions provides a 'cancel' option which 
causes the calling function to abort. To handle this cor­
rectly, the generation of script must be deferred until 
commands execute to completion. Presently, Gem makes 
no attempt to handle this problem. 

Another interesting . issue in script generation is how to 
handle modelessness. Gem makes an attempt to be as 
modeless as possible. In the get functions, any input 
which isn't of the type needed is passed through to a 
recursive invocation of the command interpreter. For ex­
ample, while selecting a part, the user can move the 
camera, make new parts, change the windows around, ac­
cess the on-line help database and so on. This is one case 
in which the lack of a formal grammar actually makes the 
script generation easier: Gem simply prints script com­
mands as they are evaluated. For example: 

intersect-parts part! move-camera part2 

In contrast, if the script format were Lisp, for example, 
some means would have to be found of splicing in the ex­
tra commands: 

(intersect-parts partl (progn (move-camera) part2)) 

The conversion of tablet and dial events to script is 
dependent on context. For example, in several contexts 
tablet picks are used to select a current element (solid , 
surface, polygon, edge, vertex , etc.). In these contexts, 
the tablet pick is considered to be an alias for the ap­
propriate 'select ' command, so the script result is the 
name of the command plus the name of the object 
selected. Tablet and dial movements, the really high 
bandwidth events, are dealt with by considering them to 
be inputs to fancy 'get ' functions. A common use for 
these events, for example, is in the construction of 
positioning matrices. When the function which collects 
these events into a matrix returns, it emits an appropriate 
script representation just like the other 'get' functions. 

Two approaches to script editing have been developed. 

Graphics Interface '86 

The first is the compromise adopted by Emacs and Em: 
dump the script into a file , invoke a text editor on the file 
and read the file back in. This was implemented as a first 
cut because it was easy. It also has the advantage of be­
ing editor-independent. 

The more ambitious script editing scheme, still under 
development, is to open a text editor as a concurrent 
process. The editor provides two windows, one an inter­
active channel to the normal terminal i/o of the modeler 
process, and the other a buffer for the script to be edited. 
Script emitted from the modeler is sent to the editor's 
script buffer and inserted at the current cursor location of 
that buffer. Hence, the commands of the text editor are 
available in the script window and the commands of the 
modeler are available in the other. The drawbacks of this 
approach are that all the terminal data for the modeler 
must go through the editor (a performance issue), and, 
more importantly, only one editor (namely Emacs) can 
support this mode of operation. If the window system 
were below the process level, things would be much easier, 
but unfortunately , our window system is part of the 
modeler process. 

4. Discussion and Conclusions 
Two major improvements are planned for the Gem 

user interface. The first is to reimplement the upper level 
of the interface in Lisp [12] . This would eliminate many 
of the problems that arise because of the lack of a formal 
grammar. The interactive command interface would stay 
the same, but scripting would be done in Lisp. This has 
only recently become practical due to the development of 
a programming environment [14] which supports both C 
and Lisp, and guarantees that the conversion can be done 
incrementally, without discarding the several tens of 
thousands of lines of existing modeling code. 

The second improvement being considered is a provi­
sion for user-configurable device interaction via fun ction 
networks [24] . A function network package has been im­
plemented and tested as a run-time package but has not 
yet been bound into the program. The use of function 
networks at the modeling level as well would provide a 
means of representing the datanow aspects of a model ex­
plicitly . This would also make the storage of intermediate 
results possible, which, as mentioned earlier, opens the 
door to the optimization of script execution time, provid­
ing one is prepared to pay the price in st0fage require­
ments. 

The objections raised earlier to text as a script 
representation were based in part on the limited intel­
ligence of current text editors. This objection could pos­
sibly be eliminated through the use of syntax-directed 
editing, a technique which has been under development 
by the programming language community for some time. 
The script form would be text, but the text editor would 
know the syntax of the language so its elements could be 
handled at a reasonable level. 

As conjectured in the introduction, the implemen-

Vision Interface '86 



- 206 -

tation of a user interface kernel which provides integrated 
support for scripting and ipteraction has proven difficult, 
but not impossible. The work done so far has begun to 
provide the insights necessary for the implementation of a 
truly useful tool for animation production, and the 
methodololIT developed seems applicable to a wide range 
of data editing problems. 

5. Addendum: Other Potential Applications 
In addition to modeling and animation for computer 

graphics, another application area that stands to benefit 
greatly from the integration of scripting and interaction is 
music production. Composers should be able to create a 
score in some reasonable frequency content versus time 
notation (using either traditional staves or some alter­
native notation [18)), play the score through some instru­
ment, play the instrument to generate a score, and finally 
edit the score using either instrumental or scripted input. 
In fact, a first cut at a system with these capabilities can 
be assembled with current technology [19, 20, 21, 221. 

Another area that uses hybrid scripting/interaction 
techniques already is robot programming. Unimation 
Puma series robots [23]' for example, come with a pro­
gramming language for scripting and a manual control 
box for interactively positioning the robot in key con­
figurations. Once a configuration is set, a line of text can 
be inserted in the program buffer with a press of a button 
on the manual control. Such a programming environment 
could be much more generally useful if Oeshed out with 
the remainder of the capabilities described in this paper. 

Acknowledgements 
Pat Hanrahan started the Gem project, is directly 

responsible for most of the geometric functionality, and 
directly or indirectly responsible for large parts of the 
user interface. Many others have contributed ideas 
and/or code to the Gem user interface, among them Dan 
Hopen, Robert McDermott, Peter Oppenheimer, Michael 
O'Rourke, Jean-Louis Schulmann, Jacques Stroweis and 
David Sturman. Em was written by Pat Hanrahan and 
David Sturman . I thank John Lewis fo.r much discussion, 
goading, critical reading and the C/Lisp environment, and 
Kurt Fleischer and Steve Rubin of Schlumberger Palo 
Alto Research for general discussions on scripting vs. in­
teraction and dataOow techniques in modeling. 

References 

1. Emacs: The Extensible, Customizable, Self­
Documenting Display Editor, Richard M. Stallman, MIT 
AIM-519A, March 1981. 
2. UniPress Emacs Screen Editor Manual, UniPress 
Software, Edison, NJ. 
3. The UNIX Time Sharing System , Dennis M. Ritchie 
and Ken Thompson, Comm. ACM, July, 1974 
(republished Jan 1983). 
4. The C Programming Language, Kernighan and Ritchie, 
Prentice Hall, 1978. 

Graphics Interface '88 

5. NrofffI'roff User's Manual , J . F. Ossana, Unix 
Programmer's Manual, Volume n. 
6. Yacc: Yet Another Compiler Compiler, Steven 
C. Johnson, Unix Programmer's Manual, Volume n. 
7. Mint User 's Manual, David 1. Sturman, NYIT inter­
nal documentation , September 1985. 
8. Interactive Animation of Parametric Models , Pat 
Hanrahan and David Sturman, Siggraph Tutorial #9: In-

Q. A Subdivision Algorithm for Smoothing Down Ir­
regular Shaped Polyhedrons, D. W. H. Doo, Proc. Inter­
active Techniques in Computer Aided Desir;n. 1978. 
10. Recursively Generated B-spline Surfaces on Ar­
bitrary Topological Meshes, Catmull and Clark, Com­
puter Aided Design, Nov. lQ78. 
11 . An Introduction to the C Shefi, William Joy, 4.2BSD 
Unix Programmer's Manual, Volume IIc. 
12. Lisp, Winston and Horn, Addison Wesley. 1981. 
13. The Franz Lisp Manual, John K. Fodera.ro, Keith 
L. Sklower and Kevin Layer, 4.2BSD Unix Programmer's 
Manual, Volume IIc. 
14. Zlisp, John Lewis, NYIT internal documentation, 
March lQ85. 
15. Motion Simulation, Richard V Lu:ndin, Proc. 
Nicograph-84. 
16. Gem User's Manual, John F. Schlag, NYIT internal 
documentation (in preparation). 
17. Inside Macintosh , Apple Computer Corp_ 
18. MusicWorks , Hayden Software, Lowell , MA. 
19. Yamaha Digital Programmable Algorithm Syn­
thesizer Operation Manual , Buena Park, Yamaha Inter­
national Corp. , 1984. 
20. DX7, Yasuhiko Fukuda, Amsco Publicati()ns, London, 
England, lQ85. 
21. Synclavier // Instruction Manual, New England Digi­
tal Corp. 
22 . MIDI Specification 1.0, International MIDI Assoc.,· 
N. Hollywood, CA, lQ83. 
23. Unimate Puma Mark-// Robot 500 Series Equipment 
and Programming Manual, Unimation, In<:., Danbury 
CT, April lQ84. 
24 . PSSOO Programmer 's Reference, Evans a.nd Suther­
land Computer Corp., Salt Lake City, Utah. 

lUnix is a trademark or AT&T Bell Laboratories . Scribe is a 
trademark or Unilo&ic, Inc. Macintosh is not a tr~emarlt or Apple 
Computer, Inc. 

Vision Interface '88 


